用户名: 密码: 验证码:
农业机器人末端执行器抓持力控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于果蔬采摘作业的复杂性和特殊性,农业机器人采摘成功率低,损伤率高。引起损伤率高的一个主要原因是末端执行器抓持果蔬力过大或过小,导致抓伤或脱落。果蔬在抓持过程中会发生变形,使抓持力逐渐变小,采摘中应考虑果蔬变形对末端执行器夹持力的影响。果蔬抓取过程要求对果实无任何损伤,这就要求机器人的末端执行器具有柔顺性。本文主要从主动柔顺控制的方法,即力控制的角度出发,解决目前机械手采摘、抓取易损伤果蔬的弊端。完成的主要工作有:
     1以农业流变学、机器人学、机器人操作理论为依据,通过弹簧、阻尼器和扭簧的串并联组建5元件的机械模型。当机械手指在被抓持物体的分布间距比手指的尺寸大的多时,可认为是每个手指均对应一个5元件模型,因而可利用刚体抓取理论建立果蔬的通用静态抓取模型。结合机器人收获中的水果抓取问题推导抓取映射矩阵,采用有界力封闭计算采摘水果所需的抓持条件。
     2果蔬自动抓取系统试验平台的研制,包括末端执行器、控制系统硬件、软件等设计。试验平台由末端执行器、运动控制卡、数据采集卡、交流伺服电机、交流伺服驱动器、测力传感器、信号放大器、稳压电源及工控机等组成,构成以PC机为基础的开放式末端执行器抓取力控制试验系统。系统具有良好的扩展性、通用性,实用性,能够满足抓取控制要求。
     3末端执行器在抓持果蔬过程中会发生变形,适合采用力和位置控制的串级控制结构。针对自行研发的抓取试验平台,提出一种适合果蔬抓取的力外环控制算法,将力偏差转换为位控系统的速度输入指令,随着力偏差的减小,末端执行器自减速停止,可减小力超调和振荡。控制系统稳定可靠,力传感器测量精度为0.3%FS,抓取西红柿成功率为96%以上,抓伤率低于10%,果蔬损伤均在高速抓取情况下出现。
     4为使末端执行器和变形果蔬间的夹持力快速低超调地跟踪设定值,提出基于灰色预测的增量PI力控制算法。该算法通过采集被抓物体受到的抓持力建立灰色预测模型,当预测模型精度较高或较低时,相应地加大或减小预测力偏差在综合力偏差中的权值,使力控制器可以利用过去、当前和未来的物体抓持力信息来计算合适的控制校正量对抓持力偏差进行预补偿,可使控制器获得超调量小和响应快速的特点,对末端执行器和可变形物体之间的动态抓持过程具有适应性。果蔬抓取实验证明了灰色预测PI力控制算法的有效性,可减小果蔬抓持损伤。
     5借助人类抓取果蔬的经验和知识,编制成模糊控制规则,可提高末端执行器抓取的成功率和可靠性。由于需要抓取的果蔬刚度不同,使用传统的控制并不能有效地解决抓持力控制问题,当果蔬刚度很高或很低时,根据标称环境设计的力控制器有可能失稳或响应太慢。为提高控制性能,可将模糊控制器与积分控制器结合起来构成复合控制器。积分控制器可以消除或减小稳态误差,使系统的稳态性能得到改善。积分I+模糊PD智能并行力控制算法非常适合果蔬的高速抓取。
     6预测控制算法同样适合具有旋转关节的机械手抓取。通过角刚度将关节力矩和关节角度联系起来,预测关节力矩的变化有助于估算抓取果蔬的力大小,进而减小果蔬的抓取损伤。提出一种力矩外环的果蔬抓取控制算法,在实际输出关节力矩和灰色预测力矩之间实行线性插值,按采样周期将预测力矩逐渐加到力矩回路中,可减小机械手输出力矩、角速度的振幅、超调,有利于保护被抓物体不受损伤。
     7农业收获机器人一般工作在高度非结构环境下,当存在过程和测量噪声的情况下,提出了基于卡尔曼滤波算法的RBF神经网络和PD复合控制方案,该方案由常规PD控制器、RBFNN前馈控制器和卡尔曼滤波器组成。当增大随机噪声的幅值,改变控制系统的采样频率时,仍然能够快速跟踪设定参考信号,具有优良的跟踪性能和较强的自适应和鲁棒性。
The success rate of fruit and vegetable picking with the agricultural robot is very low and the loss rate is very high, because of task complexity and environment particularity. A major reason of high damage rate is that grasp force on end-effector is too big or small, which makes the fruit and vegetable crack or fall off. Grasp force can turn small gradually while grasping fruit and vegetable, it is necessary to consider the deformation effect on grasp force. It was required that the end-effectors were provided with compliance for no any damage in the course of grasping fruit and vegetable. Active Compliance control, that is, force control was adopted in order to solve the damage while manipulator picking or grasping fruits and vegetables. The completed work is generalized as follows:
     1. A five-component mechanical model was built with the springs, dampers, and torsional springs through series parallel of them, based on agricultural rheology, robotics, robotic manipulation. Given that the distribution distance between robot fingers and object is significantly larger than dimensions of fingers, each finger was considered to be contacted with a five-component model, thus a general static grasp model of fruit and vegetable was established by rigid grasping theory. Grasp map matrix was derived for robot grasping fruit, and the required grasp condition was calculated according to bounded force closure.
     2. An experiment platform of automatic grasping system for fruit and vegetable was developed. The experiment platform was consisted of end-effector, control card, data acquisition card, AC servo motor, AC servo driver, force sensor, signal amplifier, regulated power, industrial computer, et al, so the open architecture force control system of end-effector was built up based on PC. The grasp system has good expansibility, generality, practicability, and force control precision about end-effector can be satisfied.
     3. Deformation can occur while end-effector grasping fruit and vegetable, so series control with force/position control was adopted in the control system frame. The external force control loops algorithm was proposed for the control system in experiment, and force error was converted to speed input of position control system. The end-effector speed adaptive decelerated as force error decreasing in order to reduce force overshoots. The grasp control system is steady, the measuring precision of force sensors is0.3%FS, the success rate of grasping tomatoes is beyond96%, and the damage rate is less than10%, and all the damages appear in high speed grasping.
     4. Incremental PI force control algorithm was proposed based on grey prediction in order to make grasp force track set value quickly without big overshoot. Grey prediction model was built by force data acquisition from the grasped objects, the weights of predictive force error were increased or decreased in integrated error accordingly to that the precision of predictive model is high or low. Force controller can employ the past, present and future grasp force information to calculate an appropriate control correction to pre-compensate the force error, and can yield small overshot, fast response simultaneously, which make the controller adaptive to the dynamic grasp process between deformable objects and end-effector. Experimental results are presented to demonstrate the efficacy of grey predictive incremental PI force control algorithm, which can reduce the damage rate in grasping.
     5. If experience and knowledge about human grasping fruit and vegetable can be translated into control rules, successful and safe grasping of end-effectors would be increased evidently. Conventional control can't solve force control satisfactorily because stiffness of fruits and vegetables is different. The force controller designed with standard condition may be instability when stiffness of fruits and vegetables is quite high or low. Composite controller consisted of fuzzy controller and integral controller was used to improve control performance. Integral controller could eliminate or reduce steady-state error, and improved the steady performance. A concurrent control force algorithm was proposed and tested as a good method to grasp fruit and vegetable.
     6. Prediction control algorithm is suitable for manipulator grasping with rotary joint, too. The relation between joint torque and joint angle was built through angular stiffness, the change of joint torque was predicted to help to know grasping force information to decrease the loss when grasping fruit and vegetable. Grasping control schemes was proposed based on external torque control loops, and the future joint torque would be gradually added to torque loops according to sampling period based on linear interpolation between the current torque and predictive one. Force overshoot and oscillation about output torque and angular velocity of manipulator would be depressed, made the grasped objects free from damage.
     7. Agriculture harvesting robot always works under high non-normal environment. In order to suppress the effect of process and measurement to control system, a RBF neural network and PD combined controller was proposed based on the Kalman filter, the controller was composed of RBF neural network forward feed controller, PD feedback controller and Kalman filter. It always could fast track the fixed value when the noise amplitude was enlarged or sampling frequency of control system was changed, which has excellent tracking performance and quite adaptive and robust.
引文
[1]熊有伦,尹周平,熊蔡华,等著.机器人操作[M].湖北:湖北科学出版社,2002
    [2]Murray R M, Li Zexiang, Sastry SS著.徐卫良,钱瑞明 译.机器人操作的数学导论[M].北京:机械工业出版社,1998.
    [3]Fouad F, Khalil, Pierre Payeur. Robotic interaction with deformable objects under vision and tactile guidance-a review[J]. ROSE2007-IEEE International Workshop on Robotic and Sensors Environments,2007,1-6
    [4]H.Lin, S.J.Bull, P.M.Taylor. Simulation of the deformation and stress distribution within a flexible materials pressed by a pinch gripper[J]. Journal of Materials Processing Technology,2005,169, 357-363
    [5]Abhinav V, Vivekanandan S. Real-time intelligent gripping system for dexterous manipulation of industrial robots [C]. Proceedings of the World Congress on Engineering,2009,2,1-6.
    [6]王学林,姬长英.基于灰色预测PI控制的果蔬抓取系统设计与试验[J].农业工程学报(已录用).
    [7]王学林,姬长英,周俊,等基于力外环控制的果蔬抓取技术研究[J].浙江农业学报,2009,21(6):613-616.
    [8]J. L. Pedreno-Molina, A. Guerrero-Gonzalez, J. Calabozo-Moran, et al. A Neural Tactile Architecture Applied to Real-time Stiffness Estimation for a Large Scale of Robotic Grasping Systems[J], J Intell Robot Syst.2007,49:311-323.
    [9]W. Friedrich, P. Lim, H. Nicholls. Sensory Gripping System for Variable Products[J]. Proceedings of the 2000 IEEE International Conference on Robotics & Automation.2000,1982-1987.
    [10]徐丽明,张铁中.果蔬果实收获机器人的研究现状及关键问题和对策[J].农业工程学报,2004,20(5):38-42
    [11]李秦川,胡挺,武传宇,等.果蔬采摘机器人末端执行器研究综述[J].农业机械学报,2008,39(3):175-179
    [12]孟庆春,齐勇,张淑军,等.智能机器人及发展[J].中国海洋大学学报,2004,34(5):831-838
    [13]Markenscoff X,Ni L,Papadimitriou C H.The Geometry of Grasping[J].Int.J.ofRobotics Research, 1990,9(1):61-74
    [14]Bicchi A. On the Closure Properties of Robotic Grasping[J]. Int. Journal.Robotics Research,1995, 14(4):319-334
    [15]熊有伦.点接触约束理论与机器人抓取的定性分析[J].中国科学(A辑),1994,24(8):874-883
    [16]Xiong Y L, Sanger D J, Kerr D R. Geometric Modeling of Boundless Grasps[J]. Rototica,1993,11: 19-26
    [17]Trinkle J C. A Quantitative Test for Form Closure Grasps[J]. Proceedings of the 1992 IEEE/RSJ International Conference on Intelligent Robots and Systems IROS, Raleigh,USA,1992,1-8
    [18]B. Dizioglu, Braunschweig. Mechanics of Form Closure[J]. Acta Meehaniea 1984,52:107-118
    [19]Salisbury J K,Roth B. Kinematic and Force Analysis of Articulated Mechanical Hands[J]. ASME J of Mechanical Design,1983,10 (5):35-41
    [20]Mishra B, Schwartz J T, Sharir M. On the Existence and Synthesis of Multifinger Positive Grips[J]. Algorithmica,1987,12(4):541-558
    [21]Markenscoff X, Ni L,Papadimitriou C H. The Geometry of Grasping[J]. Int.J. of Robotics Research, 1990,9(1):61-74
    [22]Trinkle J C. On the stability and instantaneous velocity of grasped frictionsless objects[J]. IEEE Transaction on Robotics and Automation,1992,8(5):560-572
    [23]Hirai S, A sada H. Kinematics and statics of manipulation using the theory polyhedral convex cones[J],1993,12(5):434-447
    [24]Kerr J, Roth B. Analysis of Multifingered Hands[J]. Int.Journal.Robotics Research,1986,4(4):3-17
    [25]Li Z X, Hsu P, Sastry, et al. Grasping and Coordinated Manipulation by a Multifingered Robot Hand[J]. Robotics Research,1989,8(4):33-50
    [26]吴玉光,钱晋武.多指灵巧手抓取规划方法综述[J].中国机械工程,2004,15(3):276-281
    [27]Nguyen V D. Constructing force closure grasps[J]. Int I. of Rob Res,1995,14(4):319-334
    [28]左炳然,钱文翰.机器人多指抓取力封闭分析的非线性算法[J].中国机械工程,1999,35(2):19-22
    [29]秦志强,赵锡芳,李泽湘.机器人多指抓取的力封闭判别[J].上海交通大学学报,1999,33(7)
    [30]刘庆运,钱瑞明,颜景平.机器人多指手及抓取机制的研究进展[J].现代制造工程,2007,9,148-152
    [31]Cutkosy M R. On Grasps Choice, Grasp Models, and the Design of Hands for Manufacturing Tasks [J]. IEEE Transaction Robotics and Automation,1989,5(3):269-279
    [32]Xiong C H, Li Y F, Ding H, et al. On the dynamic stability of grasping[J]. International Journal of Robotics Research.1999,18(9):951-958
    [33]D.Henrich,H.Worm, Eds. Robot manipulation of deformable objects[M]. London:Springer-Verlag, 2000
    [34]M. Saadat, A. Nan. Industrial applications of automatic manipulation of flexible materials[J]. Int.J. of Industrial robots,2002,3,107-114
    [35]K. Gopalakrishnan, K. Goldberg. D-space and deform closure grasps of deformable parts[J]. Int.J. of Robotics Research,2005,24,889-910
    [36]Hidefumi Wakamatsu, Shinichi Hirai, and Kazuaki Iwata. Static Analysis of Deformable Object Grasping Based on Bounded Force Closure [J]. Robotics and Automation,1996,3324-3329
    [37]S.F.Gibson, B.Mirtich. A survey of deformable modeling in computer graphics, MERL Technical Report, TR97-19,1997,1-35
    [38]D.Terzopoulos, J.C.Platt, H.Bar, et al. Elastically deformable models[J]. Proc.of the ACM SIGGRAPH'87 Conference,1987,21,205-214
    [39]林建贞.布料运动仿真技术研究[D].杭州:浙江大学,2004
    [40]梅春晖,石教英.基于边界元素法的柔软物体变形模拟[J].计算机学报,2003,26(12):1709-1716
    [41]冯广慧.基于弹簧-质点模型的快速布料仿真研究[D].长春:吉林大学,2007
    [42]柳有权.基于物理的计算机动画及其加速技术的研究[D].北京:中国科学院研究生院,2005
    [43]崔桐,宋爱国,吴涓.一种用于力觉再现的柔性体变形仿真-质点模型[J].东南大学(自然科学版),2007,37(5):849-852
    [44]吴涓,宋爱国,李建清.用于虚拟力觉再现的弹簧-质点力/变形模型研究[J].系统仿真学报,2006,18(11):3152-3156
    [45]蔡及时,孙汉秋,王平安.应用于网上虚拟手术的自适应变形模型[J].软件学报,2002,13(9):1893-1898
    [46]刘卉,陈纯,施伯乐.基于改进的弹簧-质点模型的三维服装模拟[J].软件学报,2003,14(3):619-627
    [47]S.Garg, A.Dutta. Grasping and manipulating of deformable objects based on internal force requirements[J]. Int.J.of Industrial Robots,2002,29,434-442
    [48]Johan Jansson, Joris S. M. Vergeest. A discrete mechanics model for deformable bodies[M]. Computer-Aided Design,2002,34(12):913-928
    [49]A.H.Howard,G. Bekey.Intelligent Learning for Deformable Object Manipulation[A]. Computational Intelligence in Robotics and Automation,1999,15-20.
    [50]A.M.Cretu, E.M.Petriu, P.Payeur. Neural network mapping and clustering of elastic behavior fromtactile and range image for virtualized reality applications [J]. Proc.IEEE Int. Workshop on Imaging Systems and Techniques,2006,17-22
    [51]D.Prattichizzo, P.Mercorelli, A.Bicchi, et al. On the geometric control of internal forces in power grasps[J]. Proc. IEEE Int.Conf. on Decision and Control,1997,1942-1947
    [52]K. Gopalakrishnan, K. Goldberg. Computing deform closure grasps[J]. Alorithmic Foundations of Robotics,2005,17,203-218
    [53]K.Gopalakrishnan, K.Goldberg. D-space and deform closure:a framework for holding deformable parts[J]. IEEE International Conference on Robotics and Automation,2004,345-350
    [54]机器人的感觉(ppt). http:\\www.courses.cqjtu.edu.cn/
    [55]Howard R.Nicholls, Mark H.Lee. A survey of robot tactile sensing technology[J].The International Journal of Robotics Research,1989,8(3):3-30
    [56]Robert D.Howe, Nicolas Popp, Prasad, et al. Grasping, manipulation, and control with tactile sensing[J]. IEEE,1990,2,1258-1263
    [57]殷跃红,慰忠信,黄晓曦,著.智能机器系统力觉及力控制技术[M].北京:国防工业出版社,2001:24-26
    [58]N.Mandal, S.Payandeh. Control strategies for robotic contact tasks:an experimental study[J]. J.Robotics,1995,12,67-92
    [59]D.W.Meer, S.M.Rock. Experiments in objects impedance control for flexible objects[J]. Proc.Int.Conf. Robotics and Automation,1994,1222-1227
    [60]K.B.Shimoga, A.A.Goldenberg. Soft robotics fingertips Ⅰ:A comparision of construction materials [J]. Int.J. of Robotics Research,1996,15,320-334
    [61]GL.Foresti, F.A.Pellegrino. Automatic visual recognition of deformable objects for grasping and manipulation[J]. IEEE Trans.on Systems, Man, and Cybernetics:Applications and Reviews,2004, 34,325-333
    [62]S.Hirai, T.Tsuboi, T.Wada. Robust grasping manipulation of deformable objects[J]. Proc.IEEE Symp. on Assembly and Task Planting,2001,411-416
    [63]J.Huang, I. Todo. Control of a robot based on fusion of visual and force/torque sensor information (manipulation of a deformable objects)[J]. Trans. Japan. Soc.Mech.Eng,2001,67,2616-2623
    [64]J.Huang, I. Todo, I.Muramatsu. Neuro-control of a robot using visual and force/torque sensor information (manipulation of a flexible beam objects)[J]. Trans. Japan. Soc.Mech.Eng,2003,69, 2085-2092
    [65]J.Huang, I. Todo, T.Yabuta. Position/force hybrid control of a manipulator with a flexible tool using visual and force information[J]. Cutting Edge Robotics,2005,611-628
    [66]Shigang Yue, Dominik Henrich. Manipulating deformable linear objects:fuzzy-based active vibration damping skill[J]. J Intell Robot Syst,2006,46,201-219
    [67]Kazuyoshi Tagawa, Koichi Hirota, Michitaka Hirose. Manipulation of dynamic deformable object[J]. Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems 2008, 327-333
    [68]R.S.Stone, P.N.Brett, B.S.Evant. An automated handling system for soft compact shaped non-rigid products[J]. Mechatronics,1998,8,85-102
    [69]F.Erzincanli, J.M.Sharp, S.Erhal. Designing and operational considerations of a non-contact robotic handling system for non-rigid materials[J]. Int.J.Mach. Tool Manufact,1998,38(4):353-361
    [70]P.M.Taylor. A toolbox of garment handling techniques[C]. Intelligent Automation for Processing Non-Rigid Products, IEE Colloquium on,1994,1-4
    [71]Paolo Denti, Paolo Dragoni, Caterina Rizzi. A constraint-based approach for the simulation of flexible materials in industrial processes[J]. IEEE,1996,4,2811-2815
    [72]P.N.Brett, R.S.Stone. A tactile sensing techniques for automatic gripping of compact shaped non-rigid materials[J]. IEEE,1994,1-5
    [73]N.Fahantidis, Z.Doulgeri. A gripper for grasping non-rigid materials pieces out of a bundle[J]. Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000,2145-2150
    [74]A.Karakerezis, K.Khodabandehloo. Simulation modeling for robotics grasping of flexible viscoelastic materials using a discrete element model[J]. Mathematics and Computers in Simulation,1996,41,595-614
    [75]K.Paraschidis, N.Fahantidis,V.-Petridis, et al. A robotic system for handling textile and non-rigid flat materials[J]. Computers in Industry,1995,26,303-313
    [76]A.Karakerezis, M.Ippolito, Z.Doulgeri, et al. Robotic handling for non-rigid materials[J]. IEEE, 1994,937-946
    [77]H.Lin, S.J.Bull, P.M.Taylor. Simulation of the deformation and stress distribution within a flexible materials pressed by a pinch gripper[J]. Journal of Materials Processing Technology,2005,169, 357-363
    [78]P.Y.Chua, T.Ilschner, D.GCaldwell. Robotic manipulation of food products-a review[J]. Industrial Robot,2003,30(4):345-354
    [79]殷跃红,朱剑英,慰忠信.机器人力控制研究综述[J].南京航空航天大学学报,1997,29(2):220-230.
    [80]Zeng G W, Ahmad. An overview of robot force control [J]. Robotica,1997,15:473-482.
    [81]Whitney D E. Force feedback control of manipulator fine motions[J].Trans ASMEJ of Sys Meas amd Control,1997,15:473-482.
    [82]Sabilbury J K. Active stiffness control of a manipulator in cartisian coordinate[J]. Proc 19th IEEE Conf on Decision & Control,1980,95-100
    [83]Vanbrussed H, Simons J. The adaptable of compliance concept and its use for automatic assembly by active force feedback accommodation[J].9th Int Symp on Industrial Robots,1979.
    [84]Xazerooni H, Sheridan T B, Houpt R K. Robust compliant motion for manipulators [J]. Part 1:the fundamental concepts of compliant motion. IEEE J RA,1986,2 (2):83-92
    [85]Zhang H, Paul R P Hybrid control of robot manipulators[J].Proc of the IEEE Int Conf on Robotics & Automation.1986,602-607
    [86]Richard V, Pardeep K. A theoretical and experimental investigation of explicit force control strategies for manipulators[J]. IEEE Trans. on Automa. Contr,1993,38(11):1634-1650.
    [87]殷跃红,慰忠信,黄晓曦,著.智能机器系统力觉及力控制技术[M].北京:国防工业出版社,2001:89-113
    [88]殷跃红,朱剑英,慰忠信.机器人柔顺控制研究[J].机器人,1998,20(3):232-240.
    [89]殷跃红,胡盛海,尉忠信等.基于FNN机器人擦洗玻璃的力/位并环控制[J].航空学报,1997,18(4):501-504
    [90]殷跃红,朱剑英,尉忠信.机器人力/位并环混合运动学分析研究[J].航空学报,1997,18(6):687-692
    [91]Huang Xiaoxi, Li Sicong, Zhu Jianying.Active Force Control of Robotic Manipulator. Joint Proceedings on Aeronautics and Astronautics,1993:209-213
    [92]陈启宏,费树岷,宋爱国.遥操作机器人系统带记忆的鲁棒反馈控制[J].控制与决策,2004,19(5):538-545
    [93]陈启宏,费树岷,宋爱国.基于神经网络的力觉临场感系统的预测控制[J].控制与决策,2003,18(3):336-339
    [94]邓辉,孙富春,孙增圻.机械手的模糊逆模型鲁棒控制[J].自动化学报,2001,27(4):521-530
    [95]李成.番茄果实的基础物理特征及力学性质的研究与应用探讨[D].哈尔滨:东北农业大学,2005
    [96]姜丽萍.番茄力学特性及其在采摘机器人执行器设计中的应用[D].镇江:江苏大学,2006
    [97]许政,王庆,付志一,等.果品挤压时的接触应力分析[J].石河子大学学报,2003,7(3):228-230
    [98]张洪霞,李大勇,陶桂香.果蔬的力学-流变学特性的研究进展[J].黑龙江八一农垦大学学报,2005,17(3):51-54
    [99]李小昱,王为.苹果压缩特性的研究[J].西北农业大学学报,1998,26(2):107-110
    [100]王荣,焦群英,魏德强.葡萄与番茄宏观力学特性参数的确定[J].农业工程学报,2004,20(2):54-57
    [101]孙国辉.特色油桃流变力学特性的研究[D].镇江:江苏大学,2005
    [102]刘继展,李萍萍,李智国,等.面向机器人采摘的番茄力学特性研究[J].农业工程学报,2008,24(12):66-70
    [1]熊有伦,尹周平,熊蔡华,著.机器人操作[M].湖北:湖北科学出版社,2002
    [2]Murray R M, Li Zexiang, Sastry SS,著.徐卫良,钱瑞明,译.机器人操作的数学导论[M].北京:机械工业出版社,1998.
    [3]U.Cugini, P.Denti, M.Ippolito,and C.Rizza. Modeling and Simulation of Handling Machinery with Dynamic and Static Behavior of Non-rigid Materials[J]. Robotics & Automation Magazine, IEEE,1998,5 (1):48-56.
    [4]U.Cugini, P.Denti,C.Rizza. Design and simulation of non-rigid materials handling systems [J]. Mathematics and Computers in Simulation,1996,41(5-6):587-593.
    [5]Hidefumi Wakamatsu, Shinichi Hirai, Kazuaki Iwata. Static Analysis of Deformable Object Grasping Based on Bounded Force Closure [A]. Robotics and Automation,1996,3324-3329
    [6]Tokumoto,S. Fujita,Y. Hirai,S. Deformation modeling of viscoelastic objects for their shape control [J]. Robotics and Automation,1999,1:767-772.
    [7]A.H.Howard, GBekey. Intelligent Learning for Deformable Object Manipulation [A]. Computational Intelligence in Robotics and Automation,1999,15-20
    [8]李瀚如,潘君拯.农业流变学导论[M].北京:农业出版社,1990.
    [9]S.Garg, A.Dutta. Grasping and manipulating of deformable objects based on internal force requirements[J]. Int. J. of Industrial Robots,2002,29,434-442
    [10]Mizuho Shibata, Shinichi Hirai. Stability and grasp ability analysis in grasping task taking fingertip dynamics into consideration[C]. Intelligent Robots and Systems,2004,4:3686-3691.
    [11]徐丽明,张铁中.果蔬果实收获机器人的研究现状及关键问题和对策[J].农业工程学报,2004,20(5):38-42.
    [12]李秦川,胡挺,武传宇,等.果蔬采摘机器人末端执行器研究综述[J].农业机械学报,2008,39(3):175-179.
    [13]王学林,周俊,姬长英.水果采摘中的有界力封闭抓取研究[C]. International Conference of Computer Technology in Agriculture(CCTA2008).
    [1]王友权.自主导航的农用轮式移动平台设计与路径跟踪控制[D].南京:南京农业大学,2008
    [2]安秋.农用机器人视觉导航系统及其光照问题的研究[D].南京:南京农业大学,2008
    [3]姜莉.基于人类视觉特性的自然光照条件下成熟石榴检测[D].南京:南京农业大学,2009
    [4]孙恒,陈作模,编著.机械原理[M],北京:高等教育出版社,2003,3.
    [5]南京工诺.膜片联轴器产品说明书,2008
    [6]中国研华公司AIMB-766工业级母版产品说明书,2008
    [7]中国研华公司.PCI-1240U中文版使用手册,2001.4
    [8]中国研华公司PCI-1710-CE user manual,2003.4
    [9]上海松浩自动化设备有限公司Minas A4系列AC伺服驱动器技术资料选编.
    [10]宁波凯恩帝数控技术公司Panasonic松下A4数字交流伺服安装调试说明书,2005,11
    [11]唐润宏,陈文楷,余跃庆.松下交流伺服系统与PMAC控制卡在机器人中的应用[J].仪器仪表用户,2006,13(5):78-80.
    [12]松下电器产业株式会社电机公司Panasonic使用说明书.伺服电机.驱动器MINAS A4系列.
    [13]杨兆建,王勤贤.测力传感器研究发展综述[J].山西机械,2003,1,1-4.
    [14]周同国.机械工程测试技术[M].北京:北京理工大学出版社,2003.
    [15]杨乐平,李海涛,肖凯等.虚拟仪器技术概述[M].北京:电子工业出版社,2003.
    [16]张易知,肖啸,张喜斌,等.虚拟仪器的设计与实现[M].西安:西安电子科技大学出版社,2002.
    [17]秦树人.虚拟仪器[M].北京:中国计量出版社,2004.
    [18]崔红梅.面向测试系统的虚拟仪器设计与应用研究[D].呼和浩特:内蒙古农业大学,2007.
    [19]Jeffrey Travis, Jim Kring,乔瑞萍等译LabVIEW大学实用教程[M].北京:电子工业出版社,2008
    [20]杨乐平,李海涛,杨磊,编著LabVIEW程序设计与应用(第2版)[M].北京:电子工业出版社,2005.
    [21]石博强,赵德勇,李畅,编著LabVIEW6.1编程技术实用教程[M].北京:中国铁道出版社,2005.
    [1]Antonio Bicchi. Hands for Dexterous Manipulator and Robust Grasping:A Difficult Road Toward Simplicity[J]. IEEE Transactions on Robotics and Automation.2000,16(6):652-662.
    [2]U.Cugini, P.Denti, C.Rizzi. Design and simulation of non-rigid materials handling systems[J]. Mathematics and Computers in Simulation.1996,41,587-593.
    [3]Joris De Schutter, Herman Bruyninckx, Wen-Hong Zhu. Force control:a bird's eye view[J].IEEE CSS/RAS International Workshop on "Control Problems in Robotics and Automation:Future Directions".1997,1-14.
    [4]Richard V, Pardeep K. A theoretical and experimental investigation of explicit force control strategies for manipulators[J]. IEEE Trans.on Automa.Contr,1993,38(11):1634-1650.
    [5]J. L. Pedreno-Molina, A. Guerrero-Gonzalez, J. Calabozo-Moran, et al. A Neural Tactile Architecture Applied to Real-time Stiffness Estimation for a Large Scale of Robotic Grasping Systems[J].J Intell Robot Syst.2007,49,311-323.
    [6]Werner Friedrich, Patrick Lim, Howard Nicholls. Sensory Gripping System for Variable Products [J]. Proceedings of the 2000 IEEE International Conference on Robotics & Automation.2000, 1982-1987.
    [7]李秦川,胡挺,武传宇,等.果蔬采摘机器人末端执行器研究综述[J].农业机械学报,2008,39(3):175-179.
    [8]李允明.国外访人机器人发展概况[J].机器人,2005,27(6):561-568.
    [9]刘继展,李萍萍,李智国,等.番茄采摘机器人末端执行器的硬件设计[J].农业机械学报,2008,39(3):109-112.
    [10]J.De Schutter, H.Van Brussel. Compliant robot motion Ⅱ:a control approach based on external control loops[J]. The International Journal of Robotics Research,1998,20(3):18-33.
    [11]殷跃红,慰忠信,黄晓曦,著.智能机器系统力觉及力控制技术[M].北京:国防工业出版社,2001:89-113
    [12]韩京清,等著.自抗扰控制技术[M].北京:国防工业出版社,2008.
    [13]Jeffrey Travis, Jim Kring乔瑞萍,等译LabVIEW大学实用教程[M].北京:电子工业出版社.2008
    [1]Fouad F, Khalil, Pierre Payeur. Robotic interaction with deformable objects under vision and tactile guidance-a review[J]. ROSE2007-IEEE International Workshop on Robotic and Sensors Environments,2007,1-6
    [2]H.Lin, S.J.Bull, P.M.Taylor. Simulation of the deformation and stress distribution within a flexible materials pressed by a pinch gripper[J]. Journal of Materials Processing Technology,2005,169, 357-363
    [3]Abhinav V, Vivekanandan S. Real-time intelligent gripping system for dexterous manipulation of industrial robots[C]. Proceedings of the World Congress on Engineering,2009,2,1-6.
    [4]徐丽明,张铁中.果蔬果实收获机器人的研究现状及关键问题和对策[J].农业工程学报,2004,20(5):38-42.
    [5]赵匀,武传宇,胡旭东,等.农业机器人的研究进展及存在的问题[J].农业工程学报,2003,19(1):20-24.
    [6]方建军.移动式采摘机器人研究现状与进展[J].农业工程学报,2004,20(2):273-278.
    [7]李秦川,胡挺,武传宇,等.果蔬采摘机器人末端执行器研究综述[J].农业机械学报,2008,39(3):175-179.
    [8]王荣,焦群英,魏德强,等.葡萄的力学特性及有限元模拟[J].农业工程学报,2005,21(2):7-10.
    [9]刘继展,李萍萍,李智国,等.面向机器人采摘的番茄力学特性试验[J].农业工程学报,2008,24(12):66-70.
    [10]Shigehiko Hayashi, Katsunobu Ganno, Yukitsugu Ishii,et al. Robotic harvesting system for eggplants[J]. JARQ,2002,36(3):163-168.
    [11]J Randall Flanagan, Miles C Bowman, Roland S Johansson. Control strategies in object manipulation tasks [J]. Current Opinion in Neurobiology,2006,16(6):650-659.
    [12]J.L.Pedreno-Molina, A.Guerrero-Gonzalez, J. Calabozo-Moran, et al. A neural tactile architecture applied to real-time stiffness estimation for a large scale of robotic grasping systems[J].J Intell Robot Syst.,2007,49:311-323.
    [13]Werner Friedrich, Patrick Lim, Howard Nicholls. Sensory gripping system for variable products[J]. Proceedings of the 2000 IEEE International Conference on Robotics & Automation.2000,1982-1987.
    [14]邢惠鹤,任正云.预测PID控制算法的基本原理及研究现状[J].世界仪表与自动化,2004.
    [15]Deng J L. Control problem of grey systems[J].System and Control Letters,1982,5,288-294.
    [16]Deng J L. Introduction to grey system theory [J]. Journal of Grey System,1989,1(1):1-24.
    [17]吴裕高,朱学峰,史步海.基于灰色预测的大时滞过程的控制研究[J].控制工程,2007,14(3):278-280.
    [18]李宗坤,郑晶星.GM(1,1)等维新息模型在土石坝沉降预测中的应用[J].水利水电技术,2003,7:74-75.
    [19]孙银山,李平,袁艺,等.一种自调节灰色预测PID控制器[J].控制工程,2005,12(4):365-367.
    [20]张广立,付莹,杨汝清.基于力外环的模糊灰色预测力控制器[J].机械工程学报,2004,40(12):177-181.
    [21]易得生,郭萍,编著.灰色理论与方法[M].北京:石油工业出版社出版,1992.
    [22]罗佑新,张龙庭,李敏,著.灰色系统理论及其在机械工程中的应用[M].长沙:国防科技大学出版社,2001.
    [23]傅立,著.灰色系统理论及其应用[M].北京:科学技术文献出版社,1992.
    [24]邓聚龙,著.灰色预测与决策[M].湖北:华中理工大学出版社,1988.
    [25]刘思峰,党耀国,方志耕,等.灰色系统理论及其应用[M].北京:科学出版社,2004.
    [26]丁曙光.基于预测的变参数PID控制算法研究[J].机床与液压,2002,3,97-98
    [1]张广立,付莹,杨汝清.基于力外环的模糊灰色预测力控制器[J].机械工程学报,2004,40(12):177-181.
    [2]李秦川,胡挺,武传宇,等.果蔬采摘机器人末端执行器研究综述[J].农业机械学报,2008,39(3):175-179.
    [3]Robert Bicker, Zhongxu Hu, Kevin Burn. A self-tuning robotic force controller[J]控制工:程,2006,13卷增刊,49-52.
    [4]刘金琨,编著.智能控制[M].北京:电子工业出版社,2005.
    [5]李国勇,编著.智能控制及其MATLAB实现[M].北京:电子工业出版社,2006.
    [7]温淑焕.不确定性机器人力/位置智能控制及轨迹跟踪实验的研究[D].秦皇岛:燕山大学,2005.
    [8]裴锋,杨万生LabVIEW中模糊控制器的设计及应用[J].计算机技术,2004,31(1):41-43.
    [9]李定军NI DAQ和LabVIEW构造模糊控制系统.北京中科泛华测控技术有限公司DAQ.
    [10]刘航,徐杜.基于LabVIEW中模糊控制器的设计与改进初探[J].微型电脑应用,2000,16(5):9-11.
    [11]赵导,齐晓慧.模糊-PI 双模控制与模糊控制的仿真比较[J].科学技术与工程,2009,9(11):3097-3100.
    [12]赵宝纯,骆宗安,刘相华.基于Labview的模糊控制器设计与仿真[J].控制工程,2006,13卷增刊,49-52.
    [13]刘金琨,著.先进PID控制及其MATLAB仿真.北京:电子工业出版社,2003.
    [14]周国雄,蒋辉平,肖会芹.孵化控制系统的专家模糊控制方法及其应用[J].计算机测量与控制,2007,15(11):1547-1549.
    [15]陈峰,潘海鹏.基于专家模糊控制的电阻炉温度控制系统[J].微计算机信息,2008,24(4-1):76-77.
    [1]Antonio Bicchi. Hands for Dexterous Manipulator and Robust Grasping:A Difficult Road Toward Simplicity[J]. IEEE Transactions on Robotics and Automation.2000,16(6):652-662.
    [2]U.Cugini, P.Denti, C.Rizzi. Design and simulation of non-rigid materials handling systems[J].Mathematics and Computers in Simulation.1996,41:587-593.
    [3]Joris De Schutter, Herman Bruyninckx, Wen-Hong Zhu. Force control:a bird's eye view[J].IEEE CSS/RAS International Workshop on "Control Problems in Robotics and Automation:Future Directions".1997,1-14.
    [4]Richard V, Pardeep K. A theoretical and experimental investigation of explicit force control strategies for manipulators[J]. IEEE Trans.on Automa.Contr,1993,38(11):1634-1650.
    [5]Kazerooni H, Waibel B J, Kim S. On the stability of robot compliant motion control[J]. ASME Journal of Dynamic Systems Measurement and Control,1990,112:417-426.
    [6]Homayoun Seraji. Adaptive Admittance Control:An Approach to Explicit Force Control in Compliant Motion[J]. Proc.IEEE Conf.Robotics and Automation,1994:2705-2712.
    [7]Chi-haur Wu,Richard P. Paul. Manipulator compliance based on joint torque control[J].IEEE Conf. Decision and Control including the Symposium on Adaptive Processes,1980,19:88-94.
    [8]J. L. Pedreno-Molina, A. Guerrero-Gonzalez, J. Calabozo-Moran, et al. Neural Tactile Architecture Applied to Real-time Stiffness Estimation for a Large Scale of Robotic Grasping Systems[J].J Intell Robot Syst.2007,49:311-323.
    [9]Werner Friedrich, Patrick Lim, Howard Nicholls. Sensory Gripping System for Variable Products[J]. Proceedings of the 2000 IEEE International Conference on Robotics & Automation.2000,1982-1987.
    [10]Shin-Tin Lin, Shyi-Jang Tzeng. Neural Network Force Control for Industrial Robots[J]. Journal of Intelligent and Robotic Systems,1999,24,253-268.
    [11]Hidefumi Wakamatsu, Shinichi Hirai, and Kazuaki Iwata. Static Analysis of Deformable Object Grasping Based on Bounded Force Closure [A] Robotics and Automation,1996,3324-3329.
    [12]于学林,周俊,姬长英.水果采摘中的有界力封闭抓取研究[C]. International Conference of Computer Technology in Agriculture(CCTA2008).
    [13]邓聚龙.灰色预测与决策[M].武汉:华中理工大学出版社,1985.
    [1]张智慧,李玉忍.卡尔曼滤波技术在伺服系统中的应用[J].微特电机,2007,12,16-18
    [2]Xinchun Li, Jianqiang Yi, Dongbin Zhao. A novel approach to prove the stability of PD control with feedforward compensation in robotic trajectory tracking[C]. Intelligent Mechatronics and Automation,2004,45-49.
    [3]Rocco P. Stability of PID control for industrial robot arms[J]. IEEE Trans on Robot Automation, 1996,12(4):606-614.
    [4]张伟,朱大奇,孔敏,等.基于改进的CMAC神经网络与PID并行控制的研究[J].计算机测量与控制,2005,13(12):1359-1375.
    [5]辛菁,刘丁,班建安.自适应卡尔曼滤波器在机器人控制中的应用[J].西安理工大学学报,2007,23(2):136-139.
    [6]Greg Welch and Gary Bishop. An introduction to the Kalman filter. http://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf.
    [7]Budapest Polytechnic. Kalman-Filter Based Control and Performance Monitoring Systems[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics,2004,8(5):535-543.
    [8]Ventzas,D.E. TEI Lamia. Kalman filters for dynamic position control of large scales ystems[C].Industrial Electronics, Control, and Instrumentation,1996,2(2):647-652.
    [9]Sasiadek,J.Z. Wang, Q. Sensor fusion based on fuzzy Kalman filtering for autonomous robot vehicle[C]. Robotics and Automation,1999. Proceedings.1999,4(4):2970-2975.
    [10]王永骥,涂健.神经网络控制[M].北京:机械工业出版社,1998.
    [11]Greg Welch, Gary Bishop,姚旭晨,译.卡尔曼滤波器介绍.http://www.cs.unc.edu/-welch/kalman/media/pdf/kalman_intro_chinese.pdf, 2009,3,19.
    [12]邹凌,孙玉强,孙琦著.基于卡尔曼滤波器的PID控制仿真研究[J].微计算机信息,2007,23(6-1):79-81.
    [13]Boris M. Miller. Evgeny Ya. Rubinovich. Kalman filter for controlled hybrid systems[J]. Systems & Control Letters.2003,50(1):39-50.
    [14]D.E.Ventzas. Kalman filters for dynamic position control of large scale systems[J]. IEEE,1996,647-652.
    [15]王纪,叶宇程,阎保定,等.卡尔曼滤波在视觉伺服机器人控制中的应用[J].微计算机信息,2007,23(6-1):79-81.
    [16]Rerngwut Choomuang, Nitin Afzulpurkar. Hybrid Kalman filter/fuzzy logic based position control of autonomous mobile robot[J]. International Journal of Advanced Robotic Systems,2005,2 (3): 197-208.
    [17]中铁龙.机器人鲁棒控制基础[M].北京:清华大学出版社,2000.
    [18]王学林,周俊,姬长英,等.基于卡尔曼滤波的RBF神经网络和PD复合控制研究[J].计算机测量与控制,2009,17(8):1551-1553.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700