用户名: 密码: 验证码:
脉冲超宽带信号雷间近地面传播特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在未来信息化条件下的高技术战争中,具有智能化、信息化特点的智能地雷和智能雷场是我军地雷武器装备研究的重点。脉冲超宽带(Impulse Radio Ultra Wideband, IR-UWB)技术作为一项新兴技术,具有定位精度高、低功耗、低复杂度以及抗干扰能力强等特点,非常适合应用于地雷场环境中地雷节点间的无线数据传输和精确自定位,满足未来地雷武器系统信息化、网络化的要求。目前,国内外对超宽带技术的研究主要集中在室内无线通信定位和雷达探测等领域,而地雷场通常设置在野外环境,地雷节点的体积小且布设在地面上,天线距离地面较近,对这种情况下的IR-UWB信号传播特性进行研究,是实现IR-UWB技术在地雷武器中实际应用的关键,对促进我军地雷装备的发展也具有重要的意义。
     本文针对地雷场环境特点,结合智能地雷和智能雷场的相关技术战术要求,对IR-UWB系统在地雷场环境中应用的可行性进行了理论分析和实验验证,在无线电波传播基本理论的基础上,深入系统的研究了IR-UWB信号的地雷节点间近地面传播特性,得出了信号波形失真的基本规律,建立了适用于地雷场环境的IR-UWB传播信道模型,并对IR-UWB技术在地雷场中的应用进行了探讨,为基于IR-UWB技术的智能地雷及智能雷场系统设计与相关研究提供了技术支持。本文的主要研究工作及成果包括:
     在无线电波传播基本理论研究的基础上,通过对地雷场环境和地雷节点主要特点的分析,结合地雷场网络技术要求,提出了IR-UWB技术应用的技术指标参数,建立了地雷场环境三维模型,为IR-UWB信号传播特性研究和地雷场IR-UWB传播信道建模提供依据。
     建立了基于地面反射的IR-UWB信号近地面传播系统链路性能预算模型,分析了信号发射功率、天线高度、传输距离及速率之间的关系,对IR-UWB系统在地雷节点间的传输性能进行了研究。通过野外环境的实验测试和数据分析,验证了模型的准确性和IR-UWB技术在地雷武器中应用的可行性。
     结合地雷场环境特点,分析了IR-UWB信号雷间近地面传播波形失真的原因。根据IR-UWB信号极宽频带的特点,提出了基于频域子频带的信号波形失真分析方法。对不同掠射角和土壤条件下的IR-UWB反射波形进行了研究,得出IR-UWB信号近地面传播反射时的波形变化规律。根据一致性几何绕射理论,建立了适用于地雷场环境应用的IR-UWB绕射UTD模型,并从幅度和相位两个方面对绕射波形进行了研究。
     通过对无线信道建模理论的分析,确定了随机法与确定法相结合的无线信道建模方法,建立了地雷场环境IR-UWB信号雷间近地面传播信道模型。在此信道模型基础上,对IR-UWB信号近地面传播时的路径损耗和多径效应等特性进行了研究并得出了相关结论,为IR-UWB技术的实际应用提供了依据。
     对IR-UWB技术在地雷中的实际应用进行了初步的探讨,提出了IR-UWB信号设计的依据并对基本参数进行了确定。研究并确定了基于时间到达的地雷节点自定位方法,根据IR-UWB信号近地面传播特性研究的相关结论,对定位测距误差进行了分析,并提出了提高地雷节点自定位精度的方法。
In the future information-based and high technological war, the smart landmine and minefield with intelligence and informational are the emphases in our army landmine equipment research. The impulse radio ultra wideband (IR-UWB) is one of the newest technologies with advantages such as low power consumption, low complexity and anti-interference ability etc. It is very suitable for the wireless data transmission and accurate self-localization between landmine nodes in the minefield environment and can satisfied the requirements of the future landmine weapon system's informationization and network connections. In recent years, the studies on the IR-UWB mainly focus on the indoor wireless communication, localization and radar detection both at home and abroad. The minefield is normally in the outdoor field environment. The mine node is small and mainly laid on the ground. The mine's antenna is very near the ground. So, study on the propagation characteristics of the IR-UWB signal in the minefield condition are the key issues of the mine weapon's practical application. The research results can provide great significance in the development of our landmine equipment in the future.
     In this paper, aiming at the characteristics of the minefield environment and smart mine and minefield's technical and tactical requirements, the feasibility of the IR-UWB system are analyzed theoretically and experimentally. Based on the wireless radio propagation fundamental theory, the near-ground propagation characteristics of the IR-UWB signal between landmine nodes are studied. The primary rules of the waveform distortion are given. The IR-UWB propagation channel model that fit the minefield environment is established. The applications of the IR-UWB in the minefield are also discussed. The work in this paper can provide technological support for the relative research and the system design of the smart mine and minefield. The main work and results are summarized as follows:
     Firstly, the principles of the wireless radio propagation are studied. According to the analysis of the characteristics of the minefield environment and mine node, the technological parameters are put forward with the demands of the minefield network. The3D model of the minefield environment is established. These can provide references for the IR-UWB signal's propagation characteristics research and channel modeling.
     Based on the radio ground reflection theory, the IR-UWB near-ground link performance budget model is established. The relationships of the transmit power, antenna height, transmission distance and data rate are analyzed. The IR-UWB system's transmission capability between landmine nodes is studied. Combined with the outdoor field experiment measurement and testing data analysis, the link budget model is testified to be correct. It is also shows that the IR-UWB technology can be used in the mine weapon obviously.
     According to the characteristics of the minefield environment, the waveform distortion reasons are analyzed when the IR-UWB signal transmit between mine nodes. Due to the huge bandwidth of the IR-UWB signal, the frequency domain (FD) sub-band method is raised to cope with the signal's properties in waveform distortion. In different grazing angle and soil conditions, the IR-UWB reflection waveforms are studied and the near-ground reflection rules are obtained. Based on the uniform theory of diffraction (UTD), the IR-UWB diffraction model in the minefield environment is established. Then the IR-UWB diffraction waveform is studied from two aspects of the signal's amplitude and phase.
     Through the analysis of the wireless channel modeling theory, the modeling method combined with stochastic theory and deterministic analysis is determined. With the channel model, the path-loss properties and multi-path effect of the IR-UWB signal near-ground propagation are studied and the results are received.
     Finally, researches on the applications of the IR-UWB technology in the landmine are carried out. The IR-UWB signal's design principles and primary parameters are put forward. The self-localization method of the landmine node base on the time of arrival (TOA) ranging algorithm is studied. With the results of the near-ground propagation characteristics, the location and ranging error are analyzed, then the method of improving the self-localization precision are given.
引文
[1]刘强,方向等.地雷爆破与破障工程装备器材原理及应用.解放军理工大学教材.2007
    [2]季茂荣,沈蔚,杨力等.智能雷场概念及相关问题的探讨.中国兵工学会第十届地雷爆破专业学术年会.2008:5-7
    [3]祝龙石,反直升机、反坦克声控智能雷概述.制导与引信.2001(4):34-38
    [4]高昆,赵晓辉.智能雷场的无线传感器网络技术研究.信号与信息处理.2008(4):15-17
    [5]Jane's International Defense. M93'HORNET'Wide-Area Munition (WAM). Jane's mines and clearance.2008
    [6]Jane's International Defense. Anti-Helicopter Mines. Jane's mines and clearance. 2008
    [7]Jane's International Defense. Intelligent Horizontal Mine. Jane's mines and clearance. 2008
    [8]杨力,季茂荣等.无线传感器网络技术在智能雷场中的应用研究.工兵装备研究.2010(6):34-37
    [9]王殊,阎毓杰,胡富平,屈晓平.无线传感器网络的理论与应用.北京:北京航空航天大学出版社,1997
    [10]于宏毅,李鸥,张效义.无线传感器网络理论、技术与实现.北京:国防工业出版社,1998
    [11]Ghavami M, Michael L B, Kohno R. Ultra Wideband Signals and System in Communication Engineering (Second Edition). NJ USA:John Wiley & Sons, Inc,2004
    [12]Huseyin Arslan, Zhi Ning Chen, Maria-Gabriella Di Benedetto. Ultra Wideband Wireless communication. NJ USA:John Wiley & Sons, Inc,2006
    [13]葛利嘉,曾凡鑫,刘郁林,岳光荣.超宽带无线电通信.北京:国防工业出版社,2006
    [14]Liu H, Darabi H, Banerjee P, Liu J. Survey of Wireless Indoor Positioning Techniques and Systems. IEEE Transaction on System, Man and Cybernetics, Part C: Applications and Reviews.2007,37(6):1067-1080
    [15]Win M Z, Scholtz R A, Impulse radio:How it works. IEEE Commun. Lett.,1998(2): 36-38
    [16]Kazimierz Siwiak and Debra McKeown. Ultra-Wideband Radio Technology. NJ USA:John Wiley & Sons, Inc,2004
    [17]Defence Technical Information Center. Ultra Wideband Radar:Research and Development Considerations. USA, ADA229882,1989
    [18]FCC, First Report and Order. Adopt:2002, Released:20002[19]葛利嘉,朱林,袁晓芳,陈帮富等译.Maria-Gabriella Di Benedetto, Guerino Giancola著.超宽带无线电基础.北京:电子工业出版社,2006
    [20]张中兆,沙学军,张钦宇,吴宣利著.超宽带通信系统.北京:电子工业出版社,2010
    [21]Molisch A F. et al., IEEE 802.15.4a channel model:Final Report. IEEE 802.15-04-0662-02-004A,2005
    [22]Defence Technical Information Center. Assessment of Ultra-Wideband (UWB) Technology. USA, ADA233624,1990
    [23]Defence Technical Information Center. Ultra-Wideband Antennas and Propagation (Vol.4). USA, ADA328785,1997
    [24]Defence Technical Information Center. Ultra-Wideband Signals for Target Detection in Foliage. USA, ADA432646,2002
    [25]邢磊,张卓,尹浩.军事远距离通信超宽带通信系统研究.现代军事通信,2008,16(2):29-37
    [26]Joseph F. Herzig Jr. An Analysis of the Feasibility of Implementing Ultra-Wideband and Mesh Network Technology in Support of Military Operations. Thesis of Naval Postgraduate Sclool,2005
    [27]Defence Technical Information Center. UGS, UGV, and MAV in the 2007 C4ISR OTM Experiment. USA, ADA479703,2008
    [28]Defence Technical Information Center. Advanced Wireless Integrated Navy Network (AWINN) Report NO.1. USA, ADA456413,2005
    [29]Defence Technical Information Center. Advanced Wireless Integrated Navy Network (AWINN) Final Report. USA, ADA458521,2006
    [30]Defence Technical Information Center. Naval Total Asset Visibility (NTAV) Precision Asset Location (PAL)-System Tests on the SS Curtiss. USA, ADA423570, 2004
    [31]Fontana R J and Gunderson S J. Ultra-Wideband Precisoin Asset Location System. IEEE Conference on Ultra Wideband System and Technologies.2002:147-150
    [32]Win M Z, Ramirez-Mireles F and Scholtz R A. Ultra-Wideband (UWB) Signal Propagation for Outdoor Wireless Communications. IEEE 47th Vehicular Technology Conference,1997(1):251-255
    [33]Jing Liang and Qilian Liang. Outdoor Propagation Channel Modeling in Foliage Environment. Vehicular Technilogy,2010,59(5):2243-2252
    [34]Guy Schiavone, Parveen Wahid. Outdoor Propagation Analysis of Ultra Wide Band Signals. Antennas and Propagation Society International Symposium,2003(2):999-1002
    [35]Shunsuke Sato and Takehiko Kobayashi. Path-Loss Exponents of Ultra Wideband Signals in Line-of-Sight Environments. ISSSTA2004,2004:488-492
    [36]Julien Keignart and Norbert Daniele. UWB Channel measurements in Snow-Covered Environment. IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs),2004
    [37]Emami S, Corral C A and Rasor G. Ultra-Wideband Outdoor Channel Modeling Using Ray Tracing Techniques. Consumer Communications and Networking Conference, 2004:466-470
    [38]Corral C A, Emami S and Rasor G. A Weighted Multiple-Frequency Method for Ultra-Wideband Outdoor Coverage Prediction. Consumer Communications and Networking Conference,2004:461-465
    [39]Kim C W, Sun X, Chiam L C, Kannan B, Chin F P S and Garg H K. Characterization of Ultra-Wideband Channels for Outdoor Office Environment. IEEE Communications Society/WCNC,2005:950-955
    [40]Anderson C R, Volos H I, Headley W C, Muller F C B F, and Buehrer R M. Low Antenna Ultra Wideband Propagation Measurements and Modeling in a Forest Environment. WCNC Proceedings,2008:1229-1234
    [41]Protival P, Mrkvica J, Dvorak D, Machac J. Experimental Verification of UWB Pulse Propagation in Indoor and Outdoor Environments.15th Conference on Microwave Techniques,2010
    [42]Oppenrmann I, Stoica L, Rabbachin A, Shelby Z and Haapola J. UWB Wireless Sensor Networks:UWEN-A Practical Example. Radio Communications,2004:27-32
    [43]Gonzalez J, Blanco J.L, Galindo C, et al., Combination of UWB and GPS for Indoor-outdoor Vehicle Localization. Intelligent Signal Processing,2007
    [44]Jinwon Choi, Noh-Gyoung Kang, Yu-Suk Sung and Seong-Cheol Kim. Empirical Ultra Wide Band Channel Model for Short Range Outdoor Environments. Vehicular Technology Conference,2007:1579-1583
    [45]Santos T, Karedal J, Almers P, Tufvesson F and Molisch A F. Modeling the Ultra-Wideband Outdoor Channel:Measurements and Parameter Extraction Method. Wireless Communications,2010,9(1):282-290
    [46]Chehri A, Fortier P, Aniss H, Tardif P-M. UWB Spatial Fading and Small Scale Characterization in Underground Mines.23rd Biennial Symposium on Communications, 2006:213-218
    [47]王艳芬.矿井超宽带无线通信信道模型研究.中国矿业大学博士学位论文.2009
    [48]Youssef J, Denis B, Godin C. Dynamic IR-UWB Channel Model Preserving IEEE 802.15.4a Statistics over Large-Scale Trajectories. 出版 2009:1737-1741
    [49]Qiu R C. Wideband Wireless Multipath Channel Modeling with Path Frequency Dependence. IEEE International Conference on Communications,1996(1):277-281
    [50]Sugahara H, Watanabe Y, Ono T, Okanoue K, Yarnazaki S. Development and Experimental Evaluations of "RS-2000"-A Propagation Simulator for UWB Systems. UWBST & IWUWBS,2004:76-80
    [51]Yan Zhao, Yang Hao, Parini C. Two Novel FDTD Based UWB Indoor Propagation Models. IEEE International Conference on UWB,2005:124-129
    [52]Yan Zhao, Yang Hao, Parini C. FDTD Characterisation of UWB Indoor Radio Channel Including Frequency Dependent Antenna Directivities. Proceedings of the 9th European Conference on Wireless Technology,2006:298-231
    [53]Manteuffel D, Kunisch J. Efficient Characterization of UWB Antennas Using the FDTD Method. IEEE Antennas and Propagation Society Symposium,2004(2): 1752-1755
    [54]Paul D L, Hilton G S, Craddock I J, Klemm M, Gibbins D R. The Design of a Wide Slot Antenna for the Transmission of UWB Signals into the Human Body using FDTD Simulation. The 2nd European Conference on Antennas and Propagation,2007
    [55]Cakir M, Karpat E, Sevgi L. An FDTD-Based Subsurface Imaging Virtual Tool for Testing UWB Antenna Array Characteristics. The 2nd European Conference on Antennas and Propagation,2007
    [56]Shepherd P R, Pennock S R. UWB Propagation Modelling of Building Penetration Using Ray Tracing and FDTD Techniques. The 2nd European Conference on Antennas and Propagation,2007
    [57]Barnes P R and Tesche F M. On the Direct Calculation of a Transient Plane Wave Reflected from a Finitely Conducting Half Space. Electromagnetic Compatibility, 1991(2):90-96
    [58]Rousseau P R, Pathak P H. Time-domain Uniform Geometrical Theory of Diffraction for a Curved Wedge. Antennas and Propagation,1995(12):1375-1382
    [59]Qiu R C. A Study of the Ultra-wideband Wireless Propagation Channel and Optimum UWB Receiver Design. Selected Areas in Communications,2002(9): 1628-1637
    [60]Qiu R C. A Generalized Time Domain Multipath Channel and Its Application in Ultra-wideband (UWB) Wireless Optimal Receiver Design-Part Ⅱ:Physics-Based System Analysis. Wireless Communications,2004(6):2312-2324
    [61]Qiu R C Physics-based Pulse Distortion for Ultra-wideband Signals. Vehicular Technology,2005(5):1546-1555
    [62]Uguen B, Aubert.L-M, Tchoffo Talom.F. A Comprehensive MIMO-UWB Channel Model Framework for Ray Tracing Approaches. IEEE International Conference on Ultra-Wideband,2006:231-236
    [63]Sturm C, Sorgel W, Kayser T, Wiesbeck.W, Deterministic UWB Wave Propagation Modeling for Localization Applications Based on 3D Ray Tracing, IEEE MTT-S International Microwave Symposium Digest,2006:2003-2006
    [64]Richard Yao, Wenwu Zhu, Zhenq Chen. An Efficient Time-domain Ray Model for UWB Indoor Multipath Propagation Channel. IEEE 58th Vehicular Technology Conference,2003(2):1293-1297
    [65]蒋宇乐,张旭东,熊华刚.基于改进射线追踪和三维可视化的UWB信道仿真.系统仿真学报,2010(10):2379-2383
    [66]刘鹏.超宽带信号传播特性的时域UTD方法研究.中山大学博士学位论文,2010
    [67]扈罗全.基于随机射线的无线信道传播特性研究.南京邮电大学博士学位论文,2007
    [68]扈罗全,朱洪波.一种多反射特性的超宽带信道建模方法.微波学报,2007(1):56-61
    [69]Qiu R C. Generalized Time Domain Multipath Channel and Its Application in Ultra-wideband (UWB) Wireless Optimal Receiver-Part III:System Performance Analysis. Wireless Communications,2006(10):2685-2695
    [70]扈罗全,朱洪波.超宽带脉冲信号波形失真仿真与分析.中国电子科学研究院学报,2006(3):234-239
    [71]王艳芬,杨海波.超宽带信道的频率色散特性对脉冲波形的影响.通信技术,2010(6):90-95
    [72]Hongsan Sheng, Orlik P, Haimovich A M, Cimini L J, Jinyun Zhang. On the Spectral and Power Requirements for Ultra-wideband Transmission. IEEE International Conference on Communications,2003(1):738-742
    [73]Foran R A, Welch T B, Walker M J. Very Near Ground Radio Frequency Propagation Measurements and Analysis for Military Applications. Military Communications Conference Proceedings,2003(1):336-340
    [74]Promwong S, Takada J, Supanakoon P, Tangtisanon P. Theoretical Ground Reflection Model for UWB Communication Systems. IEEE International Symposium on Communications and Information Technology,2004(2):1208-1212
    [75]Supanakoon S, Pokang A, Promwong S, Noppanakeepong S, Jun-ichi Takada. Regression Models of Ultra Wideband Ground Reflection Path Loss Based on Peak Power Loss. Asia-Pacific Conference on Communications,2007:15-18
    [76]Vongsripeng P, Promwong S, Supanakoon P, Chamchoy M, Keawmechai S. Ground Reflection Model in Rough Surface for UWB Impulse Radio. IEEE International Symposium on Communications and Information Technology,2005(1):680-683
    [77]Sato S, Kobayashi T. Path-loss Exponents of Ultra Wideband Signals in Line-of-sight Environments. IEEE 8th International Symposium on Spread Spectrum Techniques and Applications,2004:488-492
    [78]Supanakoon P, Kaewsirisin S, Promwong S, Tangtisanon P, Takada J. Ground Reflection Path Loss Based on Average Power Loss for Ultra Wideband Communications. Asia-Pacific Microwave Conference,2007
    [79]Wang Yang, Zhang Naitong, Zhang Qinyu, Ye Jun. A 2-Ray Path Loss Model for IR-UWB Signals Transmission. International Conference on Wireless Communications, Networking and Mobile Computing,2007:554-556
    [80]Tanchotikul S, Supannakoon P, Promwong S,Takada J. RMS Delay Spread Estimation of Ground Reflection Channel for UWB Communications. IEEE International Symposium on Communications and Information Technology,2005(2):1117-1120
    [81]Tanchotikul S, Supanakoon P, Promwong S, Takada J. Statistical Model RMS Delay Spread in UWB Ground Reflection Channel Based on Peak Power Loss. International Symposium on Communications and Information Technologies,2006:619-622
    [82]Nascimento J, Nikookar H. On the Range-Data Rate Performance of Outdoor UWB Communication. The 2nd International Conference on Wireless Broadband and Ultra Wideband Communications,2007:72-77
    [83]Anderson C R, Volos H I, Headley W C, Muller F C B, Buehrer R M. Low Antenna Ultra Wideband Propagation Measurements and Modeling in a Forest Environment. IEEE Conference on Wireless Communications and Networking,2008:1229-1234
    [84]Cassioli D, Win M Z, Molisch A F. A Statistical Model for the UWB Indoor Channel. The 53rd Vehicular Technology Conference,2001(2):1159-1163
    [85]Chia-Chin Chong, Youngeil Kim and Seong-Soo Lee. UWB Indoor Propagation Channel Measurements and Data Analysis in Various Types of High-rise Apartments. The 60th Vehicular Technology Conference,2004(1):150-154
    [86]Kim C W, Sun X, Chiam L C, Kannan B, Chin F P S, Garg H K. Characterization of Ultra-wideband Channels for Outdoor Office Environment. IEEE Conference on Wireless Communications and Networking,2005(2):950-955
    [87]Rappaport T S. Wireless Communications:Principles and Practice. New York: Prentice Hall,1996
    [88]Garry C H. Handbook of Land-Mobile Radio System Coverage. Artech House,1998
    [89]吴志忠.移动通信无线电波传播.出版2002
    [90]谢益溪.无线电波传播原理与应用.北京:人民邮电出版社,2008
    [91]李晓峰,周宁,周亮.通信原理.北京:清华大学出版社,2008
    [92]Foerster J. Channel Modeling Sub-Committee Report Final. IEEE P802.15-02/368r5-SG3a,2002.12
    [93]Aroonpraparat S, Supanakoon P, Promwong S, Takada J. Path Loss Expressions of Ultra Wideband Ground Reflection Channel. International Symposium on Communications and Information Technologies,2006:1017-1020
    [94]Barnes P R, Tesche F M. On the Direct Calculation of a Transient Plane Wave Reflected from a Finitely Conducting Half Space. Electromagnetic Compatibility, 1991(2):90-96
    [95]Richard Yao, Wenwu Zhu, Zhenq Chen. A Time-Domain Ray Model for Prediction Indoor Wideband Radio Channel Propagation Characteristics. Proceeding of ICUPC.1997(2):848-852
    [96]Saadane R, Aboutajdine D, Hayar A M. A Statistical UWB Channel Model Based on Physical Analysis. International Conference on Internet and Web Applications and Services,2006:80-88
    [97]蒙静.基于IR-UWB无线室内定位的机理研究.哈尔滨工业大学博士学位论文,2010
    [98]Qiu R C, I-Tai Lu. Multipath Resolving with Frequency Dependence for Wide-band Wireless Channel Modeling. Vehicular Technology,1999(1):273-285
    [99]IEEE 802.15.3a Channel Modeling Sub-committee Report Final. IEEE P802.15- 02/490rl-SG3a.2003
    [100]USA Army. Mine/Countermin Operations. Headquarters. Department of the Army Washington, DC.2002
    [101]Hongsan Sheng, Orlik P, Haimovich A M, Cimini L J, Jinyun Zhang. On the Spectral and Power Requirements for Ultra-wideband Transmission. IEEE International Conference on Communications,2003(1):738-742
    [102]Proakis J G著,张力军,张宗橙,郑宝玉等译.数字通信(第三版).北京,电子工业出版社,2001
    [103]Pozar D M. Waveform Optimizations for Ultra-wideband Radio Systems. IEEE Transactions on Antennas and Propagation,2003(9):2335-2345
    [104]Zhenqii Clien, Yao R, Zihua Guo. The Characteristics of UWB Signal Transmitting Through a Lossy Dielectric Slab. IEEE 60th Vehicular Technology Conference.2004(1):134-138
    [105]Karousos A, Koutitas G and Tzaras C. Transmission and Reflection Coefficients in Time-Domain for a Dielectric Slab for UWB Signals. IEEE 67th Vehicular Technology Conference,2008:455-458
    [106]Pinhasi Y, Yahalom A and Petnev S. Propagation of Ultra Wide-band Signals in Lossy Dispersive Media. IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems,2008:1-10
    [107]Gorniak P, Bandurski W. UWB Pulse Distortion in the Channel Containing Cylindrical Hill. European Conference on Antennas and Propagation,2006
    [108]Gorniak P, Bandurski W. Direct Time Domain Analysis of an UWB Pulse Distorion by Convex Objects with the Slope Diffraction Included. IEEE Transactions on Antennas and Propagation,2008(9):3036-3044
    [109]Topp G C. Electromagnetic Determination of Soil Water Content:Measurements in Coaxial Transmission Line. Water Resources Research,1980(3):574-582
    [110]曾昭发,刘四新,冯晅.探地雷达原理与应用.北京:电子工业出版社,2010
    [111]汪茂光.几何绕射理论(第二版).西安:西安电子科技大学出版社,1994
    [112]Karousos A and Tzaras C. Multiple Time-Domain Diffraction for UWB Signals. Antennas and Propagation,2008(5):1420-1427
    [113]Chenming Zhou and Qiu R C. Pulse Distortion Caused by Cylinder Diffraction and Its Impact on UWB Communications. Vehicular Technology.2007(4):2385-2391
    [114]Holm P D. UTD-Diffraction Coefficients for Higher Order Wedge Diffracted Fields. Antennas and Propagation.1996(6):879-888
    [115]Tao Han and Yunling Long. Time-Domain UTD-PO Analysis of a UWB Pulse Distortion by Multiple-Building Diffraction. Antennas and Wireless Propagation. 2010(9):795-798
    [116]Bertoni H L. Radio Propagation for Modrem Wireless Systems. N.Jersey: Prentice Hall,2000
    [117]Gorniak P, Bandurski W. Impulse Response of Transition Zone Diffraction on Many Convex Obstacles in Cascade. Antennas & Propagation Conference.2009:621-624
    [118]Gorniak P, Bandurski W. Time Domain Model of Multipe Convex Objects Transition Zone Diffraction.2nd European Conference on Antennas Propagation,2007
    [119]Rousseau P R, Pathak P H. A Time Domain Formulation of the Uniform Geometrical Theory of Diffraction for Scattering from a Smooth Convex Surface. Antennas and Propagation,2007(6):1522-1534
    [120]Bertoni H L著,顾金星,南亲良等译.现代无线通信系统电波传播.北京:电子工业出版社,2001[121] Uguen B, Plouhinec E, Lostanlen Y, Chassay G. A Deterministic Ultra Wideband Channel Modeling. IEEE Conference on Ultra Wideband Systems and Technologies, 2002:1-5
    [122]Uguen B, Aubert L-M, Tchoffo Talom F. A Comprehensive MIMO-UWB Channel Model Framework for Ray Tracing Approaches. IEEE International Conference on Ultra-Wideband,2006:231-236
    [123]Tehoffo Talom F, Uguen B, Plouhinec E, Chassay G. A Site-specific Tool for UWB Channel Modeling. IEEE Conference on Ultra Wideband Systems and Technologies,2004:18-21
    [124]Qiu R C, Liu H, Shen X. Ultra-wideband for Multiple Access Communications. Communications,2005(2):80-87
    [125]Liberti J C, Rappaport T S. A Geometrically Based Model for Line-of-sight Multipath Radio Channels. IEEE 46th Vehicular Technology Conference,1996(2): 844-848
    [126]Urkowitz H. Signal Theory and Random Processes. Artech House:1983
    [127]Chung W C, Ha D S. An Accurate Ultra Wideband (UWB) Ranging for Precision Asset Location. IEEE Conference on Ultra Wideband Systems and Technologies,2003:389-393

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700