用户名: 密码: 验证码:
用于移动载体卫星通信的动中通系统若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动中通系统是一种安装于移动载体上的卫星通信装置。动中通系统能够在载体移动的同时,通过自动调整自身姿态,消除载体运动以及其它各种扰动对卫星通信系统产生的干扰,进而实现稳定不间断的移动卫星通信。由于动中通系统具有适应性强、通信距离远、频带宽、保密性好等诸多优点,因此动中通系统已经逐渐成为移动通信领域的研究热点之一。本文研究了一类典型船载三轴动中通系统的几个关键问题,主要研究内容简要叙述如下:
     建立了动中通系统的单轴模型和三轴非线性模型。首先介绍了一类典型船载三轴动中通系统的组成以及各个模块的功能。然后分析了动中通系统三轴稳定机理,介绍了系统传感器安装方式,并设计了与之对应的控制结构。最后在对动中通系统运动学和动力学特性分析的基础上,建立了动中通系统的单轴模型和三轴非线性模型。
     针对动中通系统传感器信号滤波的实际问题,提出了两种基于小波变换的滤波方法。第一种是3σ模平方平移不变小波滤波算法。该算法能够在保证小波阈值滤波效果的同时,尽可能地消除或减少伪Gibbs现象。第二种是基于邻域相关性的自适应小波滤波算法。这种算法进一步考虑了邻近窗口之间的邻域相关性,并根据不同尺度自适应地调节阈值函数,因此能够获得较好的滤波性能。利用典型信号和真实陀螺信号的滤波结果验证了所提出的两种小波滤波算法的有效性。
     研究了基于单轴模型的动中通系统稳定跟踪控制问题。首先提出了一种基于新型趋近律的滑模控制器。该控制器通过扰动补偿项抑制外来扰动,在确保趋近速度的同时,尽可能地减小系统抖振。然后提出了一种非线性鲁棒控制器设计方法。该控制器利用鲁棒控制项抑制外来扰动对系统稳定跟踪性能的影响,回避了滑模控制中的抖振问题。通过对比仿真实验,验证了所提出的两种稳定跟踪控制方法的有效性。
     研究了基于三轴非线性模型的动中通系统稳定跟踪控制问题。首先基于动中通系统三轴非线性模型,提出了一种基于Backstepping方法的自适应鲁棒控制器。该控制器能够抑制系统中存在的参数不确定和未建模不确定因素的影响,隔离载体扰动,实现整个系统的稳定跟踪。然后基于简化后的动中通系统三轴非线性模型,提出了一种基于非连续映射的自适应鲁棒控制器。该控制器同样能够抑制系统中存在的参数不确定和未建模不确定因素的影响,而且控制器结构更为简单,易于实现。最后提出了一种基于期望补偿的自适应鲁棒控制器。其中,模型补偿项的参数回归矩阵仅依赖于期望跟踪轨迹,因而可以降低传感器噪声等不利因素对系统稳定跟踪性能的影响。
     介绍了一种四自由度、三轴稳定、两轴指向的船载动中通系统的工程实现方案。在不同扰动条件下,利用工程测试方法测试了该动中通系统的稳定跟踪性能。
Mobile satellite communication system (MSCS) is a satellite communication device in-stalled on a moving carrier. When the carrier is moving, the MSCS can adjust its posture au-tomatically to eliminate the effects from the motion of the carrier and other disturbance. Then stable and continuous mobile satellite communication can be achieved. Due to many advan-tages, such as good adaptability, long distance communication, broadband, good security and so on, the MSCS is becoming a hotspot of research in mobile communication. In this disser-tation, several key problems of the MSCS are studied. The main contents are summarized as follows:
     The single-axis model and the tri-axis model of the MSCS are established. Firstly, the composition of a class of ship-mounted tri-axis MSCS and the functions of the modules are in-troduced. Then, the tri-axis stabilization mechanism is studied. The sensor installation methods are introduced and the corresponding control structures are designed. At last, based on the anal-ysis of the kinematic and dynamic features of the MSCS, the single-axis model and the tri-axis model of the MSCS are established respectively.
     Two wavelet filtering algorithms are proposed to filter the sensor signals of the MSCS. The first algorithm integrates the3σ threshold, the modular square threshold function with ad-justment factor and the translation invariant discrete wavelet transform(TIDWT). The proposed algorithm can get good denoising performance and eliminate the pseudo-Gibbs phenomena as much as possible. The second algorithm is a wavelet filtering algorithm based on neighboring coefficients. The proposed algorithm further considers the relationship among the moving win-dows and can adjust the threshold function by the decomposition level, so better performance can be obtained. The classic noisy signals simulation results and the real gyro signal experiment results are used to verify the effectiveness of the proposed two algorithms.
     The tracking and stabilizing control problem is studied based on the single-axis model of the MSCS. A sliding mode controller with a new reaching law is proposed. The proposed controller can compensate external disturbance and minimize the chattering of the system with a guaranteed reaching speed. Then, a nonlinear robust controller is proposed. The proposed controller uses a robust feedback term to attenuate external disturbance and avoid the chattering problem of the sliding mode controller. The tracking and stabilizing validity of the proposed two controllers are proved via comparative simulation results.
     The tracking and stabilizing control problem is studied based on the tri-axis nonlinear model of the MSCS. Firstly, based on the tri-axis nonlinear model, an adaptive robust controller via backstepping design is proposed. The proposed controller can reduce the effects of the pa-rameter uncertainties and the un-modeled uncertainties and eliminate the disturbance from the carrier to track the aim satellite accurately. Then, based on a simplified tri-axis model of the MSCS, an adaptive robust controller with a discontinuous projection is proposed. The proposed controller can also reduce the effects of the parameter uncertainties and the un-modeled uncer-tainties in the system. The structure of the proposed controller is more simple and easier to implement. At last, a desired compensation adaptive robust controller is proposed. The regres-sor of the model compensation term in the proposed controller depends on the desired trajectory only, so the effects of the measurement noise and other adverse factors can be reduced.
     The design and implementation of a tri-axis MSCS with4-DOF and two pointing direc-tions are introduced. The tracking and stabilizing validity of the real system is tested under different disturbance situations.
引文
[1]郭嘉俭.动中通卫星通信系统若干技术问题探讨[J].卫星与网络,2007(7):3849.
    [2]兴涛.一种静中通卫星天线对星策略[J].电视技术,2011,35(7):126-127.
    [3]赵晨.静中通卫星天线座自动对星微机控制器[D].福州:福建农林大学硕士学位论文,2008.
    [4]滕云鹤,毛献辉,章燕申,等.移动卫星通信捷联式天线稳定系统[J].宇航学报,2002,23(9):72-75.
    [5]冯少栋.“动中通”相关技术新进展[J].数字通信世界,2007(3):50-52.
    [6]周文虎.“动中通”用卫星实现应急通信[J].上海信息化,2010(8):40-42.
    [7]李耐和.“动中通”卫星通信技术[J].现代军事,2007(7):60-63.
    [8]Zaghloul A I, Kilic O. Antenna system solution for uninterrupted satellite-on-the-move (SOTM) communications[C]. Proc. of 2003 IEEE Antennas and Propagation Society International Symposium. Columbus, Ohio, USA:IEEE,2003:353-356.
    [9]李文铎.Ku频段卫星通信车载地球站的“动中通”技术[J].世界电信网络,2002,10(8):16-16.
    [10]张帅.船载动中通伺服系统[J].广东通信技术,2007,27(4):67-71.
    [11]赵来定,曹伟.动载体卫星天线稳定系统[J].山东轻工业学院学报,2006,20(2):5-9.
    [12]王毅,张琳华.一种新型的车载动中通应急系统[J].电讯技术,2008,48(7):50-53.
    [13]莫思特,李碧雄.从汶川地震通信问题谈平流层应急通信的应用[J].电讯技术,2009,49(5):29-32.
    [14]http://istock.jrj.com.cn/article,600501,1406656.html.
    [15]http://tech.163.com/08/0205/07/43TVNCIK000915BE.html.
    [16]http://www.gov.cn/gzdt/2008-01/31/content_876307.htm.
    [17]林晓尧.“动中通”移动卫星电视直播系统[J].现代电视技术,2007(4):108-112.
    [18]http://gb.cri.cn/17844/2008/08/03/1325s2175755.htm.
    [19]林毅.动中通技术在新闻直播中的应用[J].广播与电视技术,2009(6):70-73.
    [20]冯琦,冯少栋,李广侠,等.宽带多媒体卫星通信系统中的“动中通”技术[J].数字通信世界,2010(7):46-49.
    [21]http://mil.news.sina.com.cn/2003-12-03/168056.html.
    [22]朱毅麟.美军“动中通”卫星及其地面终端[J].中国航天,2009(4):27-29.
    [23]黄小军.美军动中通通信体系浅析[J].无线电通信技术,2005,31(2):8-9.
    [24]邱建彪.卫星移动通信中地面移动载体天线终端的研究与设计[D].成都:电子科技大学硕士学位论文,2010.
    [25]陈序.移动卫星天线稳定跟踪系统的设计及工程实现[D].南京:南京理工大学硕士学位论文,2007.
    [26]袁磊峰.用于卫星通信的舰载天线稳定系统的设计及工程实现[D].南京:南京理工大学硕士学位论文,2003.
    [27]杜江鹏.基于三轴自主跟踪平台的研究与实现——系统控制算法与软件设计[D].南京:南京理工大学硕士学位论文,2010.
    [28]Sea Tel公司.船载卫星天线的佼佼者(一)——Sea Tel公司[J].数字通信世界,2007(4):42.
    [29]Sea Tel公司.船载卫星天线的佼佼者(二)——Sea Tel公司[J].数字通信世界,2007(5):34-35.
    [30]阮晓刚,汪宏武.“动中通”卫星天线技术及产品的应用[J].卫星与网络,2006(3):34-37.
    [31]Trac Star公司IMVS450M新一代车载“动中通”宽带卫星通信天线[J].数字通信世界,2007(9):44-46.
    [32]康学海,柯树人.“动中通”移动卫星通信终端天线跟踪技术[J].现代电子技术,2007,30(17):17-21.
    [33]路志勇,徐晓文.“动中通”卫星电视接收天线技术分析[J].广播与电视技术,2008,35(2):107-108.
    [34]李素民,李鲲.舰载单脉冲跟踪雷达数学建模与仿真[J].指挥控制与仿真,2006,28(6):5-8.
    [35]姬献征,李果.车载卫星天线鲁棒跟踪控制系统设计[J].计算技术与自动化,2006,25(4):18-21.
    [36]李果,胡剑飞,余达太.移动卫星天线的自适应鲁棒控制系统[J].控制理论与应用,2007,24(2):307-311.
    [37]Tseng H C, Teo D W. Ship-mounted satellite tracking antenna with fuzzy logic control[J]. IEEE Trans. on Aerospace and Electronic Systems,1998,34(2):639-642.
    [38]金鸿章,郭健,陈放.船舶塔康天线稳定平台的数学模型[J].中国造船,2002,43(4):55-62.
    [39]Soltani M N, Izadi-Zamanabadi R, Wisniewski R. Reliable control of ship-mounted satellite tracking antenna[J]. IEEE Trans. on Control Systems Technology,2011,19(1): 221-228.
    [40]王小军,李殿璞,赵阳,等.舰载三轴雷达波束稳定跟踪的研究[J].哈尔滨工程大学学报,2002,23(1):58-63.
    [41]王小军,李殿璞,余宏明,等.顶空无盲区跟踪的舰载倾斜三轴雷达的研究[J].哈尔滨工程大学学报,2002,23(2):37-42.
    [42]许华春,郝路瑶,金伟.车载平板动卫通三轴稳定机理研究[J].宇航学报,2009,30(3):1101-1105.
    [43]周瑞青,吕善伟,刘新华.捷联式天线稳定平台动力学建模与仿真分析[J].北京航空航天大学学报,2005,31(9):953-957.
    [44]吴盘龙,张科,李言俊.多小波在光纤陀螺信号滤波中的应用研究[J].测控技术,2005,24(7):60-62.
    [45]霍国平,崔燕.多小波在捷联系统信号滤波中的应用[J].微计算机信息,2007,23(7):5-7.
    [46]王新龙,马闪.光纤陀螺随机漂移误差补偿适用性方法[J].北京航空航天大学学报,2008,34(6):681-685.
    [47]袁瑞铭,孙枫,陈慧.光纤陀螺信号的小波滤波方法研究[J].哈尔滨工业大学学报,2004,36(9):1235-1238.
    [48]李杰,曲芸,刘俊,等.模平方小波阈值在MEMS陀螺信号降噪中的应用[J].中国惯性技术学报,2008,16(2):236-239.
    [49]张智永,范大鹏,李凯,等.微机电陀螺零点漂移数据滤波方法的研究[J].中国惯性技术学报,2006,14(4):67-69.
    [50]刘传艳,朱斌,樊键.系统中陀螺信号的三种滤波方法[J].电光与控制,2008,15(6):71-74.
    [51]Wang Q, Xu X. Application of wavelet package filtering in the de-noising of fiber optic gyroscopes[J]. Journal of Southeast University (English Edition),2008,24(1):46-49.
    [52]潘泉,张磊,孟晋丽,等.小波滤波方法及应用[M].北京:清华大学出版社,2005.
    [53]Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika,1994,81(3):425-455.
    [54]Donoho D L. De-noising by soft—thresholding [J]. IEEE Trans. on Information Theory, 1995,41(3):613-627.
    [55]Donoho D L, Johnstone IM. Adapting to unknown smoothness via wavelet shrinkage[J]. Journal of the American Statistical Association,1995,90:1200-1224.
    [56]Bruce A G, Gao H Y. Understanding waveshrink:variance and bias estimation[J]. Biometrika,1996,83(4):727-745.
    [57]Gao H Y, Bruce A G. Waveshrink and semisoft shrinkage[J]. StaSci Research Report, 1995,39.
    [58]Pan Q, Zhang L. Two denoising methods by wavelet transform[J]. IEEE Trans. on Signal Processing,1999,47(12):3401-3406.
    [59]Cai T T, Silverman B W. Incorporating information on neighboring coefficients into wavelet estimation[J]. Sankhya:The Indian Journal of Statistics B,2001,63(2):127-148.
    [60]Sendur L, Selesnick I W. Bivariate shrinkage with local variance estimation[J]. IEEE Signal Processing Letters,2002,9(12):438-441.
    [61]杨蒲,李奇.基于双正交小波的稳定平台系统中陀螺信号滤波应用研究[J].测控技术,2007,26(4):32-36.
    [62]张耿,马建仓.一种小波自适应阈值的MEMS陀螺降噪方法[J].弹箭与制导学报,2008,28(5):64-66.
    [63]刘镇平,张春熹,王妍.小波分析在捷联惯导陀螺信号滤波中的应用[J].中国惯性技术学报,2005,13(]):77-80.
    [64]李艳波,刘雨,苏宝库.改进的小波阈值滤波算法在陀螺仪漂移伺服法测试中的应用[J].控制与决策,2010,25(5):681-685.
    [65]Lin X Y, Xu Z B, Liang F M. Study on De-noising of Gyro Signal Based on Wavelet Packet Threshold[C]. Proc. of 2010 Third International Conference on Information and Computing. Wuxi, Jiangsu, China:IEEE,2010:342-345.
    [66]Coifman R R, Donoho D L. Translation-invariant de-noising[J]. In:Wavelets in Statistics of Lecture Notes in Statistics 103,1995:125-150.
    [67]Xu H, Yao M, Lin Z. Study on antenna beam tilting for flat SOTM on vehicle[C]. Proc. of the 7th International Conference on System Simulation and Scientific Computing. Beijing, China:IEEE,2008:1400-1403.
    [68]Xu H, Yao M, Shen X. Study on basic principles of tri-axial stabilization for flat SOTM on vehicle[C]. Proc. of the 7th International Conference on System Simulation and Sci-entific Computing. Beijing, China:IEEE,2008:1404-1407.
    [69]Chang P K, Lin J M. Integrating traditional and fuzzy controllers for mobile satellite antenna tracking system design[C]. Proc. of WSEAS Conference on Advances in Ap-plied Mathematics, Systems, Communications and Computers. Marathon Beach, Attica, Greece:WSEAS,2008:102-108.
    [70]Lin J M, Chang P K. Intelligent mobile satellite antenna tracking system design[J]. Chung Hua Journal of Science and Engineering,2008,6(2):57-62.
    [71]申宇.移动卫星电视接收伺服系统的研究与实现[D].西安:西安电子科技大学硕士学位论文,2006.
    [72]徐贵民,黄建国.“动中通”天线极化轴稳定性研究[J].现代电子技术,2008,31(5):116-118.
    [73]郝路瑶,赵建勋,苏刚.“动中通”稳定与跟踪技术[J].雷达与对抗,2006(2):48-51.
    [74]伍宗伟,姚敏立,蔡国新.车载低轮廓动中通的三轴稳定系统分析与设计[J].压电与声光,2010,32(4):554-557.
    [75]董挪军.对车载“动中通”伺服控制系统的研究[J].无线电通信技术,2002,28(3):15-17.
    [76]严武升,刘宏.基于前馈补偿的舰载雷达三轴稳定跟踪的研究[J].西安电子科技大学学报,1998,25(5):650-654.
    [77]严武升,刘宏.舰载雷达三轴稳定跟踪的研究[J].电子机械工程,1996(1):26-30.
    [78]Chang P K, Lin J M. Mobile satellite antenna tracking system design with intelligent controller[J]. WSEAS Trans. on Systems and Control,2008,3(5):435-446.
    [79]Ming A, Yamaoka T, Kida T, et al. Accuracy improvement of ship-mounted tracking antenna for satellite communications[C]. Proc. of IEEE Conf. on Mechatronics & Au-tomation. Niagara Falls, Ont., Canada:IEEE,2005:1369-1374.
    [80]徐贵民,黄建国.稳定环在“动中通”伺服系统中应用的仿真研究[J].电光与控制,2009,16(2):94-96.
    [81]Soltani M N, Izadi-Zamanabadi R, Wisniewski R. Robust FDI for a ship-mounted satel-lite tracking antenna:A nonlinear approach[C]. Proc. of IEEE Conf. on Control Appli-cations. San Antonio, TX, USA:IEEE,2008:757-762.
    [82]Liu X, Huang Q, Chen Y. Robust adaptive controller with disturbance observer for ve-hicular radar servo system[J]. International Journal of Control, Automation and Systems, 2011,9(1):169-175.
    [83]周瑞青,吕善伟,刘新华.捷联式天线平台数字稳定技术及仿真研究[J].系统仿真学报,2004,16(10):2234-2236.
    [84]朱笑丛.气动肌肉并联关节高精度位姿控制研究[D].杭州:浙江大学博士学位论文,2007.
    [85]马时亮,周平,李海,等.三轴摇摆台运动算法建模与仿真[J].西安工业大学学报,2009,29(5):413-416.
    [86]徐洪泽.基于改进GA算法辨识三轴飞行仿真转台模型[J].机械与电子,2005(2):60-64.
    [87]张东纯,曾鸣,苏宝库,等.三轴转台陀螺伺服系统的模型分析与解耦设计[J].中国惯性技术学报,1999,7(3):58-61.
    [88]朱荣,莫友声,张炎华.多变量耦合系统——大姿态复合运动三轴平台的建模及仿真[J].上海交通大学学报,1999,33(5):604-607.
    [89]柳朝军,廖晓钟,张宇河.捷联式三轴稳定跟踪系统的运动学建模与仿真[J].北京理工大学学报,2000,20(3):313-316.
    [90]梅晓榕,陈明,张卯瑞.三轴仿真转台的建模与仿真[J].系统仿真学报,2001,13(3):278-279.
    [91]黄卫权,刘文佳.三轴仿真转台耦合问题的研究[J].弹箭与制导学报,2009,29(1):99-103.
    [92]刘延斌,金光,何惠阳.三轴仿真转台系统模型建立及解耦控制研究[J].哈尔滨工业大学学报,2003,35(3):323-328.
    [93]Dorosti M, Nobari J H. Kinematic and dynamic analysis of 3-DOF Rotary Table ma-nipulator[C]. Proc. of 2009 Chinese Control and Decision Conference. Guilin, China: IEEE,2009:5745-5750.
    [94]Love L J, Jansen J F, Pin F G. On the modeling of robots operating on ships[C]. Proc. of 2004 IEEE International Conference on Robotics and Automation. New Orleans, LA, USA:IEEE,2004:2436-2443.
    [95]From P J, Duindam V, Gravdahl J T, et al. Modeling and motion planning for mechanisms on a non-inertial base[C]. Proc. of 2009 IEEE International Conference on Robotics and Automation. Kobe, Japan:IEEE,2009:3320-3326.
    [96]From P J, Duindam V, Pettersen K Y, et al. Singularity-free dynamic equations of vehicle-manipulator systems[J]. Simulation Modelling Practice and Theory,2010,18(6):712-731.
    [97]From P J, Gravdahl J T, Abbeel P. On the influence of ship motion prediction accuracy on motion planning and control of robotic manipulators on seaborne platforms[C]. Proc. of 2010 IEEE International Conference on Robotics and Automation. Anchorage, AK, USA:IEEE,2010:5281-5288.
    [98]Murray R M, Li Z, Sastry S S. A Mathematical Introduction to Robotic Manipulation[M]. Boca Raton, FL, USA:CRC Press,1994.
    [99]Spong M W, Hutchinson S, Vidyasagar M. Robot Modeling and Control[M]. Hoboken, NJ, USA:John Wiley & Sons Hoboken,2006.
    [100]Lewis F, Dawson D, Abdallah C. Robot Manipulator Control:Theory and Practice[M]. New York:Marcel Dekker,2004.
    [101]刘彬,戴桂平.基于白化检验和3σ准则的小波阈值去噪算法[J].传感技术学报,2005,18(3):473-476.
    [102]Chen G Y, Bui T D, Krzyzak A. Image denoising using neighbouring wavelet coeffi-cients[J]. Integrated Computer-Aided Engineering,2005,12(1):99-107.
    [103]Mallat S, Hwang W L. Singularity detection and processing with wavelets[J]. IEEE Trans, on Information Theory,1992,38(2):617-643.
    [104]Xia R, Meng K, Qian F, et al. Online wavelet denoising via a moving window[J]. Acta Automatica Sinica,2007,33(9):897-901.
    [105]Katona M, Pizurica A, Teslic N, et al. A real-time wavelet domain video denoising implementation in FPGA[J]. EURASIP Journal on Embedded Systems,2006:1-12.
    [106]Marcianesi A, Marehi L D, Montani M, et al. FPGA implementation of a wavelet based algorithm for real-time signal detection and denoising[C]. Fifth IASTED International Conference on Signal and Imaging Processing. Honolulu, USA:ACTA Press,2003: 234-239.
    [107]刘金琨.滑模变结构控制MATLAB仿真[M].北京:清华大学出版社,2005.
    [108]刘金琨,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.
    [109]Gao W, Hung J C. Variable structure control of nonlinear systems:a new approach[J]. IEEE Transactions on Industrial Electronics,1993,40(1):45-55.
    [110]Gao W, Wang Y, Homaifa A. Discrete-time variable structure control systems[J]. IEEE Transactions on Industrial Electronics,1995,42(2):117-122.
    [111]吕春苗,史泽林,王洪福.陀螺稳像平台滑模变结构控制的优化设计[J].信息与控制,2007,36(5):639-642.
    [112]彭书华,李华德,苏中.非线性摩擦干扰下的电动舵机滑模变结构控制[J].信息与控制,2008,37(5):637-640.
    [113]梅红,王勇.快速收敛的机器人滑模变结构控制[J].信息与控制,2009,38(5):552-557.
    [114]Yao B, Tomizuka M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form [J]. Automatica,1997,33(5):893-900.
    [115]Krstic M, Kanellakopoulos I, Kokotovic P V. Adaptive nonlinear control without over-parametrization[J]. Systems and Control Letters,1992,19(3):177-185.
    [116]Yao B, Tomizuka M. Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms[J]. Automatica,2001,37(9):1305-1321.
    [117]Yao B. Advanced motion control:from classical PID to nonlinear adaptive robust con-trol[C]. Proc. of the 11th IEEE Int. Workshop on Advanced Motion Control. Nagaoka, Niigata:IEEE,2010:815-829.
    [118]Xu L, Yao B. Adaptive robust precision motion control of linear motors with negligible electrical dynamics:theory and experiments[J]. IEEE/ASME Trans. on Mechatronics, 2001,6(4):444-452.
    [119]Yao B, Xu L. Adaptive robust control of linear motors for precision manufacturing[J]. International Journal of Mechatronics,2002,12(4):595-616.
    [120]Yao B, Bu F, Reedy J T, et al. Adaptive robust control of single-rod hydraulic actuators: Theory and Experiments [J]. IEEE/ASME Trans. on Mechatronics,2000,5(1):79-91.
    [121]Yao B. Adaptive robust control of nonlinear systems with application to control of me-chanical systems[D]. Berkeley:University of California,1996.
    [122]Slotine J J E, Li W P. Applied nonlinear control[M]. Englewood Cliffs, NJ, USA: Prentice Hall,1991.
    [123]Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and Adaptive Control De-sign[M]. New York:Wiley,1995.
    [124]Utkin V I. Sliding Modes in Control Optimization[M]. Berlin:Springer Verlag,1992.
    [125]Sadegh N, Horowitz R. Stability and robustness analysis of a class of adaptive controllers for robotic manipulators[J]. International Journal of Robotics Research,1990,9(3):74-92.
    [126]Yao B. Desired compensation adaptive robust control[J]. ASME Journal of Dynamic Systems, Measurement, and Control,2009,131(6):1-7.
    [127]Yao B. Adaptive robust control of robot manipulators:Theory and Comparative Exper-iments[C]. Proc. of the second CWC on ICIA. Xi'an, China:Xi'an Jiaotong University, 1997:442-447.
    [128]胡寿松.自动控制原理[M].北京:科学出版社,2001:507-508.
    [129]苏奎峰,吕强,耿庆锋,等TMS320F2812原理与开发[M].北京:电子工业出版社,2005.
    [130]孙丽明TMS320F2812原理及其C语言程序开发[M].北京:清华大学出版社,2008.
    [131]谢青红,张筱荔TMS320F2812DSP原理及其在运动控制系统中的应用[M].北京:电子工业出版社,2009.
    [132]夏俭军,张兴华,张浞.一种高性能DSP芯片TMS320F2812[J]微处理机,2005,26(6):80-82.
    [133]曹军军,陈小勤,吴超TMS320F2812型数字信号处理器与PC的串行通信[J].国外电子元器件,2005(8):38-40.
    [134]王炼红,章兢TMS320F2812DSP与PC机的串口通信设计[J].微计算机信息,2006,22(20):173-175.
    [135]朱西成,林辉.无刷直流电动机功率驱动电路设计[J].现代电子技术,2009,32(14):162-164.
    [136]http://www.hqew.com/tech/news/445959.html.
    [137]定明芳,刘昌玉.DSP技术在三相逆变器闭环系统中的应用[J].船电技术,2006,26(2):9-12.
    [138]曹波,谢利理,王博.基于TMS320F2812的电动汽车驱动系统设计[J].电力电子技术,2010,44(1).
    [139]孟浩然,王建立,李洪文.基于TMS320F2812的直流力矩电机伺服系统[J].电子测量技术,2007,30(3):63-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700