用户名: 密码: 验证码:
家兔毛囊发育规律及其相关基因的遗传效应、表达规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于毛用动物而言,其被毛有着重要的经济价值。寻找影响动物毛质性状的候选基因一直是众多研究的目标,目前的研究主要集中于人和羊,而在家兔中的研究很少,这大大制约了毛兔育种的进展。
     毛发中的角蛋白相关蛋白(Keratin Associ ated Protein, KAP)是毛发的基本结构成分之一,在毛皮质中,角蛋白所构成的中间微丝纤维Intermediate Filaments,IFs)包埋在由KAP构成的基质中,二者以半胱氨酸(Cys)残基连接形成二硫键,共同形成毛干。在哺乳动物中,角蛋白和角蛋白相关蛋白占毛纤维总重的65-95%,是组成毛纤维的骨架。FGF5在小鼠和大鼠体内有重要的生物学功能,尤其是皮肤毛囊的周期性生长的重要调控因子,是目前研究发现唯一与毛长有直接关系的基因。
     因此,对KAPs基因和FGF5基因的研究对于家兔的毛用性状育种具有一定的意义。
     本研究中采取了PCR-SSCP和PCR-RFLP技术分析了闽西南黑兔、海狸色獭兔、白色獭兔、九疑山兔、皖系长毛兔群体的KAP3.1、KAP3.3、KAP6.1和FGF5基因的遗传多样性;量取福建黄兔、德系长毛兔、美系獭兔(2周龄、4周龄、6周龄、8周龄、12周龄、16周龄、20周龄)颈部、背部、臀部、腹部粗毛和细毛的长度,以分析家兔兔毛的生长情况;对福建黄兔、德系长毛兔、美系獭兔(0周龄、2周龄、4周龄、6周龄、8周龄、12周龄、16周龄、20周龄)的背部和臀部皮肤组织进行了组织切片观察,以分析其毛囊不同时期的组织学形态变化;采用了实时荧光定量PCR技术对福建黄兔、德系长毛兔、美系獭兔(0周龄、2周龄、4周龄、6周龄、8周龄、12周龄、16周龄、20周龄)的背部和臀部皮肤组织中KAP3.1、KAP3.3、KAP6.1口FGF5的表达规律进行了分析。本研究的主要结果如下;
     1.本研究首次获得了家兔KAP3.1、KAP3.3基因的全长CDS序列。并将家兔KAP3.1和KAP6.1基因序列提交至GenBank数据库(HM147283和HM147284,HM068868和HM068869)。经GenBank数据库中与其它物种序列的比对,家兔KAP3.1,KAP3.3,KAP6.1和FGF5基因序列与小鼠、猪、人、黑猩猩、牛等哺乳动物的同源性均达80%以上,一方面说明这些基因在不同物种中存在着一定的差异,另一方面说明了这些基因在进化过程中是相对比较保守的。
     本研究对不同家兔群体的KAP31、KAP3.3、KAP6.1和FGF5基因的全长CDS区域进行了多态性检测。KAP3.1基因于KAP3.1-1座位上发现C91T突变,处于编码区内,但未引起氨基酸发生改变(均为丝氨酸),为沉默突变。KAP3.3基因于KAP3.3-2座位中,发生了A358G、CA373-374TG、A435G和G467T等四处突变位点,但这些突变位点均处于3’端非编码区。本实验所扩增KAP6.1基因的包括了5’端序列的基本元件(CAAT盒、增强子、CACCC盒、TATA盒),相对于GenBank中的原序列(M95718),分别在5’端侧翼区发现5处插入突变和CDS区域6个碱基的缺失。KAP6.1-1座位存在2种等位基因,C1等位基因相对C2等位基因在原序列的694位点上有1个插入(G),并发生了G744C和A755G突变,且A755G突变处于该序列的增强子区域。在FGF5基因上,FGF5-1A座位中,220-222处发现了TCT碱基的缺失,即丝氨酸缺失;在FGF5-3B扩增产物的中发现了T58C突变,导致该位点编码的亮氨酸突变为丝氨酸,这两个突变位点,造成了家兔FGF5基因序列的变化。其他基因座位则未检测出多态位点。
     所有群体在具有突变的位点上都处于Hardy-Weinberg平衡(P>0.05)。KAP3.1-1座位的多态信息含量都较低,各群体的整齐度较高,其原因可能长期的选育过程可能对该基因的影响不大。在KAP3.3-2座位中,闽西南黑兔、海狸色獭兔、九疑山兔的多态信息含量差异不大,均处于中度多态,说明三个群体受到的自然和人工选择的选择压大小相当。而在KAP6.1-1座位中C1等位基因频率较高,肉兔(闽西南黑兔、九疑山兔)的多态信息含量高于獭兔和毛兔,同时皖系长毛兔的多态信息含量为0,FGF5-1A座位中,E1等位基因频率较高,并且皖系长毛兔群体中未发现E2等位基因,其原因可能本研究所采的样本数不够大,也可能是长毛兔、獭兔均是由肉兔突变而来,对于毛兔、獭兔的长期选育过程可能造成C2和E2等位基因频率的降低所致。
     2.本研究中以不同家兔品种初生后至青年期不同皮肤部位为研究对象,分析比较了毛囊发育情况,同时测量了不同家兔品种不同时期兔毛的长度以分析其生长情况。
     福建黄兔的初级毛囊直径不同时期增长幅度最大,德系长毛兔次之,而美系獭兔增长的幅度最小,而平均次级毛囊直径差异不大。家兔毛发生长前期(初生后),各个品种均较难发现粗毛,而后期,福建黄兔、德系长毛兔粗毛率明显上升,与家兔的毛发直径情况相符。
     德系长毛兔、福建黄兔、美系獭兔的次级毛囊不同时期的直径差异不大,但在形态上具有较大的区别。说明家兔的毛囊发育与羊相似,也具有周期性,且该周期与家兔的年龄性换毛时间情况相符。
     德系长毛兔、福建黄兔、美系獭兔的平均表皮层厚度差异不大。美系獭兔的平均表皮层厚度和皮肤总厚度(表皮层厚度+真皮层厚度)最大,福建黄兔次之,德系长毛兔最小。肉兔和皮兔的皮肤厚度要高于毛兔。
     家兔毛长性状的测定时,相同兔种中不同部位的毛长并不相同,所有兔种的背部、臀部被毛比颈部、腹部长;而同一部位的粗毛长度比细毛略长。不同家兔兔毛的生长波持续时间和强度不同,皮兔和肉兔的兔毛生长波持续的时间较毛兔短,而早期强度高于毛兔。
     3.本研究采用了实时荧光定量PCR技术首次对福建黄兔、德系长毛兔、美系獭兔不同部位皮肤组织的KAP3.1、KAP3.3、KAP6.1和FGF5等基因的表达规律进行了分析,发现这些基因在相同兔种、同一时间点不同皮肤组织中的表达情况并不完全相同。
     KAP3.1基因在所有品种中0周龄时的表达量均处于较高的水平,且在福建黄兔和美系獭兔中的表达量高于德系长毛兔。德系长毛兔不同性别、皮肤部位的表达规律相似,总体上均处于缓慢上升趋势。而福建黄兔和美系獭兔KAP3.1基因的表达则出现较大的波动,多数部位在4周龄和12周龄时都有不同程度地下降趋势,所不同的是该基因在福建黄兔12周龄母兔背部的表达量出现小幅度的上升,而在美系獭兔中出现显著下降,至最低点。
     不同家兔品种的KAP3.3基因的表达趋势与KAP3.1的表达趋势基本相同。
     KAP6.1基因在三个品种中不同部位不同时期的总体表达趋势均处于波动状态。福建黄兔中,不同性别背部和臀部都是在4周龄时表达量达到最低,除在12周龄母兔臀部的表达量达到最高外,其余都是在16周龄表达量达到最高。德系长毛兔中,0-6周时,背部和臀部间的表达差异较大。美系獭兔中,所有不同性别和部位的表达趋势相似,初生的仔兔均具有一定的表达量,但是不同性别和部位间的差异较大。4周龄时均降至一个较低水平,随后有所回升且逐渐趋于平缓。
     初生仔兔不同部位均存在一定的FGF5基因表达量,且福建黄兔表达量最高,美系獭兔次之,德系长毛兔最低。福建黄兔中,虽然该基因在各阶段不同性别不同部位的皮肤组织中的表达量有所不同,但整体趋势基本一致。美系獭兔的表达规律与福建黄兔基本相同,但在12周龄时表达量的下降程度较福建黄兔明显;而在德系长毛兔中,不同部位不同性别的表达趋势较为相似,0周龄时,FGF5的表达量均处于最低点,随后逐渐上升。
     本研究中所有群体的4个基因在家兔初生时均具有一定的表达量,说明毛囊的发育和毛发的生长在家兔胚胎时期就已进行。4个基因在不同家兔品种中的表达趋势并不完全一致,德系长毛兔的KAP3.1、KAP3.3、FGF5基因表达均呈现出一个缓慢上升的平滑趋势,而KAP6.1基因则呈现出不规则的波动。4个基因在福建黄兔和美系獭兔4周龄和12周龄时均表现出较大程度地波动,推测可能与家兔的年龄性换毛有一定的关系。同时,肉兔和獭兔的各个基因的表达规律较为接近,此结果与家兔的不同经济用途较为接近。同时,家兔的不同性别,不同部位的表达量也不尽相同,这与家兔不同部位的毛长发育情况不同的情况相似。KAP3.1和KAP33基因在不同家兔群体中的表达规律基本一致,可能这两个基因在不同时间段的表达机制相似,存在协同效应。
In the wool type animal, its wool is an important economic trait. Scanning the candidate gene relative to animal wool quality had been the target of many studies. Most of current researches focused on human and sheep, and it was few studies of rabbits that restricted the rabbit breeding greatly.
     Keratin associated proteins (KAPs) were the basic component of hair. In hair cortex, intermediate filaments (IFs) composed of keratin embedded in the matrix formed by the KAPs, they connected together by a disulfide bond of cysteine (Cys) residues, and then formed the hair shaft. In mammals, keratin and keratin associated protein which is composed of wool fiber skeleton and accounted65-95%of the total fibers weight. FGF5gene of mice and rats had important biological functions, it was important regulatory factor of the hair follicles growth cyclical, and was the only gene which had been found concerned with the length of hair in recently study.
     Therefore, KAPs and FGF5genes were significance for wool traits breeding of rabbit. This study, we scanned genetic diversity of KAP3.1, KAP3.3, KAP6.1and FGF5gene in Minxinan Black rabbit, Beaver Rex rabbit, White Rex rabbit, Jiuyishan rabbit, Wanxi Angora rabbit by PCR-SSCP and PCR-RFLP; analyzed the growth pattern of wool by measure the fine and coarse wool length of neck, back, buttocks and abdomen of Fujian yellow rabbit, Germany Angora rabbit, American Rex rabbit (2weeks of age,4weeks of age,6weeks of age,8weeks of age,12weeks of age,16weeks of age,20weeks of age); analyzed the hair follicles histological changes at different stages by observe the hair follicles appearance of back and buttocks skin tissue in Fujian yellow rabbit, Germany Angora rabbit, American Rex rabbit (0weeks of age,2weeks of age,4weeks of age,6weeks of age,8weeks of age,12weeks of age,16weeks of age,20weeks of age); analyzed KAP3.1, KAP3.3, KAP6.1and FGF5expression pattern of back and buttocks skin tissues in Fujian yellow rabbit, Germany Angora rabbit, American Rex rabbit (0weeks of age,2weeks of age,4weeks of age,6weeks of age,8weeks of age,12weeks of age,16weeks of age,20weeks of age) by real-time quantitative PCR. The main results of this study as follow:
     1. In this study, we obtained the complete CDS of rabbit KAP3.1, KAP3.3gene for the first time. KAP3.1and KAP6.1sequences had been submitted to the GenBank database (HM147283, HM147284, HM068868and HM068869). KAP3.1, KAP3.3, KAP6.1and FGF5gene sequences of rabbit compared with mouse, chimpanzee, human sheep and goat, both their homology were more than80%, indicating that the genes of different species kept high conservation in evolution process.
     The polymorphisms of KAP3.1, KAP3.3, KAP6.1and FGF5gene full-length CDS region in different rabbit populations were detected. According to the sequencing and sequence alignment, we found that C91T was a silent mutation (serine) in coding region at KAP3.1-1locus. Four mutations (A358G, CA373-374TG, A435G, G467T) which belonged to3'untranslated region of KAP3.3gene and2alleles were found at KAP3.3-2locus. The basic components of KAP6.1gene (CAAT box, enhancer, CACCC box, TATA box) at5'untranslated region were obtained, there were5insertion mutations at KAP6.1-1locus and6basic radical deletion at position1036-1041(CTATGG) at KAP6.1-2locus compared to the rabbit sequence in GenBank (M95718). An insertion mutation (694(G)), a transition mutation (G744C), a transversion mutation (A755G) were found between C1and C2allele in KAP6.1-1locus, and A755G mutation was belonged to the enhancer region. In FGF5gene, the TCT (serine) deletion mutation was found at220-222position at FGF5-1A locus, T58C (leucine- serine) mutation was detected at FGF5-3B locus, both of2mutations lead to amino acid sequence changed. There were not polymorphism been detected at other loci.
     The distribution of these genotypes in all populations were all in the Hardy-Weinberg equilibrium (P>0.05).5rabbit populations were presented as low diversity at KAP3.1-1locus, their polymorphic information content were uniformity. Minxinan Black rabbit, Beaver Rex rabbit and Jiuyishan rabbit showed intermediate diversity at KAP3.3-2loci, indicating that the natural and artificial selection pressure were considerable. The frequency of C1allele was higher than C2at KAP6.1-1locus, the polymorphic information content of meat-type rabbit (Minxinan Black rabbit and Jiuyishan rabbit) were higher than Rex and Angora rabbit while Wanxi Angora rabbit was0. The frequency of El allele was higher than E2at FGF5-1A locus, there was not E2allele been found in Wanxi Angora rabbit. The result probably due to that Angora and Rex rabbit were selcted in the meat-type rabbit, long-term selection process may result in decreased frequency of C2and E2alleles.
     2. In this study, hair follicle development of different rabbit breeds (from birth to adulthood) were analyzed, measured the length of wool in different periods and different rabbit breeds to analysis growth regularity of rabbit wool.
     The average growth speed of primary follicles of Fujian Yellow rabbit in different skin part was fastest, slower in German Angora rabbit and slowest in Rex rabbit, but the difference of average secondary follicles diameter was small among different rabbit breeds. The result were conform to the growth regularity of rabbit wool diameter:coarse wool was difficult to find in all varieties rabbit growth prophase (after birth), but increased significantly in Fujian Yellow rabbit and German Angora rabbit breeds at growth anaphase. The difference of average secondary follicles diameter was small among different rabbit breeds, but there were significant deviation in morphology among different growth periods. Indicated that the development of rabbit hair follicle was same to sheep with a periodicity and the cycle conform to molt cycle of rabbit.
     The difference of average thickness of the epidermis was small among German Angora rabbit, Fujian Yellow rabbit and American Rex rabbit. The total skin thickness (epidermis and dermis layer) and dermis layer thickness of American Rex rabbit was the thickest, and thinnest in German Angora rabbit. The skin thickness of meat-type and Rex rabbit were thicker than Angora rabbit.
     The determination result of rabbit wool length as followed:the wool length of same breed but different skin parts was different, the wool of back and buttocks were longer than neck and abdomen parts; the coarse wool was longer than fine wool in the same parts. The strength and duration of rabbit wool growth wave were different among different rabbit breeds, meat-type and Rex rabbit wool growth wave duration were shorter but stronger than angora rabbit at earlier period.
     3. KAP3.1, KAP3.3, KAP6.1and FGF5the expression pattern in different skin tissues of German Angora rabbit, Fujian Yellow rabbit and American Rex rabbit were analyzed by real-time fluorescent quantitative PCR technology for the first time. The expression patterns of these genes were not identical among different species, stages and skin parts. KAP3.1gene expression showed higher level in0weeks of age in all breeds and the expression level of Fujian Yellow rabbit and American Rex rabbit were higher than German Angora rabbit. The expression patterns of German Angora rabbit were similar between different sex and parts which showed a gender rising trend in general. But it presented greater fluctuation in Fujian Yellow rabbit and American Rex rabbit, most tissues expression descend greatly of in4weeks and12weeks of age excepted for females Fujian Yellow rabbit back tissue appear modest rise.
     The expression trends of KAP3.3gene were similar to KAP3.1gene.
     All the expression patterns of KAP6.1gene presented greater fluctuation in3rabbit breeds at different stages. In Fujian Yellow rabbit, the expressions of back and buttocks tissue in different sex were minimum:appearing the highest expression in16weeks of age except female rabbit buttocks tissue was in12weeks of age. The expression differences of different tissue among0-6weeks in German Angora rabbit breed were significant. In American Rex rabbit, all of the tissues and sex showed similar expression trend overall, The expression difference of different tissue in0weeks of age were significant, then they decreased to a low level in4weeks of age and then raised gently. FGF5gene of3rabbit breeds were widely expressed in0weeks of age, the expression level of Fujian Yellow rabbit was the highest and German Angora rabbit was the lowest. In Fujian Yellow rabbit, although the expression of different skin parts, stages and sex was different, the overall trend was a fundamental consistent. The expression patterns of
     American Rex rabbit were similar to Fujian Yellow rabbit but the expression of American Rex rabbit decreased more obvious than Fujian Yellow rabbit in12weeks of age. In German Angora rabbit, the expression were all at lowest level in0weeks of age and then increased continuously.
     In this study, all the genes had certain expression levels in0weeks of age in all rabbit breeds indicating that hair follicle development and wool growth had been conducted in the rabbit embryonic period. The expression patterns of4genes in different rabbit breeds trend were not entirely consistent. In German Angora rabbit breed, KAP3.1, KAP3.3, FGF5gene expression showed a gentle upward trend but KAP6.1genes were irregular fluctuations. In American Rex rabbit and Fujian Yellow rabbit, all the genes expression in4and12weeks of age showed great fluctuations may relate to the molt cycle of rabbit. Meanwhile,4genes expression pattern of Fujian Yellow rabbit and American Rex rabbit were similar to each other, the result was consistent with the commercial use of different rabbit breeds. The expression pattern of these genes were not identical among different species, stages and skin parts which conform to the wool length of different species, stages and skin parts was different. The expression trends of KAP3.3gene were similar to KAP3.1gene, so we speculated that perhaps the expression mechanism of these genes existed synergistic effect.
引文
[1]乌日罕.蒙古绵羊皮肤毛囊细胞凋亡的研究:[学位论文][D].内蒙古呼和浩特:内蒙古农业大学,2008.
    [2]Hansen L. A., Alexander N., Hogan M. E., et al.. Genetically null mice reveal a central role for epidermal growth factor receptor in the differentiation of the hair follicle and normal hair development[J]. Am J Pathol,1997,150 (6):1959-1975.
    [3]吕中法,刘荣卿.细胞因子与毛囊生长周期[J].国外医学(生理,病理科学与临床分册),1999,19(6):491-494.
    [4]Chapman R. E., Hardy M. H.. Effects of intradermally injected and topically applied mouse epidermal growth factor on wool growth,skin and wool follicles of merino sheep[J]. Aust J Biol Sci.1988,41(2):261-268.
    [5]Moore G. P., Panaretto B. A., Carter N. B.. Epidermal hyperplasia and wool follicle regression in sheep infused with epidermal growth factor[J]. J Invest Dermatol,1985, 84(3):172-175.
    [6]杨淑霞,钟志红.表皮生长因子对游离毛囊生长的影响[J].中华皮肤科杂志,2000,(2):99.
    [7]Bond J.J., Wynn P.C., Moore G.P.. Effects of epidermal growth factor and transforming growth factor alpha on the function of wool follicles in culture[J]. Arch Dermatol Res,1996,288 (7):373-382.
    [8]Du Cros D. L., Isaacs K., Moore G. P.. Localization of epidermal growth factor immunore activity in sheep skin during wool follicle development [J]. J Invest Dermatol, 1992,98(1):109-115.
    [9]Wynn P. C., Brown G., Moore G. P.. Characterization and distribution of epidermal growth factor receptors in the skin and wool follicles of the sheep fetus during development[J]. Domest Anim Endocrinol.1995,12(3):269-281.
    [10]Wynn P. C., Maddocks I. G., Moore G. P.. Characterization and localization of receptors for epidermal growth factor in ovine skin[J]. Endocrinol,1989,121(1):81-90.
    [11]Akiyama M., Smith L. T., Holbrook K. A.. Growth factor and growth factor receptor localization in the hair follicle bulge and associated tissue in human fetus [J]. J Invest Dermatol,1996,106 (3):391-396.
    [12]Pisansarakit P., Du Cros D. L., Moore G. P.. Cultivation of mesenchymal cells derived from the skin and hair follicles of the sheep:the involvement of peptide factors in growth regulation[J]. Arch Dermatol Res,1991,283(3):321-327.
    [13]伍津津,刘荣卿,唐书谦,等.正常人毛乳头细胞和真皮鞘细胞的生长特性观察[J].第三军医大学学报,2000,22(12):1173-1175.
    [14]Isaacs K., Brown G, Moore G. P.. Interactions between epidermal growth factor and the Tabby mutation in skin[J]. Exp Dermatol,1998,7(5):273-280.
    [15]Soulet L, Chevet E, Lemaitreqetal. FGFs and their receptors, in vitro and in vivo studies:new FGF receptor in the brain, FGF-1 in musele, and the use of functional an alogues of low-afinity hep-grin-binding growth factor receptors in tissue repair.[J]. Mol Reprod Dev,1994:39-49.
    [16]宦霞娟.獭兔KAP和FGF5基因多态性与其经济性状的关系研究:[学位论文][D],陕西杨凌:西北农林科技大学,2009.
    [17]宝明涛,郭旭东,旭日干.应用RNAi干扰eGFP转基因小鼠胎儿成纤维细胞中FGF5基因的表达[J].四川动物,2008,27(5):785-787.
    [18]何永新.太行黑山羊FGF5基因CDs区的克隆,序列特征及其表达规律研究:[学位论文][D].陕西杨凌:西北农林科技大学,2010.
    [19]高爱琴,李宁,李金泉,等.山羊FGF5基因cDNA分子克隆及序列分析[J].内蒙古大学学报(自然科学版),2006,37(2):180-184.
    [20]刘海英,杨桂芹,张微,等.FGF5基因对内蒙古绒山羊绒毛性状的影响[J].遗传,2009,31(2):175-179.
    [21]Hebert J M, Rosenquist T, Getz J, et al. FGF5 as a regulator of the hair growth cycle:evidence from targeted and spontaneous [J]. Cell,1994,78:1017-1025.
    [22]Rosenquist T A, Martin G R. Fibroblast growth factor receptor and ligand genes in the marine hair follicle[J]. Dev Dyn,1996,205:379-386.
    [23]Sundberg J P. Angora mouse mutation:altered hair cycle,follicular dystrophy, Phenotypic mainienance of skin grafts, and changes in keratin expression [J]. Yet Pathol, 1997,34:171-179.
    [24]Nguyen H Q, Danilenko D M. Expression of keratinocyte growth factor in embryonic liver of transgenic mice causes changes in epithelial growth and differentiation resulting in Polycystic kidneys and other organ malformations [J]. Oncogene,1996,12:2109-2119.
    [25]Green,1981. E.L. Green In:Linkage, Recombination, and Mapping[M], Oxford Univ. Press, New York.1981:77-113.
    [26]Hebert J M, Rosenquist T, Gotz J, Martin G R. FGF5 as a regulator of the hair growth cycle:evidence from targeted and spontaneous mutations[J]. Cell,1994, 78:1017-1025.
    [27]Mattei, M. G., Pebusque, M. J., Birnbaum, D. Chromosomal localizations of mouse Fgf2and FGF5 genes.[J]. Mammalian Genome,1992,2(2):135-137.
    [28]Mulsant P, Rochambeau H. DE, Thebault R.G.A note on linkage between the angora and FGF5 genes in rabbits[J]. World Rabbit Sci,2004,12:1-6.
    [29]Gilchrest BA, Gudkov AV. p53 is essential for chemotherapy-induced hair loss[J]. Cancer Res 2000, Sep 15; 60(18):5002-5006.
    [30]Adams N. R., Briegel J. R., Ward K. A.. The impact of a transgen for ovine growth hormone on the performance of two breeds of sheep[J]. Anim Sci,2002,80(9): 2325-2333.
    [31]Ward K. A., Brown B. W. The production of transgenic domestic livestock successes, failures and the need for nuclear tansfer[J]. Reprod Fertil Dev,1998, 10:659-665.
    [32]Piper L R,A M Bell, K A Ward, et al. Effect of ovine growth hormone transgenesis on performance of Merino sheep at pasture 1. Growth and wool traits to 12mo of age [J]. In:Proc Assoc Advanc Anim Breed Genet Queenstown, NewZealand,2001,14:257-260.
    [33]Deplewski D., Rosenfield R.L.. Growth hormone and insulin-like growth factors have different effects on sebaceous cell growth and differentiation[J]. Endocrinology, 1999,140:4089-4094.
    [34]张焱如.内蒙古白绒山羊皮肤毛囊活性的变化规律及生长激素受体在毛囊中的定位研究:[学位论文][D].内蒙古呼和浩特:内蒙古农业大学,2001.
    [35]Wynn P.C., Wallace A.L., Kirby A.C., et al. Effects of growth hormone administration on wool growth in Merio sheep[J]. Aust J Biol Sci,1988,41(2):177-187.
    [36]Oakes S.R., Haynes K.M., Watwrs M.J., et al.. Demonstration and localization of growth hormone receptor in human skin and skin fibroblasts[J]. J Clin Endocrinol Metab,1992,75(5):1368-1373.
    [37]贾斌.新疆绵羊微卫星遗传分析及羊毛生长的神经内分泌调控:[学位论文][D].江苏南京:南京农业大学,2003.
    [38]Messenger A G. Isolation, culture and in vitro behaviour of cells isolated from the papilla of human hair follicles[M]. In:Van Neste D, Lachapelle JM, Antoine JL(Eds). Trends in Human Growth and Alopecia Research Kluwer Acdmic Publishers, the Netherlands,1989,57-67.
    [39]Little J C, Westgate G E, Evans A. Cytokine gene expression in intact rat hair follicles[J]. J Invest Dermatol,1994,103:715-720.
    [40]Itami S., Kurata S., Takayasu S.. Androgen induction of follicular epithelial cell growth is mediated via insulin-like growth factor 1 form dermal papilla cells[J]. Biochem Biophy Res Comm,1995,212:988-994.
    [41]Nixon A.J., Ford C.A., Oldham J.M., et al. Localisation of insulin-like grwth fetor receptors in skin follicles of sheep(Ovis aries) and changes during an induced growth cycle[J]. Comp Biochem Physiol A Physiol,1997,118(4):1247-1257.
    [42]Rosemary Sutton, Warren G.Ward, Kathryn A. Raphael, et al. Growth factor expression in skin during wool follicle development [J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1995,10(4):6979-7053.
    [43]Barkan A L, Halasz I, Dornfeld K J, et al. Pituitary radiation is ineffective in normalizing plasma insulin-like growth factor I in patients with acromegaly[J]. Clin Endocrinol Metab,1997,82:3187-3191.
    [44]Su H-Y, Hickford JGH, The P H B, et al. Increased vibrissa growth in transgenic mice expressing insulin-like growth factor 1[J]. J Invest Dermatol,1999, (112): 245-248.
    [45]Su H.Y., Jay N.P., Gourley T.S.. Wool production in transgenic sheep:results from first generation adults and second-generation lambs[J]. Anim Biotechnol,1998,9(2): 135-147.
    [46]Damak S., Su H.Y., Jay N.P.. Improved wool production in transgenic sheep expressing insulin-like growth factor 1[J]. Bio Technology,1996,14:185-188.
    [47]Philpott M.P.. Effects of Insulin And Insulin-like Growth Factors on Cultured Human Hair Follicles; IGF-I at Physiologic Concentrations Is an Important Regulator of Hair Follicles Growth In Vitro [J]. J Invest Dermatol,1994,102(6):857-861.
    [48]Rudman S.M., Phipott M.P., Thomas G.A., et al. The role of IGF-1 in human skin and its appendages morphogen as well as mitogen[J]. J Invest Dermatol,1997,109(6): 770-777.
    [49]Bhora F.Y., Dunkin B.J., Batzri S., et al. Effect of growth factors on cell proliferation and epithelialization in human skin[J]. Surg Res,1995,59:236-244.
    [50]Stones A.J., Granger S.P., Jenkins G. Localisation of cytokines and their receptors in human hair follicles using immunogold histochemistry[J]. J Invest Dermatol,1994, 102:627.
    [51]Little J.C., Redwood K.R., Stones A.J.. The insulin-like growth factors is important in controlling the hair growth cycle [J]. J Invest Dermatol,1994,102:533.
    [52]张海龙,武彩霞等.人角蛋白K6a cDNA的克隆及其在E.coli中的表达[J].第四军医大学学报,2001,24(22):2253-2257.
    [53]Purvis IW, Franklin IR. Major genes and QTL influencing wool production and quality:a review[J]. Genet. Sel. Evol,2005,37:97-107.
    [54]Powell B C, Cam G R, Fietz M J. Clustered arrangement of keratin intermediate filament genes[J]. Proc. Natl. Acad. Sci. USA.1986,83:5048-5052.
    [55]Rogers, M. A., Winter, L. Characterization of a 300 kbp region of human DNA containing the type II hair keratin gene domain[J]. J Invest,2000,114:464-472.
    [56]Rogers, M. A., Langbein, L., et al. Hair keratin associated proteins:characterization of a second high sulfur KAP gene domain on human chromosome 21 [J]. J Invest Dermatol,2004,122:147-158.
    [57]Rogers, MA, Langbein, L, et al. Characterisation of a cluster of human high/ultrahigh sulfur keratin -associated protein genes embedded in the type I keratin gene domain on chromosome 17ql2-21[J]. J. Biol. Chem,2001,276:19440-19451.
    [58]康慧琴,金梅.羊绒蛋白质组表达差异的国内外研究进展[J].安徽农学通报,2007,13(9):46-47.
    [59]吴添文,冯凯,何孟颉,等.6个家兔群体KAP6.1基因的遗传多样性分析[J].湖南农业大学学报2010,6(36):666-671.
    [60]张亚妮,张恩平,吴迪,等.KAP基因的多态性与辽宁绒山羊经济性状的关系研究[J].中国农业科学,2007,40(9):2062-2067.
    [61]刘桂芬,田可川,张恩平,等.优质细毛羊羊毛细度的候选基因分析[J].遗传,2007,29(1):70-74.
    [62]赵俊星,任有蛇,岳文斌,等.KAP6.1基因在两个山羊品种间的表达差异[J].草食家畜,2007,137(12):4-6.
    [63]赵俊星,任有蛇,岳文斌.3个山羊品种KAP6-2和KAP 7基因的PCR-SSCP分析[J].中国畜牧兽医.2007,34(12):42-45.
    [64]赵俊星,任有蛇,乐文斌.二个山羊品种KAP8基因的PCR-SSCP分析[J].生物技术,2007,17(5):36.
    [65]Yutaka, Shimomura. Human hair keratin-associated proteins[J]. Department of Dermatology,2005,10:230-233.
    [66]Adelson D. L, Cam, G. R, et al. Frankin, gene expression in sheep skin and wool (hair), Genomics,2004,83:95-105.
    [67]Michael A., Rogers. Human KAP Genes, Only the Half of it? Extensive Size Polymorphisms in Hair Keratin-Associated Protein Genes. The society for Investigative Dermatology,2005,124 (6):1111-1118.
    [68]孟进军,吴雪萍,陈善明,等.中国美利奴羊羊毛角蛋白组成的研究[J].中国农业科学,1991,24(6):73-79.
    [69]姚毅.两个细毛羊品种羊毛细度及产量性状的分子遗传标记研究:[学位论文][D].陕西杨凌:西北农林科技大学,2006.
    [70]刘桂芳.新疆优质细毛羊遗传多样性及羊毛细度候选基因的分析:[学位论文][D].新疆乌鲁木齐:新疆农业大学.2005.
    [71]王春昕,张明新,金海国,等.KAP 1.3基因与绵羊产毛性能的相关分析[J].吉 林畜牧兽医.2009,30(4):5-6.
    [72]王春生,安铁洙,白秀娟,等.绵羊毛发角蛋白结合蛋白启动子的克隆与活性分析[J].中国兽医学报,2008,28(2):137-140.
    [73]孟伟星,李玉荣,刘斌,等.内蒙古白绒山羊经济性状与候选基因分析[J].畜牧与饲料科学,2008,4:35-38.
    [74]Ullrich R, Paus R. Molecular principles of hair follicle induction and morphogenesis[J]. BioEssays,2005,27(3):247-261.
    [75]Ibraheem. M, Galbraith H, Scaiffe J.R, et al. Response of Secondary hair folliele of the cashmere goat to Prolaetin in vitro[J]. Proceeding of the Nutrition Soeiety,1993, 52(3):263.
    [76]Dicks(nee Lynch). P, Russel.A. J. F, LincolnG. A, The Role of Prolactin in the reactivation of hair follicles in relation to moulting in Eashmere goats[J]. Journal of Endoerinology,1994.143:441-448.
    [77]Litherland. A J, and o'Neil. K T. The effect of manipulation of plasma prolactin concentration on cashmere growth in spring[J]. Proeeeding of the New England of Animal Produetion,1994,54:143-146.
    [78]Choy. V. J, Nixon A. J., Pearson A.J.. Localisation of receptors for prolactin in ovine skin[J]. Journal of Endoerinology,1995,144:143-151.
    [79]Rufaut N.W., Pearson A.J., Nixon A.J.. Identification of differentially expressed genes during a wool follicle growth cycle induced by prolactin[J]. J Invest Dermatol, 1999,113(6):865-872.
    [80]贾志海.褪黑激素促山羊绒生长调控机理的研究:[学位论文][D].北京:中国农业大学,1994.
    [81]Betteridge K, Weleh R A S, Pomroy W E, Lapwood K growth in feral goats[M]. In Proceed Conference. Lincoln College, NewZealand.1987:37-143.
    [82]王若军.营养和外源褪黑激素对绒山羊纤维生长模式的调控作用:[学位论文][D].北京:中国农科院.1996.
    [83]Lanszki J, Allain D, Eiben C. The effcets of melatonin treatment on wool production and hair folliclein angor arabbits[J]. Anim.Res.2001,50:79-89.
    [84]王林枫,卢德勋,孙海洲等.褪黑激素对非生绒期内蒙古白山羊体成分的影响[J].中国畜牧兽医,2005,11:3-5.
    [85]汪长寿.蒙古绵羊皮肤毛囊培养的研究:[学位论文][D].内蒙古呼和浩特:内蒙古农业大学,2005.
    [86]BOTCHKA REV. V. A. Bonemorpho genetic proteins and their antagonists in skin and hair follicle biology[J]. J Investig Dermatol,2003,120:36-47.
    [87]Horace Rhee, Lisa Polak, Elaine Fuchs. Lhx2 Maintains Stem Cell Character in Hair Follicles[J]. Science,2006,30:1946-1949.
    [88]张燕军.内蒙古绒山羊胎儿期皮肤毛囊形态发生和发育规律及部分Hox基因家族成员研究:[学位论文][D].内蒙古呼和浩特:内蒙古农业大学,2007.
    [89]朱水芳.实时荧光聚合酶链式反应检测技术[M].北京:中国计量出版社,2003.
    [90]王梁燕,洪其华.实时定量PCR技术及其应用[J].细胞生物学杂志,2004,(2):62-67
    [91]拜廷阳,杨增岐,吴志明,等.猪链球菌9型荧光定量PCR检测方法的建立与应用[J].西北农林科技大学学报,2008,(1):12.
    [92]Montgomery R A, Dallman M J. Semi-quantitative polymerase chain reaction analysis of cytokine and cytokine receptor gene expression during thymic ontogeny [J]. Cytokine,1997,97:717-726.
    [93]王光华,赵伟春,程家安.实时荧光定量PCR技术及其在昆虫学研究中的应用[J].昆虫学报.2008,51(12):1293-1303.
    [94]阳成波,印遇龙,龚建华等.实时定量PCR研究进展及其应用[J].中国预防兽医学报,2003,25(5):395-399.
    [95]Dietmaier W, Wittwer C, Sivasubramanian N, et al. Rapid Cycle Real-Time PCR Methods and Applications-Genetics and Oncology[M]. Springer-Vedag,2002:180
    [96]杜琼,倪滔,刘小琦等.AB I 7700,7500荧光定量PCR仪性能评价[J].实用医院临床杂志,2009,6(1):63-64.
    [97]程钢,何蕴韶,周新宇.荧光定量聚合酶链式反应检测乙型肝炎病毒[J].中华 医学检验杂志,1999,22(1):135-138.
    [98]曾争,刘丹,公维波,等.三种PCR仪的特异性及灵敏度评价[J].医疗卫生装备,2006,27(10):101.
    [99]王甜,陈庆富.荧光定量PCR技术研究进展及其在植物遗传育种中的应用[J].种子,2007,26(2):56-61.
    [100]郭杨,陈世界,郭万柱,等.荧光定量PCR技术及其应用研究进展[J].动物医学进展,2009,30(2):78-82.
    [102]徐波,张建超.实时荧光定量PCR技术及在畜牧兽医中的应用[J].畜禽业,2009,(248):10-12.
    [102]徐小刚,刘雅婷.实时荧光定量PCR在植物病害中的应用[J].中国农学通报,2009,25(07):52-56.
    [103]汪洋,宫琳琳,邵淑娟.实时荧光定量PCR在肿瘤研究中的应用[J].肿瘤,2004,24(2):196-197.
    [104]李国利.实时荧光定量PCR技术及在结核病诊断实验室的研究和应用[J].临床肺科杂志,2008,13(10):1315-1317.
    [105]李洪敏,高华方,张广宇,等.旋转式荧光定量PCR在临床应用中的价值[J].医疗卫生装备,·2010,31(9):88-90.
    [106]王欣,周晓冰,苗玉发,等.荧光定量PCR技术在基因治疗药物组织分布研究中的应用[J].药物评估研究,2010,33(4):284-286.
    [107]赵晓祥,庞晓倩,庄惠生.荧光定量PCR技术在环境监测中的应用研究[J].环境科学与技术,2009,23(12):125-128.
    [108]雷永良,王晓光,叶碧峰,等.实时荧光定量PCR技术在食品污染物监测中的应用[J].中国卫生检验杂志,2009,19(4):828-831.
    [109]Sambrook, J., Russell, D.W. Molecular Cloning:A Laboratory Manual[M]. third ed. Cold Spring Harbor Laboratory Press, New York,2001, (3):49-56.
    [110]翟频.兔长毛基因与FGF5基因间的连锁[J].中国养兔,2005.1:34-35.
    [111]李春笑.家兔FGF5基因外显子Ⅰ和Ⅲ多态性研究及其与生产性能相关分析:[学位论文][D].四川雅安:四川农业大学,2007.
    [112]McLaren RJ, Rogers GR. Davies KP. et al. Linkage mapping of wool keratin and keratin-associated protein genes in sheep[J]. Mamm Genome,1997,8(12):938-940.
    [113]Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms [J]. Am J Hum Genet, 1980.32:314-331.
    [114]李春笑,蒋美山,陈仕毅,等.兔成纤维细胞生长因子5(FGF5)基因SNP及其与产毛量的相关分析[J].遗传,2008,30(7):893-899.
    [115]王志有,祁全青,陈玉林.高原型藏绵羊KAP基因单核苷酸多态性分析[J].中国畜牧兽医,2010,37(10):120-125.
    [116]Chava Kimchi Sarfaty, Jung Mi Oh, In Wha Kim, et al. A "Silent" polymorphism in the MDR1 gene changes substrate specificity [J]. Science,2007,315 (5811):525-528.
    [117]Jubao Duan, Mark S, Wain Wright. Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor [J]. Human Molecular Genetics,2003,12 (3):205-216.
    [118]Chamary J V, Parmley J L, Hurst L D. Hearing silence:nonneutral evolution at synonymous sites in mammals [J]. Nature Reviews Genetics,2006,7:98-108.
    [119]郭旭东,毛舒燕,宝明涛,等.绵羊角蛋白关联蛋白KAP6-1基因5’端调控区的分子克隆及测序结果比较[J].内蒙古农业大学学报(自然科学版),2007,38(1):58-63.
    [120]Paus R, Handjiski B, Czarnetzki B M, et al. A maline model for inducing and manipulating hair follicle regression(catagen):effects of dexamethasone and cyclosporine[J]. Invest Dermatol 1994,103:143-147.
    [121]Stenn K, Parimoo S, Prouty S. Growth of the hair follicle:a cycling and regenerating biological system. In:Chuong CM, ed. Molecular Basis of Epithelial Appendage Morphogenesis[J]. Austin, TX:R. G. Landes Company,1998,111-131.
    [122]Paus R, Cotsarelis G. The biology of hair follicles[J]. N Engt Med,1999,341: 491-498.
    [123]Stenn KS. Paus R. Control of hair follicle cycling[J]. Physiol Rev,2001,81: 449-494.
    [124]Botchkarevn VA, Kishimoto J. Molecular control of epithelial mesenchymal interactions during hair follicle cycling[J]. J Investig Dermatol Symp Proc,2003,8: 46-55.
    [125]Rebora A, Guarrera M, Kenogen. A new phase of the hair cycle[J]. Dermatology, 2002,205(2):108-110.
    [126]Carter H B, Clarke W H. The hair follicle group and skin follicle of Australian Merino sheep. Aust. Agri.-Res.·1957,8:91-108.
    [127]Nay T, Johnson. Follicle curvature and crimp size in some selected Australian merino sheep Aust. Agri.·Res.·1967,18:833-840.
    [128]Ralf P, Kerstin F. In search of the "hair cycle clock":a guided tour differentiation[J]. Differentiation,2004,72:489.
    [129]洪琼花,兰蓉,邵庆勇,等.云南半细毛羊不同发育阶段皮肤毛囊性状的发育规律研究[J].中国畜牧杂志,2001,83(2):19-21.
    [130]刘立群,霍金富,孔佩兰.德系安哥拉兔皮肤和毛囊发生发育的研究[J].毛皮动物饲养,1990,1:3-6.
    [131]赵辉玲,林大光,孔佩兰.力克斯兔被毛生物学特性研究[J].中国养兔,2001.2:14-21.
    [132]李玉荣,范文斌,李长青,等.内蒙古绒山羊次级毛囊组织形态周期性变化研究[J].中国农业科学,2008.41(11):3920-3926.
    [133]李玉荣,范文斌,李长青,等.内蒙古绒山羊次级毛囊组织形态周期性变化研究[J].畜牧与饲料科学,2010,31(6):131-135.
    [134]李长青,尹俊,张燕军,等.内蒙古绒山羊与辽宁绒山羊皮肤毛囊周期性变化的比较研究[J].畜牧兽医学报,2005,36(7):674-679.
    [135]张春兰,李金泉,尹俊.内蒙古阿尔巴斯白绒山羊皮肤毛囊的发生发育规律[J].畜牧与兽医,2008,40(11):43-44.
    [136]张春兰,李金泉,尹俊,等.内蒙古阿尔巴斯白绒山羊毛囊生长周期性变化的研究[J].中国畜牧杂志,2005,41(9):10-13.
    [137]赵艳丽,张世伟,姜怀志.辽宁绒山羊2品系皮肤毛囊结构及其活性变化规律的比较[J].吉林农业大学学报,2009,31(6):746-751,758.
    [138]陈敏,程海明,孙丹红,等.澳大利亚美利奴绵羊皮组织结构观察[J].2002,12(6):11-14.
    [139]李维红,高雅琴,杜天庆,等.獭兔被毛密度测定研究[J].中国养兔,2009,3:14-16.
    [140]谷子林,顾时贵,等.力克斯兔被毛密度研究[J].中国养兔,1999,4:18-21.
    [141]李长龙.猪ADD1基因的克隆及其与肉质性状关系的研究:[学位论文][D].黑龙江哈尔滨:东北农业大学,2004.
    [142]Livak K.J., Schmitthen T. Analysis of relative gene Expression data using real-time quantitative PCR and the 2(-Delta DeltaC(T)) Method[J]. Methods,2001, 25(4):402-408.
    [143]Lutz Langbein,Michael A.Rogers,et al.The catalog of human hair keraeins.Expression of the nine type IImembers in the hair follicle and the combined catalog of human type Ⅰ and Ⅱ keratins.The J.of Biological Chem,2001, 276(37):35123-35132
    [150]汪玲.KAP7.1,KAP8.2基因在辽宁新品系绒山羊兴盛期毛囊中的表达及分析:[学位论文][D].辽宁大连:辽宁师范大学,2010.
    [151]李长青.绒山羊毛囊周期性变化与兴盛期毛囊KAP13-1基因的表达:[学位论文][D].内蒙古呼和浩特:内蒙古农业大学,2005.
    [152]李知勉.毛囊相关生长基因的表达对绵羊毛囊生长的影响:[学位论文][D].新疆石河子:石河子大学,2006.
    [153]李岩,廖和荣,李知勉,等.IGF-I对不同绵羊皮肤中5个毛囊相关生长因子基因表达的影响[J].中国农业科学,2007,40(3):594-600.
    [154]李知勉,廖和荣,李岩,等.拔毛、剃毛对绵羊皮肤中GHR, IGF-1, IGF-1R,KAP3.2和KAP6-1基因表达的影响[J].安徽农业科学,2006,34(2):211-213.
    [155]姜斌.哺乳动物I型毛角蛋白及IRS角蛋白基因的分子进化:[学位论文][D].内蒙古呼和浩特:内蒙古农业大学,2009.
    [156]曼玲.第2个高硫酸化毛发角蛋白相关蛋白(KAP)基因域存在于人类21号染色体上[J].中华医学信息导报,2004,19(6):8.
    [157]Petho Schramm A, Muller H J, Pans R, et al. FGF5 and the murine hair cycle[J]. Arch dermatol Res,1996,288(6):264-266.
    [158]Rosenquist T A, Martin G R. Fibroblast growth factor signaling in the hair growth cycle:expression of the fibroblast growth factor receptor and ligand genes in the murine hair follicle [J]. Dev Dyn,1996,205:379-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700