用户名: 密码: 验证码:
额济纳胡杨物候节律及生理生态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胡杨(Populus euphratica Oliv.)是干旱荒漠区额济纳绿洲内唯一可以天然更新形成森林的乔木树种,对该地区的环境保护以及生态和经济建设有着不可替代的作用。胡杨生长在极端的荒漠环境中,其物候特征、生理生态特性和种群结构及变化特点是长期与环境相互适应的结果,具有了耐受荒漠环境因子的特质。本文从林分结构、物候和生理生态学角度对额济纳胡杨进行了研究,旨在探讨荒漠胡杨生存生长策略以及环境对其的影响。主要研究结果为:1.由于胡杨为进化异叶型植物,叶片形状包括披针形、矩圆形、菱形、扇形、卵形、肾形和阔卵形等多种形状,根据叶片的长度和宽度比值将胡杨叶片分为狭叶和阔叶,狭叶宽/长比值<1,阔叶宽/长比值≥1:由于胡杨不同生长时期其叶形变化和分布特征变化极为明显,依据胡杨叶形及分布特征结合胸径生长量和结实情况将胡杨生长期分为:幼苗、幼树、成熟木和过熟木4个阶段。在此基础上根据林分主要年龄组成将天然胡杨林划分为幼龄林、成熟林和过熟林。2.通过对胡杨林林分调查发现,幼龄林林分密度最高,成熟林密度次之,过熟林密度最低。应用-3/2自疏定律研究胡杨天然林更新的情况是过熟林的D和D2H密度曲线高于最大密度曲线,林内存在自疏现象,幼龄林D和D2H密度曲线低于最大密度曲线,林木生长没有受到限制,幼龄林冠幅CPA密度曲线高于最在大密度曲线,林内存在着激烈的空间竞争;过熟林CPA密度曲线低于最在大密度曲线,树冠破坏严重,郁闭度低。胡杨异速生长曲线表明胡杨胸径小于20cm为异速生长期,树高生长没有受到抑制。因此额济纳胡杨的生存策略是将资源分配到萌蘖新苗进行林木更新再生,而舍弃林木冠层复壮。3.通过双向指示种分析(TWINSPAN)研究河岸到戈壁胡杨林林下植被分布变化,结果表明随着与河岸距离的增加植被群落由耐盐碱耐瘠薄植物演变为超旱生植物;使用除趋势典范对应分析(DCCA)胡杨林林下植被分布与环境因子关系,结果表明地下水位对胡杨林下植物群落分布起决定性作用。4.不同树龄胡杨物候研究观测发现胡杨阔叶和狭叶物候期存在差异,表现为阔叶芽大于狭叶芽,阔叶萌芽、展叶、叶变色和落叶时间较狭叶早5-10天左右,但阔叶落叶周期长;阔叶展叶方式为齐次展叶型,狭叶为顺次展叶型。单个阔叶叶片干重大于狭叶,单叶建构成本高于狭叶;单枝上阔叶数量比狭叶少,所以胡杨不同生长时期为适应环境变化采取了不同的应对方式。5.不同树龄胡杨生理生态测定的结果表明:狭叶的光补偿点和光饱和点分别比阔叶低于14.5%和42.9%,在光饱和点时的最大净光合速率比阔叶低69.5%,光合作用的水分利用率比狭叶高;阔叶对强光的利用和适应能力显著强于狭叶,两种形态叶的光合特性具有互补作用。胡杨幼树平均蒸腾速率高于成熟木,狭叶蒸腾速率均高于阔叶。6.胡杨狭叶、阔叶主要水分散失形式为气孔蒸腾。胡杨成熟木、幼树阔叶的(?)π0分别比狭叶的低约26.1%、11.9%, Va%分别比狭叶的高约39.1%、16.7%,阔叶的耐旱能力要强于狭叶;阔叶耐旱主要通过叶片细胞的高溶质浓度或是溶质的积累来维持细胞膨压提高耐旱能力;狭叶维持膨压主要是依靠较高的细胞壁弹性和较强的储水能力来增加耐旱能力。
Populus euphratica (Populus euphratica Oliv.) is the only tree species in dry desert in Ejna Banner that can replace and form forests naturally, which is very important in ecological and economical construction in the area. In order to fully understanding the living and growing feature of the Populus euphratica, we have studied P. euphratica from phenology and physiological ecology in Ejina Banner. The results were showed:1. Underground the adverse growing environment in this area, the height growth of P. euphratica has been inhibited obviously. So we depend on the leaf shape and distribution characteristics, DBH and if stoutly,but not the height of the P. euphratica, as the primary index, the age levels of the matural P. euphratica tree can be divided as:Four age levels of seedling, young tree, mature tree and overmature tree. Based on the main composition of the forest, the different forest stand have been divided3ages of young, mature and overmature growth.2.According to the study of the forest stand, we understood that the main growing strategies is that to distribute the resource to sprout tillers for regeneration, and to give up the rejuvenation of the canopy.3. By two-way indicator species analysis (TWINSPAN) and the distended canonical correspondence analysis (DCCA), we know that the level of underground water is the main environment factor of all for the distribution of the phytocoenosis which underground of the P. euphratica trees. The river is main effect factor for the vegetative cover in the P. euphratica trees which growing on the river bank.4. P. euphratica tree is a kind of heterophyll trees, according to the proportion of length and wide of the leaves, can be divided into broad leaves and narrow leaves. The time for sprouting, expansion, discolour and defoliation of broad leaf is about5~10days earlier than narrow leaf., only the defoliation cycle is longer. The leaves expansion method is different, for the narrow leaf be expansion in order, the two peak expansion times will appear in April and June; and the broad leaf the peak expansion time only appears in April. The amount of leaves on single branch of narrow leaf is more than the amount of leaves on broad leaf. The construction cost for the single leaf of the broad leaf is more than narrow leaf.5. The optical compensation point and saturation point of the narrow leaf of P. euphratica are lower than those of broad leaf for14.5%and42.9%respectively, and when at the optical saturation pint, the maximum net photosynthesis speed is lower than that of the broad leaf for69.5%. The transpiration rate of narrow leaf is higher than broad leaf and yang tree same as..6. The main moisture losing method for either narrow or broad leaf of P. euphratica is stomatal transpiration.Ψπ0of mature tree and immature broad leaf of P. euphratica are lower than those of narrow leaf for about26.1%and11.9%respectively, and Va%s are higher than those of narrow leaf for about39.1%and16.7%. The narrow leaf is higher than the broad leaf, so the drought-enduring capacity of broad leaf is better than narrow leaf, only the drought-enduring method is different, which reflects that the broad leaf maintains the expansion pressure of cells mainly through the high concentration of solute or the solute accumulation, and the abilities to bear the drought and keep the moisture and narrow leaf mainly depend on the resilience and the water store ability of the cell wall.
引文
白云岗,宋郁东,周宏飞等.应用热脉冲技术对胡杨树干液流变化规律的研究[J].干旱区地理,2005,28(3):373~376
    曹军胜等.刺槐光合特性的研究[J].西北农业学报,2005,14(3):18-122,136
    曾凡江,AndreaFoetzki等.策勒绿洲多枝柽柳灌溉前后水分生理指标变化的初步研究[J].应用生态学报,2002,1 3(7):849-85
    曾凡江,李小明等.塔克拉玛干沙漠南缘新疆杨长枝叶和短枝叶水分生理特性的初步研究[J].干旱区研究,2002,(1)24~28
    曾凡江,张希明,李小明.柽柳的水分生理特性研究进展[J].应用生态学报,2002,13(5):611~
    614
    曾凡江,张希明等.新疆策勒绿洲胡杨水分生理特性研究[J].干旱区研究,2002,19(2):26-30
    柴宝峰,李洪建.晋西黄土丘陵区若干树种水分生理及抗旱性量化研究[J].植物研究,2000,20(1):79~85
    常宗强,冯起,苏永红等.额济纳绿洲胡杨的光合特征及其对光强和C02浓度的响应[J].干旱区地理,2006,29(4):496~502
    常宗强,冯起,苏永红等.额济纳绿洲胡杨的光合特征及其对光强和CO2浓度的响应[J].干旱区地理,2006,29(4):496~502
    常宗强,冯起,苏永红等.额济纳绿洲胡杨的光合特征及其对光强和CO浓度的响应[J].旱区地理,2006,29(4):406~501
    陈庆诚,张国梁.疏勒河中、下游植物群落优势种群生态-形态解剖构造特性的初步研究[J].兰州大学学报(自然科学版),1961,3:61-89
    邓雄,李小明,张希明等.4种荒漠植物气体交换特征的研究[J].植物生态学报,2002,26(5):605-
    612
    邓雄,李小明,张希明等.四种荒漠植物的光合响应[J].生态学报,2003,23(3):598~605
    邓雄,李小明等.塔克拉玛干4种荒漠植物气体交环境因子的关系初探[J].应用与环境生物学报,2002,(5):445-452
    董天慈.小叶杨与胡杨亚属间有性杂交[J].遗传,1978,(1)
    董学军,杨宝珍等.几种沙生植物水分生理生态特征的研究[J].植物生态学报,1994,18(1):86-940
    杜林方.光合作用研究的一些进展[J].世界科技研究与发展,1999,21(1):58~62
    段晓男,王效科,冯兆忠等.乌梁素海野生芦苇光合和蒸腾特性研究[J].干旱区地理,2004,27(4)637~641
    冯建灿,张玉洁.喜树光合速率口变化及其影响因子的研究[J].林业科学,2002,38(4):34-39
    冯显逵.宁夏干旱地区叶片旱生结构的研究[J].林业科技通讯,1981,(11):13-17
    付爱红,陈亚宁,李卫红.新疆塔里木河下游不同地下水位的胡杨水势变化分析[J].干旱区地理,2004,27(2):207~211
    付爱红,陈亚宁等.新疆塔里木河一下游胡杨不同叶形水势变化研究[J].中国沙漠,2008,28(1):83~
    高润宏,董智等.额济纳绿洲胡杨林更新级群落生物多样性动态[J].生态学报,2005,25(5):1019-1025
    郭连生,田有亮.9种针阔叶幼树的蒸腾速率、叶水势与环境因子关系研究[J].生态学报,1992,12(1):47~52
    郭连生,田有亮.八中针阔叶幼树清晨水势与土壤含水量的关系及抗旱性研究[J].生态学杂志,1992,11(2):4~7
    郭连生,田有亮.运用PV技术对华北常见造林树耐旱性评价的研究[J].内蒙古林学院学报,1998,20(3):1~8
    韩路,王海珍等.不同生境胡杨种群径级结构与格局动态研究[J].北京林业大学学报,2010,32(1)
    韩路,王海珍等.塔里木河上、中游胡杨种群结构与统计分析[J].生态学报,2007,27(4):1316-1322
    胡爱芝.春尺蠖对胡杨的危害及其防治措施[J].新疆农业科技,2005(3):29~29
    黄子琛.干旱对固沙植物的岁粉平衡和氮素代谢的影响[J].植物学报,1979,(21):314-319
    计巧灵,黄培佑.提高胡杨种子萌发率初探[J].种子,2003(5):7-8
    季方,马英杰,樊自立.塔里木河冲积平原胡杨林的土壤水分状况研究[J].植物生态学报,2001,25(1):17~21
    蒋进.极端气候条件下胡杨的水分状况及其与环境的关系[J].干旱区研究,1991,(2):35-38
    蒋进.几种早生植物盆栽苗木的水分关系和抗旱性排序[J].干早区研究,1992,9(4):31-37
    金则新,柯世省.浙江天台山七子花群落主要植物种类的光合特性[J].生态学报,2002,22(10):1645-1662
    柯世省,金则新,陈贤田.浙江天台山七子花等6种阔叶树光合生态特性[J].植物生态学报,2002,26(3):363~371
    赖江山,张谧,谢宗强.三峡库区常绿阔叶林优势种群的结构和格局动态[J].生态学报,2006,26(4):1073~1079
    李合生,孟庆伟.现代植物生理学[M].高等教育出版社,2002,152,130-131
    李洪建,王孟本等.黄土区4个树种水势特征的研究[J].植物研究,2001,21(1):100-105
    李吉跃,张建国.北京主要造林树种耐旱机理及其分类模型的研究[J].北京林业大学学报,1993,15(3):1~11
    李吉跃,张建国.京西山区人工林水分参数的研究(Ⅱ)[J].北京林业大学学报,1994,16(2):1-8
    李吉跃.植物耐旱性及其机理[J].北京林业大学学报,1991,13(3):92~100
    李驹.小叶杨×胡杨F1的特性及遗传性的研究[J].林业科技通讯,1980,(2)
    李军,张秋良等.额济纳绿洲胡杨种群结构与分布格局研究[J].干早区资源与环境,2008,22(2):187~190
    李文钿等.胡杨花粉和胚囊的发育[J].林业科学研究,1988,1(2)
    李文钿等.胡杨与小叶杨远缘杂交不亲和性的障碍[J].林业科学,1986,22(1)
    李文钿等.胡杨杂种胚株的离体培育[J].林业科学,1985,21(4)
    李霞,侯平等.塔里木河下游断流区胡杨密度调查与分析[J].新疆农业大学学报,2003,26(4):41~44
    李向义,张希明.对压力-容积参数共质体水和质外体水概念刍议[J].植物生理学通讯,2001,37(6):545~546
    李向义,张希明等.沙漠-绿洲过渡带四种多年生植物水分关系特征[J].生态学报,2004,24(6):1164~1172
    李岩,李德全.PV技术在研究细胞壁弹性调节上的应用[J].植物生理学通讯,1996,32(3):201~203
    李志军,刘建平.胡杨、灰叶胡杨生物生态学特性调查[J].西北植物学报,2003,23(7):1292-1296
    李志军,罗青红,伍维模等.干早胁迫对胡杨和灰胡杨光合作用及叶绿素荧光特性的影响[J].干旱区研究,2009,26(1):45-51
    刘娥娥,宗会等.干旱、盐和低温胁迫对水稻幼苗脯氨酸含量的影响[J].热带亚热带植物学报,2000,8(3):235~238
    刘奉觉.杨树水分生理研究[M].北京:北京农业大学出版社,1992:66-75
    刘海江,郭柯.浑善达克沙地丘间低地植物群落的分类与排序[J].生态学报,2003,23(10):2163~2169
    刘建平,韩路等.胡杨、灰叶胡杨光合、蒸腾作用比较研究[J].塔里木农垦大学学报,2004,13(3):1-6
    刘建平,李志军等.胡杨、灰叶胡杨P-V曲线水分参数的初步研究[J].西北植物学报,2004,24(7):1255-1259
    刘建平,周正立.胡杨、灰叶胡杨花空间分布及数量特征研究[J].植物研究,2004,24(3):278-283
    刘俊民,余新晓.水文水资源学[M].中国林业出版社,1999
    刘普幸,李筱琳.黑河下游额济纳绿洲生态环境变化特征及生态恢复与重建[J].水土保持通报,2004,24(5):74~77
    鲁作民,刘家琼等.旱生植物绿色组织水分状况研究[J].植物生理学通讯,1980,4:23-27
    路丙社,白志英,董源等.阿月浑子光合特性及其影响因子的研究[J].园艺学报,1999,26(5):287-290
    马世威,马玉明.沙漠学[M].呼和浩特:内蒙古人民出版社,1998,279
    马毓泉.内蒙古植物志(第二卷)[M].呼和浩特:内蒙古人民出版社.1991,11-16
    邱箭,郑彩霞.胡杨多态叶光合速率与荧光特性的比较研究[J].吉林林业科技,2005,34(3):19-21
    任宪威.树木学[M].北京:中国林业出版社,1997:20-32
    阮成江,李代琼.半干旱黄土丘陵区沙棘的光合特性及其影响因子[J].植物资源与环境学报,2000,9(1):16-21
    沈繁宜,李吉跃.植物叶组织弹性模量新的计算方法[J].北京林业大学学报,1994,16(1):35~40
    司建华,冯起,李建林等.荒漠河岸林胡杨吸水根系空间分布特征[J].生态学杂志,2007,26(1):1~4
    司建华,冯起等.黑河下游分水后的植被变化初步研究[J].西北植物学报,2005,25(1):631-640
    司建华,冯起等.极端干早区胡杨水势及影响因子研究[J].中国沙漠,2005,22(4):505-510
    宋耀选,周茂先,张小由等.额济纳绿洲主要植物的水势与环境因子的关系[J].中国沙漠,2005,25(4):497~499
    苏芳莉,刘明国等.沙地樟子松根系垂直分布特征及对土壤的影响[J].中国水土保持,2006,(1)20~23
    苏培玺,张立新.胡杨不同叶形光合特性、水分利用效率及其对加富C02的响应[J].植物生态学报,2003,27(1):34~40
    孙谷畴.叶片水势减低对荔枝光和作用的影响[J].植物学报,1988,30(1):99~102
    孙鸿乔.水势问题[J].植物生理学通讯,1985,21(3):48~53
    孙慧珍,周晓峰等.应用热技术研究树干液流进展[J].应用生态学报,2004,15(6):1074-1078
    孙书存,陈灵芝.东灵山地区辽东栋的叶群体统计[J].植物生态学报,1998,22(6):538~544
    孙雪新,李毅,康向阳.酒泉胡杨林的数量分类和排序[J].干旱区资源与环境,1994,04:61-67
    孙雪新.胡杨组织培养研究[J].植物学通报,1992,(专辑)
    孙志虎,王庆成.应用PV技术对北方4种阔叶树抗旱性的研究[J].林业科学,2003,39(2):33-38
    汤章城.植物干旱生态生理的研究[J].生态学报,1983,3(3):196~204
    田裕钊.塔克拉玛干沙漠地区天然胡杨林发生分布和生长特点的初步研究[C].治沙研究.第一版.北京:科学出版社,1965
    王根绪,程国栋.黑河流域土地荒漠化及其变化趋势[J].中国沙漠,1999,19(4):368~377
    王海珍,韩路等.胡杨、灰胡杨水势带不同地下水位的动态响应[J].干旱区农业研究,2007,25(5):125~129
    王立明,张秋良等.额济纳胡杨林生长规律及生物生产力的研究[J].干旱区资源与环境,2003,17(2):94-99
    王孟本,李洪建等.树种蒸腾作用、光合作用和效率的比较研究[J].植物生态学报,1999,23(5):401~410
    王森等.高C02浓度对温带三种针叶树光合响应特性的影响[J].应用生态学报,2002,13(6):646~650
    王世绩,陈炳浩.胡杨林[M].北京:中国环境科学出版社,1995
    王世绩.杨树栽培生理研究[M].北京:北京农业大学出版社,1991:48-57
    王万里.压力室(PRESSURE CHAMBER)在植物水分状况研究中的应用[J].植物生理学通讯,1984,(3):52~57
    王巍,刘灿然,马克平等.东灵山两个落叶阔叶林中辽东栎种群结构和动态[J].植物学报,1999,411(4):425-432.
    王心源,郭华东等.额济纳旗绿洲生态环境的遥感动态监测分析[J].水土保持通报,2001,21(1):60-62.
    韦东山,张秋良等.额济纳地区胡杨林可持续经营策略[J].内蒙古科技与经济,2003,5:26-28
    魏庆菖,胡杨[M].北京:中国林业出版社,1990,1-22
    温国胜,张国胜.旱胁迫条件下臭柏的气孔蒸腾与角质层蒸腾[J].浙江林学院学报,2003,20(3):268~272
    吴俊侠,张希明等.塔里木河十流中游胡杨种群特征与动态分析[J].干旱区研究,2010,27(2):242~248
    吴征镒主编.中国植被[M].北京:科学出版社,1980,43~650
    徐海量,宋郁东等.胡杨生理指标对塔里木河下游生态输水的响应[J].环境科学研究,2003,16(4):134~138
    许大全.光和作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244
    燕平梅,张艮山.水分胁迫下脯氨酸的积累及其可能意义[J].太原师范专科学校学报,2000,(4):27-28
    杨敏生,裴保华.水分胁迫对毛白杨杂种无性系苗木维持膨压和渗透调节能力的影响[J].生态学报,1997,17(4):364~370
    杨树德,陈国仓.胡杨披针形叶与宽卵形叶的渗透调节能力的差异[J].西北植物学报,2004,24(9):1583~1588
    杨树德,郑文菊.胡杨披针形叶与宽卵形叶的超微结构与光合特性的差异[J].西北植物学报,2005,25(1):14-21
    杨文斌,任建民等.柠条抗旱性的生理生态与土壤水分关系的研究[J].生态学报,1997,17(3):239~244
    杨杨,吕娜等.胡杨枝条导水性与叶形变化关系研究[J].安徽农业科学,2010,38(20):11015-11017
    余叔文,汤章城.植物生理与分子生物学[M].第二版.科学出版社,1998,740-741
    余伟莅,杨灵丽,胡小龙.额济纳绿洲不同树龄胡杨狭叶和阔叶耐旱特征[J].内蒙古林业科技,2009,(4):12~15
    张盹明,王继和,马全林等.干旱沙区2种梨树光合特性的研究[J].西北植物学报,2001,21(1):94-100
    张峰,张金屯.我国植被数量分类和排序研究进展[J]山西大学学报(自然科学版),2000,23(3):278-282
    张国盛,王林和,董智等.毛乌素沙地几种植物蒸腾速率的季节变化特征[J].内蒙古林学院学报,1998,20(1):7~12
    张国盛.干旱、半干旱地区乔灌木树种耐旱性及林地水分动态研究进展[J].中国沙漠,2000,20(4):363~368
    张昊,李俊清,李景等.额济纳绿洲胡杨种群繁殖物候节律特征的研究[J].内蒙古农业大学学报,2007,28(2):61-66
    张绘芳,李霞.塔里木河下游胡杨种群空间分布格局分析[J].西北植物学报,2006,26(10):2125-2130
    张建国.中国北方主要造林树种耐旱特性及其机理的研究[D].北京林业大学,1993,42~47
    张金屯.数量生态学[M].北京:科学出版社,2004
    张金屯.植物种群空间分布的点格局分析[J].植物生态学报,1998,22(4):344~399
    张景群,古丽扎提,王得祥等.塔里木河流域胡杨林火灾特点与生态适应性研究[J].西北林学院学报,1996,11(01):31-35
    张小由,龚家栎等.应用热脉冲技术对胡杨和桎柳树干液流的研究[J].冰川冻土,2003,25(5):585-590
    赵峰侠,尹林克.荒漠内陆河岸胡杨和多枝柽柳幼苗种群空间分布格局及种间关联性[J].生态学杂志,2007,26(7):927~977
    赵文智,常学礼.樟子松针叶气孔运动与蒸腾强度关系研究[J].中国沙漠,1995,15(3):241~243
    郑彩霞,邱箭,姜春宁等.胡杨多形叶气孔特征及光合特性的比较[J].林业科学,2006,42(8):19~24
    郑勇平.PV曲线在杨树耐旱性鉴别中的应用[J].浙江林学院学报,1992,9(1):36-41
    周朝彬,宋于洋,牛攀星等.胡杨对-干旱胁迫适应机制的研究进展[J].安徽农业科学报,2009,37(3):971-973
    周朝彬,宋于洋,王柄举等.干早胁迫对胡杨光合和叶绿素荧光参数的影响[J].西北林学院学报,2009,24(4):5~9
    周正立,李志军.胡杨、灰叶胡杨开花生物学特性研究[J].武汉植物学研究,2005,23(2):163-168
    朱旭斌,刘娅梅.南京地区落叶栎林主要木本植物的展叶动态研究[J].植物生态学报,2005,29(1):128~136
    朱旭斌,刘娅梅.南京地区落叶栎林主要木本植物的展叶动态研究[J].植物生态学报,2005,29(1):128~136
    Abrams MD. Sources of variation in osmotic potential with special reference to North American tree
    species [J]. For.Sci.,1988,34:1030~1046
    Akiyama T. A study on groundwater recharge system and water use in the Heihe River basin in an arid region of China. Ph.D.thesis. Nagoya Univ, Japan 2007
    Anderson JE. Transpiration and photossnythesis in salt cedar[J]. Hydrology and Water Resources in Arizona and the Southwest,1977, (7):125~131
    Arandal, GilL, PardosJ. Seasonal water relations of three Broadleaved species in mixed stand in the centre of the Iberian Peninsula [J]. For Ecol Manage,1996, (84):219-222
    Bohnert H,Jensen R G. Strategies for engineer water-stress tolerance in plants[J]. Trends Biotech,1996, (14):89~95
    Chabot BF, Hicks DJ. The ecology of leaf life span[J]. Annual Review of Systematics and Ecology, 1982,13:229~259
    Dale JE. How do leaves grow? [J]. Bioscience,1992,42:423~432
    Dale JE. The growth of leaves[M]. London:Edward Arnold Limited,1982,31 ~34
    Dixon HH. Transpiration and the ascent of sap in plants[M]. Macmillan, London,1914,74-96
    Edwards,WRN. Operator's manual of custom heat pulse velocity data logge[R]. Background Theory, Chapter2,1991,3-4
    Ehleringer, J.R., Phillips,S.L. Differential utilization of summer rains by desert plants. [J] Oecologia, 1991,(88):430-434.
    Feeny P. Seasonal changes in oaks leaf tannins and nutrients as a cause of spring feeding by winter mothcaterpillars[J]. Ecology,1970,51:565~581
    Gebre GM, Tschaplinski TJ, Tuskan Gerald A, et al. Clonaland seasonal differences in leaf osmotic potential and organic solutes of five hybrid poplar clones grown under field conditions[J]. tree physiology,1998,18(10):645~652
    Hagemeyer J, Waisel Y. Phase-shift and memorization of the circadian rhythm of ranspiration of Yamarix aphylla[J]. Experimentia,1989, (46):976~877.
    Harley JL, Russell RS, The Soil-oot Interface[M]. London:Academic Press,1979:48~52
    Harper JJ. Plant demography and ecological theory[J]. Oikos,1980,35:244~253.
    Henson IE. Osmotic adjustment to water stress in pearl millet (pennisetum americanum Ileeks) in a controlled environment[J]. J.Exp.Bot,1982, (33):78~81
    Hinckley TM, Duhme F, et al. Water relation of drought hardyshrubs:osmotic potential and stomatal reactivity[J]. Plant Cell Environ,1980, (3):131~140
    Huber B. Observation and measurements of sap flow in plant[J]. Berichte der deutscher Botanishcen Gesselfschaf,1932, (50):89~109
    Idso SB, Allen SG. Problems with porometry:measuring stomatal conductances of transpiration of Plants[J]. Agr.For.Meteorol,1988, (43):49-58.
    Jay EA. Factors controlling transpiration and photosynthesis in Tamarix chinensis[J]. Lour.Ecology, 1982,63(1):46~50
    Jones MM, Turner NC. Mechanisms of drough resistance. In:PalegLG, AspinallDeds. Physiology and Biochemistry of Drought Resistance in Plants[M]. Sydney:Academic Press.1981:88~91
    Kaufmann MR, Kelliher FM. Measuring transpiration rate In:Lassois, J.P.and Hinckley,T.M. (eds.)[J]. Techniques and Approaches in Forest Tree Ecphysiology. CRC Press,Boca Raton,1991:117~140
    Kikuzawa K. Leaf surival of woody plants in deciduous broad-leaved forest[J]. Tall tree.Canadian Journal of Botany,1983,16:2133~2139
    Kikuzawa KA. cost-benefit analysis of leaf habitat and leaf longevity of trees and their geographical pattern[J]. American Naturalis,1991,138:1250~1263
    Kramer PJ. Water relations of plants[M]. San Diego:Academic press,1983
    Kuppers, Schulze ED. An empirical model of net photosynthesis and leaf conductance for the simulation of diurnal courses of CO2 and H2O exchange[J]. Aust.Plant Physiol,1985,12:513~526
    Larcher W. Physiological Plant Ecology[M].2nd revised edn,Springer Verlag, Berlin,1980:48~57
    Levitt J. Response of plant to environmengtal stress [M].New York:Aeadem ic Press,1972
    Levitt J. Response of plant to Environmental stress [M].2nd ed.Academic press. New York and.London, 1980:84~96
    Levitt J. Response of plants to environmental stress.Academic press [M]. New York,1972
    Ma HC, Lindsay F. Photosynthetic response of Populus euphratica to salt stress [J]. Forestry Ecol Management,1997,93:55~61
    Marshall DC. Measurement of sap flow in conifers by heat transport[J], Plant Physiology,1958, (33): 385~396
    Midgley GF, Moll EJ. Gas exchange in arid-adapted shrubs:when is efficient water use a disadvantage? [J]. South African J. of Botany,1993,59 (5):491~495.
    Moles AT, Westoby M. Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? [J]. Oikos,2000,90:517~1504
    Mou P, Mitohell RJ, Jones RH. Root distribution of two tree species under a heterogeneous nutrient environment, [J] Appli Eco,1997,34:645~656
    Nilsen C, Turner. Measurement of plant water status by the pressure chamber technique[J]. Irrigation Science,1984, (9):289~308.
    PaLeg LG, Aspinall D. The Physiology and Biochemistry of Drought Resistance in plants[M]. Academic Press. London and new york,1981:77~92
    Philip JR. Plant water relations:some physical aspects[J]. Plant Physiol. Ann.Rev.1966, (17):245~268
    Rathcke B, Lacey EL. Phenological patterns of terrestrial plants[J]. Annual Review of Ecology and Systematics,1985,16:179~214
    Richie GA, Hinckley TM. The pressure chamber as an instrument for ecological research.Adv [J]. Ecol.Res.,1975, (9):165~254
    Scholander PF, Hammer HAT. Sap pressure in vascular Plants [J]. Science,1965,148~339.
    Sobrado MA, Turner NC. Comparison of the water relations characteristics of Heilianthus annuus and Helianthus petiolaris when subjected to water deficits[J]. Oecologia,1983,58:301~309
    Sun JX. Theeco-physiologic characteristics of P.eupharetic [J]. Res For Sci & Technol,1983,8:19~21
    Swanson RH. Significant historical developments in thermal methods for measuring sap flow in trees [J]. Agric For Meteorol,1994,72:113~132
    Turner NC, Jones MM. Turgor maintenance by osmotic adjustment:a review and evaluation[J]. In: Adaptation of Plants to Water and high Temperature stress. [J] (Eds N.C.Turner and P.J.Kramer.)John Wiley & Sons:London,1980:87~103.
    Turner NC, Techniques and experimental approaches for the measurement of plant water status[J]. Plant Soil,1981, (58):339~341
    Turner NC. Measurement of plant water status by pressure chamber technique[J]. Irrig Sci.,1988, (9):289~308
    Turner NC. Measurement of plant water status by pressure chamber technique[J]. Irrig Sci.,1988,9:289
    Tyree MT, Hammel HT. The measurement of the turgor pressure and the water relations of plants by the pressure-bomb technique [J]. J. Exp. Bot.,1972, (23):267~282
    Volkenburgh EV. Leaf expansion-an integrative plant behavior[J]. Plant Cell and Environment,1999, 22:1463~1473
    Waisel Y. The glands of Tamarix aphhylla:A system for Salt secretion or for carbon concentration? [J]. Physiol Plant,1991, (83):506~510
    Walter H, Box EO. The desert of Central Asia. In:West NEed. Ecosystems of the World 5:Temperate Desert sand Semi-Desert[M]. Elsevier, Amsterdam,1983:193~236
    Walter H.世界植被——陆生生物圈的生态系[M].中国科学院植物研究所生态实验室.北京:科学出版社,1979:184~187
    Walter Larcher.植物生态生理学[M].北京:中国农业出版社,1997,168,188
    Wang HL,Yang SD. The photosynthetic characteristics of differently shaped leaves in Populuse euphratica Olivier[J]. Photosynthetica,1997,34(4):545~553
    Wilson JR. Adaption to water stress of the leaf water relation of four tropical species[J]. Aust Plant Physiol,1980, (7):208~220
    Xu DQ, Shen YG. Diurnal viation in the photosynthetic efficiency plant[J]. Acta Phytophysiologica Sinica,1997,23 (4):410~416.
    Yoda K, Kira T, Ogawa H, et al. Self-thinning in overcrowed pure stands under cultivated and natural conditions[J]. (Intraspecific competition among higher plants. Ⅺ) .Journal of Biology, Osaka City University,1963,14:107~129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700