用户名: 密码: 验证码:
aiiA基因克隆及在尾巨桉中的诱导表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桉树原产澳大利亚,是桃金娘科(Myrtaceae)杯果木属(Angophora)、伞房属(Corymbia)和桉属(Eucalyptus)植物的统称。桉树生长快、对环境的适应能力强,是主要的实木与纸浆用材,由于轮伐期短,经济效益高,现已在热带、亚热带地区广泛种植。到2011年,中国桉树种植面积已有368万hm2。尾巨桉是尾叶桉(Eucalyptus urophylla)与巨桉(E. grandis)杂交种,树高50m以上,用途广泛,主要用于造纸与实木用材,是栽培面积最大的桉树人工林无性系。近年来随着桉树人工林的不断扩大,病虫害严重,已成为制约桉树人工林发展的主要因素。传统化学防治方法对环境的副作用大,破坏生态安全。利用包括转基因技术在内的现代生物技术手段进行桉树育种具有高效性和针对性,加快优质高抗新种质的选育。
     N-酰基高丝氨酸内酯(N-acyl-homoserine lactones, AHL)是革兰氏阴性病原细菌产生的小分子化合物,也是该类病原菌群体感应系统的关键信号分子。当病原菌产生的AHL达到一定量浓度时,可激活病菌的致病基因表达,使寄主植物感病并表现相应病症。因此,破坏病原菌AHL信号分子可达到降低病原菌致病力的作用。
     以尾巨桉优良无性系无菌苗茎段为外植体,通过对噻唑基脲类新型分裂素(N-phenyl-N'-[6-(2-chlorobenzothiazol)-yl] urea, PBU)等多种不同浓度生长调节剂组合的优化,进行胚性愈伤组织诱导及再生研究。结果表明,在添加了2mg-L-1PBU和0.05mg·L-1IAA的改良MS培养基上,茎段外植体5d后愈伤组织诱导率达96%以上。将愈伤组织接种在添加1mg·L-16-BA和0.05mg·L-1NAA的MS培养基上,诱芽率达90.8%。随后在添加了0.8mg·L-1PBU与0.05mg·L-1IAA的1/2MS培养基上诱导芽伸长,用1/2MS培养基附加0.5mg·L-1IBA诱导生根,移栽后得到完整再生植株。通过对尾巨桉胚性与非胚性愈伤组织差异的比较研究,初步揭示了尾巨桉愈伤组织的非胚性化表型的相关基因表达变化以及愈伤组织非胚性化是受环境胁迫影响的本质。
     芽孢杆菌中的aiiA基因编码AHL-Lactonase能够水解信号分子AHLs。利用PCR方法从枯草芽孢杆菌中克隆了aiiA基因,序列分析表明该基因由753个碱基组成,编码含有250个氨基酸残基的蛋白质,核苷酸序列与已报道aiiA勺同源性为87%~96%。将该基因置于诱导型启动子PPP3调控下,连接到植物表达载体pCAMB1A1301中,成功构建了aiiA基因的植物诱导表达载体pCAMBIA-PPP3-aii4,为进一步通过转基因技术研究该基因的功能奠定了基础。
     本研究选用了pGEX-4T-1表达载体,构建重组原核表达载体pGEX+aiiA。表达条件优化结果表明,在25℃下用0.2mmol·L-1IPTG诱导9h,蛋白的表达量最大,获得AIIA融合蛋白。研究表明AIIA蛋白能够降解细菌的AHL信号分子,猝灭细菌的群体感应,明显减弱病菌的致病力。
     根据已报导的PPP3启动子碱基序列设计引物,从烟草基因组中扩增得到启动子PPP3。用PPP3替换pCAMBIA1301中与gus基因相连的35S启动子,构建重组质粒后导入农杆菌GV3101。通过农杆菌介导的瞬时表达技术将受PPP3控制的gus基因导入烟草。分别接种青枯菌和水杨酸,24h后烟草叶片中检测到gus基因转录水平分别提高了27.94和17.69倍。表明PPP3具有诱导表达活性。
     经农杆菌介导法将表达载体pCAMBIA+PPP3+aiiA、pCAMBIA+35S+aiiA转化尾巨桉,得到了转基因植株。经PCR和Southern blotting证明aiiA基因成功插入到尾巨桉基因组中。Northern blotting和RT-PCR结果显示,在PPP3的调控下,aiiA受到诱导表达。实时荧光定量PCR结果表明,转基因尾巨桉接种青枯菌、茎腐病和焦枯病后,aiiA基因转录效率分别提高到原来的43.88、30.65和18.95倍。
     灌根接种青枯菌和焦枯菌,转aiiA基因尾巨桉抗病性明显的增强,分别提高2.5和2.1个抗性级别,评价为中等抗病水平,表现为发病时间延迟,病情指数降低,抗性相关酶活性显著增强。灌根接种疫霉菌孢子,转基因植株表现出发病延迟、病情进展缓慢等抗病特点。转PPP3+aiiA基因植株抗性提高级别数要高于35S+aiiA基因植株,诱导抗性高于组成型表达。说明通过在植株中诱导表达群体猝灭基因,是提高植物抗病能力的有效策略。
Eucalyptus, belonging to the Myrtaceae family, is the most widely planted hardwood crop in tropical and subtropical regions, because its growth is superior to that of other hardwood crops, it adapts well to the environment, and its wood can be used for multiple purposes. Eucalyptus is the most important forest tree in China, covering more than3million hectares of commercial plantations. Eucalyptus urophylla×E. grandis can reach a height of up to50m, and its wood is widely used as timber for heavy structures and bridges. It is highly prized in China for its superior wood properties, rooting ability and disease resistance. Plantation forestry of E. grandis×E. urophylla supplies high-quality raw material for pulp, paper,"wood, and energy while it reduces the pressure on native forests and associated biodiversity. However, diseases such as bacterial wilt, fungal infection, and gray mold disease have seriously endangered the Eucalyptus crop in China, especially that of the hybrid E. grandis×E. urophylla. Traditional methods for the prevention and treatment of these diseases involve the use of chemical pesticides, which often cause environmental pollution and ecological damage. In contrast, the process of producing adevelopment of disease-resistant trees through genetic engineering can potentially be faster, more controllable and predictable and cheaper than traditional breeding.
     N-acyl-homoserine lactones(AHL) are metabolites of mostly gram-negative bacteria critical and signaling molecules in bacterial quorum-sensing systems. They can activate the expression of pathogenic genes and induce diseases when AHL reach a threshold concentration. Therefore, reducing the concentration of AHLs is a key point of the diseases' control in plants.
     The callus induction and shoot regeneration were studied systematically in elite clone of Eucalyptus urophylla×E. grandis by comparing the variety of combinations of different plant growth regulators, such as N-phenyl-N'-[6-(2-chlorobenzothiazol)-yl] urea (PBU). The results showed that sterile clones of seedling stem segments were used as explants and cultured in a modified MS medium supplemented with the synthetic growth regulator2mg·L-1PBU and0.05mg·L-1IAA. After cultivation for5d,96%of explants formed callus. Callus were transferred to MS medium containing1mg·L-16-BA and0.05mg·L-1NAA to induce bud formation, and90.8%of the callus induced by PBU exhibited adventitious bud formation. Shoot elongation was then stimulated on1/2MS supplemented with0.8mg-L-1PBU and0.05mg·L-1IAA for20d. For rooting, the elongated shoots were cultivated on root induction medium containing0.5mg·L-1IBA. Plantlets were then successfully transplanted to a greenhouse for growing into mature plants. Preliminary reveal callus embryonic phenomenon is affected by environmental stress also reveal the molecular mechanism of non-embryonic phenomenon.
     The AHL-Lactonase, expressed by aiiA gene which widespread in Bacillus sp,can hydrolyze AHLs. The study have cloned the aiiA gene from Bacillus subtilis by PCR, The sequence analysis indicated that the clone was consisted of751nucleotides (nt), coding250amino acids.The nucleotide sequence showed87%-96%identities with those of the aiiA gene that have reported. A plant expression vector of the aiiA gene was constructed and named PCAMBIAb-PPP3-aiiA which the aiiA was controlled by the PPP3promoter. This work laid the foundations for future transgenic research on aiiA gene function.
     pGEX-4T-1was constructed and transformed into bacteria strain of E.coli BL21for construction of genetically engineeringed bacterium strain. After9h induction with0.2mmol·L-1IPTG at25℃, the expression of AIIA protein reached to maximal level. AIIA fusion protein was obtained in E.coli system. It was observed that recombinant Escherichia coli producing AIIA proteins had AHL-degrading activity and could attenuate the plant pathogenicity of pathogen.
     According to the sequences of pathogen-inducible plant promoters PPP3at GenBank, PPP3promoters were cloned from tobacco genome. It was used to replace cauliflower mosaic virus35S promoter of pCAMBIA1301. The recombinant plasmid was used to transform Agrobacterium tumefaciens GV3101. The inducibility of the PPP3promoters in tobacco leaf was evaluated by Agrobacterium tumefaciens-transient genetic transformation assye. Real-time quantitative PCR was used to screen the PPP3promoters with high inducible expression. The results showed that the gus transcript level under the control of PPP3promoters increased respectively27.94fold and17.69fold after inoculation with Ralstonia solanacearum and SA. The PPP3promoter had the advantages such as low basal activity and high expression activity.
     The recombined plasmid was transformed into Eucalyptus urophylla x E.grandis by Agrobacterium-mediated transformation. The results of PCR and Southern blotting showed that the aiiA genes were successfully integrated into the Eucalyptus urophylla×E.grandis genome. The result of reverse transcription polymerase chain reaction (RT-PCR) showed aiiA had partly basal expression. The transcript efficiency of aiiA was calculated by real-time quantitative PCR. The transcript efficiency of aiiA under the control of PPP3promoters increased respectively43.88,30.65and18.95fold after inoculation with Ralstonia solanacearum, E.carotovoraf.sp.zeaeSabet and C.quinqueseptatun.
     The result of plant inoculation showed that ransgenic Eucalyptus urophylla×E. grandis expressing AIIA exhibit significantly enhanced resistance to disease comparing to non-transgenic ones. The transgenic plants could delay the wilt symptom development and make disease index reduced. The activity of PPO, PAL, PPO and SOD increased significantly than non-transgenic Eucalyptus urophylla×E.grandis. Inoculated with spores of Phytophthora capsici, transgenic E.urophylla×E.grandis showed markedly enhancement of disease resistance. All of the results indicated that the resistance of plants could be enhanced by introducing aiiA gene into the genomic of plants.
引文
[1]Dibax R., Deschamps C., Bespalhok Filho J.C., et al.. Organogenesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene[J]. Biol Plantarum,2010,54 (1):6-12
    [2]杨民胜,谢耀坚,刘杰锋.中国桉树研究三十年[M].北京:中国林业出版社,2011
    [3]欧阳乐军,黄真池,沙月娥,等.新型分裂素PBU对尾巨桉胚性愈伤组织诱导及植株再生的影响[J].植物生理学报,2011,47(8):785-791
    [4]王艳丽,李正楠,李会平,等.桉树抗青枯病的鉴定技术[J].林业科学,2011,47(6):101-107
    [5]Nealson K.H., Platt T., Hastings J. W.. Cellular control of the synthesis and activity of the bacterial luminescent system[J]. Bacteriol,1970,104:313-322.
    [6]Fuqua W.C. and Winans S.C.A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite[J]. Bacteriol,1994,176:2796-2806.
    [7]Ryan W. S., and Steven E. L.. Applied and Environmental Microbiology, No.1 Two Dissimilar N-Acyl-Homoserine Lactone Acylases of Pseudomonas syringae Influence Colony and Biofilm[J]. Morphology January,2009,75,45-53
    [8]Bassler B.L., Wright M., Silverman M.R.. Multiple signaling systems controlling expression of luminescence in Vibrio harveyi:sequence and function of genes encoding a second sensory pathway[J]. Mol. microbial,1994,13:273-286.
    [9]Uroz S., Dessaux Y., Oger P.. Quorum sensing and quorum quenching:the yin and yang of bacterial communication[J]. Chembiochem,2009,10(2):205-16
    [10]Fuqua C, Winans S.C., and Greenberg E.P.. Censusand consensus in bacterial ecosystems:the LuxR-Luxl family of quorum-sensing transcriptional regulators[J]. Annu Rev Microbiol,1996,50:727-751
    [11]Kievit de, T.R., and Iglewski, B.H.. Bacterial quorumsensing in pathogenic relationships[J]. Infect Immun,2000,68:4839-4849.
    [12]Burton. E., Read H., Pellitteri C.. Identification of acyl-homoserine lactone signal molecules produced by Nitrosomonas europaea strain Schmidt[J]. Appl Environ Microbiol,2005,71:4906-4909
    [13]Robert P. R. and Maxwell J. D.. Diffusible signals and interspecies communication in bacteria[J]. Microbiology,2008,154(7):1845-1858
    [14]Cha C., Gao P., Chen Y.C., et al.. Production of acyl-homoserine lactone quorum-sensing signals by gram2negative plant-associated bacteria[J]. Mol Plant Microbe Interact, 1998,11 (11):1119-1129
    [15]Diggle S.P., Cornelis P., Williams P.. et al..4-Quinolone signalling in Pseudomonas aeruginosa:old molecules,new perspectives[J]. Int JMed Microbiol.2006,296,83-91
    [16]Higgins, D. A., Pomianek, M. E., Kraml, C. M.. The major Vibrio cholerae autoinducer and its role in virulence factor production[J]. Nature,2007,450,883-886
    [17]Lee, J., Jayaraman, A. and Wood, T. K.. Indole is an inter-species biofilm signal mediated by SdiA[J]. BMC Microbiol.2007,7:42-45
    [18]Steindler L., Venturi V.. Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors[J]. FEMS Microbiol Lett.2007,266(1):1-9
    [19]Kumari A., Pasini P., Daunert S.. Detection of bacterial quorum sensing N-acyl homoserine lactones in clinical samples[J]. Anal Bioanal Chem,2008,391 (5):1619-1627
    [20]Zhang L. H.. Quorum quenching and proactive host defense[J]. Trends Plant Sci 2003, 8:238-244.
    [21]Miller M.B., Bassler B.L.. Quorum sensing in bacteria[J]. Annu Rev Microbiol,2001, 55:165-199.
    [22]Zhang L. H.. Quorum quenching and proactive host defense[J]. Trends Plant Sci,2003,8: 238-244.
    [23]刘凤权.彩色马蹄莲细菌性软腐病菌的鉴定及其群体感应淬灭的研究[D].南京农业大学硕士论文,2008
    [24]Lewenza S., Conway B., Greenberg E. P.. Quorum sensing in Burkholderia cepacia: identification of the LuxRI Homologs CepRI[J]. Journal of Bacteriol,1999,181:748-756.
    [25]高学文.两种生防活性蛋白Harpin和AiiA的表达及生物活性检测[D].南京农业大学硕士论文,2007
    [26]周玥,刘小锦,朱晨光,等.细菌中群体感应调节系统[J].微生物学报,2004,27(2):14-18
    [27]Dong Y. H., Zhang X.F., Xu J.L., et al.. Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism,signal interference[J]. Appl Environ Microbiol,2004,70:954-960
    [28]Hentzer M.,Wu H.,Andersen J.B., et al.. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors[J]. EMBO J,2003,22:3803-3815
    [29]Dong Y. H., Xu J. L., Li X. Z., et al.. AiiA, a novel enzyme inactivates acyl homoserine-lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proceeding National Academy Science of the United States of the America, 2000,97:3526-3531
    [30]Dong Y. H., Wang L. H., Xu, J. L., et al.. Quenching quorum-sensing-denpendent bacterial infection by an N-acyl homoserine lactonase[J]. Nature,2001,11:813-817
    [31]Lin Y. H., Xu J. L., Hu J., et al.. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes[J]. Molecular Microbiology,2003,47:849-860
    [32]Park S.Y., Lee S.J., Oh T.K., et al.. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp.. and predicted homologues in other bacteria[J]. Microbiology 2005,149:1541-1550
    [33]Chin-Nung Chen, Chii-Jaan Chen, Chen-Ting et al.. A probable aculeacin A acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity[J]. BMC Microbiology,2009,9(89):1-11
    [34]邱健,李承光,贾振华,等.酰基高丝氨酸内酯酶SS10的酶学特性及其抗软腐病功能的初探[J].植物病理学报,2007,6:629-636
    [35]张霞,胡玉琴,贾振华,等.含苏云金芽孢杆菌aiiA基因的重组荧光假单胞菌的构建及对软腐病的抗病活性[J].华北农学报,2006,21:13-16
    [36]张争,徐进,许景升,等.植物青枯菌aac基因克隆及猝灭群体感应信号功能的研究[J].中国农业科学,2008,41(9):2651-2656
    [37]李明.亚麻离体再生及早期体细胞胚胎发生机理的研究[D].东北农业大学博士论文,2008
    [38]Pinto G., Santos C., Neves L. et al.. Somatic embryogenesis and plant regeneration in Eucalyptus globulus Labill. Plant Cell Rep,2002,21:208-213
    [39]Parson T.J., Sinkar V.P., Stettler R.F., et al.. Transformation of poplar by Agrobacterium tumefaciens[J]. Biotechnology,1986,4:533-536
    [40]Fillatti J. J., Sellmer J., McCown B., et al.. Agrobacterium mediated transformation and regeneration of Populus[J]. Mol. Gen. Genet.,1987,206(2):192-199
    [41]Teulieres C., Grima-Pettenati J., Curie C., et al.. Transient foreign expression in polyethylene/glycol treated or electropulsated Eucalyptus gunnii protoplasts[J]. Plant Cell Tussue and Organ. Culture,1991,25(2):125-132
    [42]Pureell A. E.. The mechanism of chilling injury in sweet potato plant and cell physiol[J]. Plant Physiol.,1992,13:67-69
    [43]Manders G., dos Santos A.V.P., Utravaz F.B., et al.. Transient gene expression in electroporated protoplasts of Eucalyptus citriodora Hook[J]. Plant Cell,1992,30(1): 69-75
    [44]Rochange F., Serrano L., Marque C., et al.. DNA delivery into Eucalyptus globulus zygotic embryos through biolistics:optimization of the biological and physical parameters of bombardment for two different particle guns [J]. Plant Cell Reports, 1995,14(10):674-678
    [45]Serrano L., Rochange F., Senblat J.P., et al.. Genetic transformation of Eucalyptus globulus through biolistics:complementary development of procedures for organogenesis form zygotic embryos and stable transformation of correspomding proliferating tissue[J]. Journal of Experimental Botany,1996,47(2):285-290
    [46]Moralejo M., Rochange F., Boudet A.M., et al.. Generation of transgenic Eucalyptus globulus plantlets through Agrobacterium tumefaciens mediated transformation[J]. Australian Journal of Plant Physiology,1998,25(2):207-212
    [47]Mullins K.V., Llewellyn D.J., Hartney VJ., et al.. Regeneration and transformation of Eucalyptus camaldulensis[J]. Plant Cell Reports,1997,16(11):787-791
    [48]Kawazu T., Dol K., Tatemichi Y., et al.. Regeneration of transgenic plants by nodule culture system in Eucalyptus camaldulensis, Tree Improvement for Sustainable Tropical Forestry, QFRI-IUFRO Conference, Caloundra, Queensland, Australia,1996,27: 492-497
    [49]Ho C. K., Chang S. H., Tsay J. Y., et al.. Agrobacterium tumefaciens mediated transformation of Eucalyptus camaldulensis and production of transgenic plants[J]. Plant Cell Reports,1998,17(9):675-680
    [50]Llewellyn D., Kyozuko J., and Floyd R., Transgenic eucalypts [Eucalyptus camaldulensis] with insect resistance and herbicide tolerance, Proceedings of the second international wood biontechnology symposium[J]. Canberra, Australia,1999, pp. 115-120
    [51]Alcantara G. B, Bespalhok Filho J. C., Quoirin M. Organogenesis and transient genetic transformation of the hybrid Eucalyptus grandis×Eucalyptus urophylla[J]. Sci Agric (Piracicaba, Braz),2011,68 (2):246-251
    [52]Dibax R., Deschamps C., Bespalhok Filho J. C., et al.. Organogenesis and Agrobacterium tumefaciens-mediated transformation of Eucalyptus saligna with P5CS gene[J]. Biol Plantarum.2010,54 (1):6-12
    [53]Prakash M. G., Gurumurthi K.. Genetic transformation and regeneration of transgenic plants from precultured cotyledon and hypocotyl explants of Eucalyptus tereticornis Sm. using Agrobacterium tumefaciens. In vitro Cell Dev Biol Plant.2009,45 (4):429-434
    [54]Navarro M., Ayax C., Martinez Y, et al. Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development[J]. Plant Biotech J,2011,9,50-63
    [55]Prakash M. G., and Gurumurthi K.. Agrobacterium mediated genetic transformation and regeneration of transgenic plants in Eucalyptus tereticornis[J]. Plant Cell Biotechno-logy and Molecular Biology,2005,6(1-2):23-28
    [56]OUYANG L.J., HE W.H., HUANG Z.C., et al.. Introduction of the Rs-AFP2 gene into Eucalyptus urophylla for resistance to Phytophthora capsici [J]. Journal of Tropical Forest Science,2012,24(2):198-208
    [57]王水琦,陈坚,甘勇辉.甜椒抗菌蛋白基因(harp)转化桉树的研究[J].中南林业科技大学学报,2007,27(6):115-118
    [58]陈坚,胡鸢雷,周朝富,等.葡萄糖氧化酶基因对桉树的遗传转化[J].林业实用技术,2007,6:3-4
    [59]张景宁,张清杰,黄自然,等.柞蚕杀菌肽对桉树青枯病假单胞杆菌的杀菌作用[J].华南农业大学学报,1995,16(1):97-102
    [60]邵志芳,陈伟元,罗焕亮,等.柞蚕抗菌肽D基因转化桉树培育抗青枯病株系的研究[J].林业科学,2002,38(2):92-98
    [61]Llewellyn D., Kyozuko J., and Floyd R.. Transgenic eucalypts [Eucalyptus camaldulensis] with insect resistance and herbicide tolerance, Proceedings of the second international wood biontechnology symposium[J]. Canberra, Australia,1999,pp.115-120
    [62]Harcourt R. L, Kyozuka J., Floyd R. B., et al.. Insect and herbicide-resistant transgenic eucalypts[J]. Mol. Breed.,2000,6(3):307-315
    [63]Gonzalez E.R., de Andrade A., Bertolo A.L., et al.. Production of transgenic Eucalyptus grandis×Eucalyptus urophylla using the sonication-assisted Agrobacterium transformation (SAAT) system[J]. Funct. Plant Biol.,2002,29(1):97-102
    [64]Murata N., Sato N., Takahashi N., et al.. Compositions and positional distributions of fatty acid in phospholipids from leaves of chilling-sensitive and chilling-resistant plants[J]. Plant Cell Physiol.,1982,23(6):1071-1079
    [65]廖国华.按树苗期抗寒性的研究[J].中南林学院学报,1997,17(3):43-47
    [66]Byrne M., Murrell J.C., Owen J.V., et al.. Mapping of quantitative trait loci influencing frost tolerance in Eucalyptus nitens[J]. Theor. Appl. Genet.,1997,95(5-6):975-979
    [67]罗建举.曹琳,杨建林,等.21世纪木材材性改良技术展望[J].世界林业研究,1998,11(3):28-33
    [68]Feuillet C., Tissue and cell specific expression of a cinnamyl acnolol dehydrogenase promoter in transgenic poplar plants[J]. Plang Molecular Biology,1995,27(4):665-667
    [69]Hawkins S.. Cinnamyl alcohol dehydrogcnease identification of new sites of promoter activity in transpe is poplar[J]. Plant Physiology,1997,113(2):321-325.
    [70]Maunders M. J., Carter D. and Ruchardan P.. Genet transfernation of Eucalyptus species the modification of fibre character,Proceedings of the second international wood biotechnology symposium[J]. Canberra, Australia,10-12. Much,1999, pp.136-144
    [71]Virginie L., Philippe R., Alain J., et al.. The vascular expression pattern directed by the Eucalyptus gunnii cinnamyl alcohol dehydrogenase EgCAD2 promoter is conserved among woody and herbaceous plant species[J]. Plant Molecular Biology,2002,50: 497-509
    [72]Luisa V., Carter D., Jose C. R., et al.. Down regulation of Cinnamyl Alcohol Dehydrogenase, a lignification enzyme, in Eucalyptus camaldulensis[J], Molecular Breeding,2003,12:157-167
    [73]欧阳乐军,曾富华.桉树分子育种研究进展[J].分子植物育种,2008,6(6):1146-1152
    [74]霍妙娟,魏岳荣,胡家金,等.影响根癌农杆菌介导香蕉胚性悬浮细胞遗传转化的因素[J].果树学报,2008,25(4):597-600
    [75]胡春华,魏岳荣,易干军,等.根癌农杆菌介导的香蕉高效遗传转化系统的建立[J].分子植物育种,2010,8(1):172-178
    [76]王梅珍,朱登云,赵倩,等.水稻悬浮细胞再生及根癌农杆菌介导转化的影响因素[J].中国生物化学与分子生物学报,2009,25(11):1010-1016
    [77]Yu B., Zhai H., Wang Y.. Efficient Agrobacterium tumefacicns-mediated transformation using embryogenic suspension cultures in sweetpotato, Ipomoea batatas (L.) Lam[J]. Plant Cell Tissue Organ Cult,2007,90(3):265-273
    [78]Peng Jian-Ling, Bao Zhi-Long, Li Ping. HanpinXoo and Its Functional Domains Activate Pathogen-inducible Plant Promoters in Arabidopsi[J]. Acta Botanica Sinica, 2004,46(9):1083-1090.
    [79]黄真池.诱导超敏反应增强辣椒广谱抗病性的转基因研究[D].博士学位论文,湖南农业大学,2008
    [80]谢耀坚.桉树组织培养研究进展[J].世界林业研究,2000,13(6):14-19
    [81]韦大器,时群,李栒,等.尾巨桉愈伤组织诱导与植株再生研究[J].桉树科技,2008,25(1):19-22
    [82]韦大器,时群,李栒.抗生素对尾巨桉愈伤组织的诱导和再生植株的影响[J].植物生理学通讯,2007,43(4):719-720
    [83]裘珍飞,曾炳山,李湘阳,等.TDZ对巨尾桉(GL9)胚性愈伤组织诱导和再生的影响[J].林业科学研究,2009,22(5):740-743
    [84]Pinto G, Park YS, Neves L, et al.. Genetic control of somatic embryogenesis induction in Eucalyptus globulus Labill[J]. Plant Cell Rep,2008,27:1093-1101
    [85]Aggarwal D, Kumar A, Sudhakara Reddy M. Shoot organogenesis in elite clones of Eucalyptus tereticornis[J]. Plant Cell Tiss Organ Cult,2010,102:45-52
    [86]刘媛,贺炜华,黄真池,等.尾叶桉的组织培养与快速繁殖[J].安徽农业科学,2008,36(6):2243-2244,2256
    [87]OUYANG L. J., HUANG Z. C., SHA Y. E., et al.. Regeneration of Eucalyptus urophylla ×Eucalyptus grandis from clonal material stem segments [J]. Brazilian Archives of Biology and Technology,2012,55(3):329-334
    [88]欧阳乐军,贺炜华,黄真池等.广州一号桉高效组培再生体系建立[J].东北林业大学学报,2012,40,(7):14-17
    [89]曾富华,欧阳乐军,黄真池等.粗皮桉组培再生方法,中国发明专利,授权号ZL201110180110.2012.7.29
    [90]Pinto G., Silva S., Neves L., et al.. Histocytological changes and reserve accumulation during somatic embryogenesis in Eucalyptus globulus[J]. Trees, 2010,24:763-769
    [91]Prakash M.G., Gurumurthi K.. Effects of type of explant and age, plant growth regulators and medium strength on somatic embryogenesis and plant regeneration in Eucalyptus camaldulertsis[J].Plant Cell Tiss Organ Cult,2010,100:13-20
    [92]李再峰,黄麒参,陈翠萍,等.植物高活性制剂对文心兰组培芽增殖的影响[J].湛江师范学院学报,2005,26(3):41-45
    [93]李再峰,罗富英.M-芳基-N'-行取代噻畔基脲的合成与结构表征[J].化学研究与应用,2001,13(1):80-82
    [94]Pinto G., Santos C., Neves L., et al.. Somatic embryogenesis and plant regeneration in Eucalyptus globulus Labill[J]. Plant Cell Rep,2002,21:208-213
    [95]Arruda S. C. C., Souza G. M., Almeida M., et al.. Anatomical and biochemical characterization of the calcium effect on Eucalyptus urophylla callus morphogenesis in vitro[J]. Plant Cell Tiss Organ Cult,2003,63:143-154
    [96]高国训.植物组织培养中的褐变问题[J].植物生理学通讯,1999,35(6):501-506
    [97]Kalpana P., Vishnoi R. K, Kothari S. L.. Plant Regeneration from Embryogenic Callus of Finger Millet Eleusine coracana (L.) Gaertn On Higher Concentrations of NH4NO3 as a Replacement of NAA in the Medium [J]. Plant Science,1997,129:101-106
    [98]张彦妮.影响植物组织培养成功的因素[J].北方园艺,2006,(3):132-133.
    [99]欧阳权,彭海忠,李启泉.桉树愈伤组织发生胚状体研究[J].林业科学,1981,17(1):1-9
    [100]HUANG Z C, ZENG F H, LU X Y. Efficient regeneration of Eucalyptus urophylla from seedling-derived hypocotyls[J]. Biol Plantarum,2010,54 (1): 131-134
    [101]邱璐,王波,王志和,等.史密斯桉愈伤组织的诱导及分化[J].东北林业大学学报,2006,34(4):18-21
    [102]韩美丽,陆荣生,邓九生.赤桉下胚轴不同再生途径建立研究[J].广西林业科学,1997,26(4):159-163
    [103]石大兴,石轶松,王米力,等.巨桉下胚轴诱导不定芽与植株再生的研究[J].四川农业大学学报,2002,20(3):232-234
    [104]Silva LL, Teixera SL. Influence of the association between different macronutrient and vitamin formulations on the in vitro propagation of Eucalyptus grandis form epicormic buds[J]. Revista Ceres,1994,41:528-536.
    [105]赵苏海,周瑾,李桂祥,等.植物组织培养中褐变的产生机理及控制措施[J].河北农业科学,2007,11(5):59-61
    [106]Konieczny R., Bohdanowicz J., Czaplicki A.Z., Przywara L. Extracellular matrix surface network during plant regeneration in wheat anther culture[J]. Plant Cell Tissue Organ Cult.2005,83,201-208.
    [107]Ge, X., Z. Chu, Y. Lin, et al. A tissue culture system for different germplasms of indica rice[J]. Plant Cell Reports,2006,25(5):392-402
    [108]陈春玲.龙眼体细胞胚胎发生机理的初步研究[D].硕士学位论文,福建农林大学.2001
    [109]Klason. TAPPI Test Method T222 om-88, "Acid-insoluble lignin in wood and pulp", TAPPI Press, Atlanta, GA.
    [110]Rajeswari V., Paliwal K.. Peroxidase and catalase changes during in vitro adventitious shoot organogenesis from hypocotyls of Albizia odoratissima L. f. (Benth) [J]. Acta Physiol Plant,2008,30:825-832
    [111]Arruda S. C. C., Souza G. M., Almeida M., et al.. Anatomical and biochemical characterization of the calcium effect on Eucalyptus urophylla callus moiphogenesis in vitro[J]. Plant Cell Tiss Org Cult,2000,63:143-154
    [112]张存旭.栓皮栎体细胞胚胎发生及生化特性的研究[D].博士学位论文,西北农林科技大学,2007.
    [113]Pfaffl M. W.. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR [J]. Nucl. Acids Res, 2002,30:249-259.
    [114]欧阳权.桉树胚状体发生初报[J].植物生理学报,1980,(6):429-432.
    [115]Konieczny R., Bohdanowicz J., Czaplicki A.Z., et al. Extracellular matrix surface network during plant regeneration in wheat anther culture[J]. Plant Cell Tissue Organ Cult.2005,83,201-208.
    [116]Alfonso-rubi, J., P. Carbonero and I. Diaz. Parameters influencing the regeneration capacity of calluses derived from mature indica and japonica rice seeds after microprojectile bombardment Euphytica.1999,107(2):115-122.
    [117]Visarada, K. B. R. S. and N. P. Sarma. Qualitative assessment of tissue culture parameters useful in transformation of indica rice. Current Science.2002,82(3): 343-347.
    [118]Hoque, M. E., Mansfield J. W. and M. H. Bennett. Agrobacterium-mediated transformation of Indica rice genotypes:an assessment of factors affecting the transformation efficiency[J]. Plant Cell Tissue and Organ Culture.2005,82(1):45-55.
    [119]Ge, X., Z. Chu, Y. Lin, et al. A tissue culture system for different germplasms of indica rice[J]. Plant Cell Reports.2006,25(5):392-402.
    [120]王兰,刘向东,卢永根,等.同源四倍体水稻胚乳发育:糊粉层细胞壁纤维素物质发育、胚乳淀粉积累及胼胝质套的形成[J].中国水稻科学,2004,18(6):507-514
    [121]张涛.芸芥体细胞胚胎发生的组织细胞学研究[J].园艺学报,2007,34(1):131-134.
    [122]Vondrakova Z., Cvikrova M., Eliasova K., et al.. Cryotolerance in Norway spruce and its association with growth rates, anatomical features and polyamines of embryogenic cultures [J].Tree Physiol.2010.30(10):35-48
    [123]张朝军,李付广,张玲.植物体细胞胚胎发生机理的研究进展[J].棉花学报,2008,20(2):141-147
    [124]李桢,王宏芝,李瑞芬,等.植物木质素合成调控与生物质能源利用[J].植物学报,2009,44(3):262-272,
    [125]Gabaldon, C., M. Lopez-Serrano, M. A. Pedreno, et al.. Cloning and Molecular Characterization of the Basic Peroxidase Isoenzyme from Zinnia elegans, an Enzyme Involved in Lignin Biosynthesis [J]. Plant Physiology,2005,139:1138-1154.
    [126]黄真池,欧阳乐军,曾富华,等.尾叶桉的不同类型愈伤组织芽分化与某些相关生理生化指标的关系[J].植物生理学通讯,2010,46(2):147-149
    [127]Rajeswari V., Paliwal K.. Peroxidase and catalase changes during in vitro adventitious shoot organogenesis from hypocotyls of Albizia odoratissima L. f. (Benth) [J]. Acta Physiol Plant,2008,30:825-832
    [128]李惠华,赖钟雄,林玉玲,等.龙眼胚性愈伤组织ACC氧化酶基因的克隆及其在龙眼体胚发生过程中的表达分析[J].中国农业科,2010,43(18):3798-3808
    [129]王兴春,李宏,王敏,等.植物体细胞胚胎发生的调控网络[J].生物工程学报,2010,26(2):141-146
    [130]Stone S. L, Braybrook S. A., Paula S. L., et al. Arabidopsis Leaf Cotyledon induces maturation traits and auxin activity:implications for somatic embryogenesis[J]. Proc Natl Acad Sci USA,2008,105(8):3151-3156.
    [131]Heck G.R., Perry S.E., Nichols K.W., et al.. AGL15, a MADS domain protein expressed in developing embryos[J]. Plant Cell 1995,7,1271-1282.
    [132]Smith, A. M., S. C. Zeeman, D. Thorneycroft, et al.. Starch mobilization in leaves Journal of Experimental Botany[J].2003,54(382):577-583.
    [133]Rathore, R. S., N. Garg, S. Garg, et al.. Starch phosphorylase:Role in starch metabolism and biotechnological applications[J]. Critical Reviews in Biotechnology, 2009,29(3):214-224.
    [134]Achari, A., S. E. Marshall, H. Muirhead, et al.. Glucose-6-phosphate is omerase PHIL[J]. Trans.R.Soc.Lond.,1981,293(1063):145-157
    [135]Greene, T. W., S. E. Chantler, M. L. Kahn, et al.. Mutagenesis of the potato ADPglucose pyrophosphorylase and characterization of an allosteric mutant defective in 3-phosphoglycerate activation [J].Proc. Natl. Acad. Sci. U.S.A.,1996.
    [136]Karami O., Aghavaisi B. and Pour A.M.. Molecular aspects of somatic-to-embryogenic transition in plants [J]. J Chem Biol.2009,2:177-190
    [137]Bian F., ZENG C. X., Qu F., GONG X.Q.,You C.. Proteomic Analysis of Somatic Embryogenesis in Cyclamen persicum Mill[J]. Plant Mol Biol Rep.2010,28:22-31
    [138]Huang S Y, Chan H S, Wang T. T. Induction of somatic embryos of celery by control of gaseous compositions and other physical conditions[J]. Plant Growth Regulation,2006, 49:219-227.
    [139]Kumar V., Ramakrishna A., Ravishankar G. A.. Influence of different ethylene inhibitors on somatic embryogenesis and secondary embryogenesis from Coffea canephora P ex Fr[J]. In Vitro Cellular and Developmental Biology,2007,43 (6): 602-607.
    [140]Al-Khayri J. M., Al-Bahrany G.. Genotype-dependent in vitro response of date palm (Phoenix dactyllifera L.) cultivars to silver nitrate[J]. Scientia Horticulturae,2004, 99:153-162.
    [141]Sharma S.K., Millam S., Hedley P.E., McNicol J., Bryan G.J.. Molecular regulation of somatic embryogenesis in potato:an auxin led perspective [J]. Plant Mol Biol.2008, 68(1-2):185-201.
    [142]Anil V.S. and Rao K.S..Caleium-mediated signaling during Sandalwood Somatie embryogenesis[J]. PlantPhysiol,2000,123:1301-1311
    [143]Ryan W. S. and Steven E. L.. Applied and Environmental Microbiology, No. 1 Two Dissimilar N-Acyl-Homoserine Lactone Acylases of Pseudomonas syringae Influence Colony and Biofilm[J]. Morphology January,2009,75:45-53
    [144]Ryan R. P. and Dow J. M.. Diffusible signals and interspecies communication in bacteria[J]. Microbiology,2008,154(7):1845-1858
    [145]Wopperer J., Cardona S. T., Huber B., et al.. A Quorum-Quenching Approach To Investigate the Conservation of Quorum-Sensing-Regulated Functions within the Burkholderia cepacia Complex [J]. Applied and Environmental Microbiology,2006, 72(2)1579-1587
    [146]Dong Y.H., Wang L.H., Xu J.L.,et al.. Quenching quorum-sensing dependent bacterial infection by an N-acyl homoserine lactonase [J]. Nature,2001,411 (9):813-819.
    [147]Ban H., Chai X., Lin Y., et al. Transgenic Amorphophallus konjac expressing synthesized acyl-homoserine lactonase (aiiA) gene exhibit enhanced resistance to soft rot disease [J]. Plant Cell Rep,2009,28(12):1847-55.
    [148]Chan K.G., Wong C.S., Yin W.F.,et al.. Rapid degradation of N-3-oxo-acylhomoserine lactones by a Bacillus cereus isolate from Malaysian rainforest soil[J]. Antonie Van Leeuwenhoek,2010,98(3):299-305
    [149]彭建令,董宏平,包志龙,等.受细菌诱导的植物启动子的克隆及其在转基因烟草中的活性[J].南京农业大学学报,2003,26(3):36-40.
    [150]Uroz S., Dessaux Y, Oger P.. Quorum sensing and quorum quenching:the yin and yang of bacterial communication [J]. Chembiochem,2009,0(2):205-16
    [151]Ryan W., Shepherd S. E., Lindow. Two Dissimilar N-Acyl-Homoserine Lactone Acylases of Pseudomonas syringae Influence Colony and Biofilm[J].Applied and Environmental Microbiology,2009,75,45-53
    [152]Chen C.N., Chen C.J., Liao C.T. et al.. A probable aculeacin A acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity[J]. BMC Microbiology,2009,9(89):1-11
    [153]Dong Y. H., Xu J. L.., Li X. Z., et al.. Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism,signal interference[J]. Appl Environ Microbiol,2004,70(2):954-960
    [154]彭舒,黄真池,欧阳乐军,等.植物基因工程中人工启动子的研究进展[J].植物生理报,2011,47(2):141-146
    [155]Werner S., Breus O., Symonenko Y., Marillonnet S., et al.. High-level recombinant protein expression in transgenic plants by using a double-inducible viral vector [J]. PNAS,2011,108:14061-14066.
    [156]He L.Y., Sequeira L., and Kelman A.. Characterisrics of strains of Pseudomonas solancearum from China[J]. Plant Disease,1983,12:1357-1361.
    [157]Xie Y., Wetlaufer D. B.. Control of aggregation in protein refolding:the temperature-leap tactic[J]. Protein Sci,1996,5:517-523.
    [158]赖家业,石海明,刘凯,等.尾巨桉遗传转化系统建立的研究[J].四川大学学报(自然科学版),2007,44(2):415-419
    [159]Huang H. E., Ger M. J., Chen C. Y., et al., Dosease resisitance to bacterial pathogen effected by the qunatity of ferredoxin-I protein in plants[J]. Molecular Plant pathology, 2007,8:129-137.
    [160]刘静,张元湖,刘庆忠,等.抗生素对青香蕉苹果叶片再生的影响[J].山东农业科学,2009(7):53-55.
    [161]王丽,张俊莲,王蒂,等.抗生素对根癌农杆菌的抑菌效果及对烟草叶片分化的影响[J].中国烟草学报,2006,12(1):32-37.
    [160]王成,王义军,李慧玉,等.抗生素对根癌农杆菌的抑菌作用及对新西伯利亚黑杨组培叶片再生的影响[J].东北林业大学学报,2009,37(9):5-7.
    [163]刘淑芳,汤浩茹,王梅,等.几种抗生素对梨叶片愈伤组织和不定梢诱导的影响[J].果树学报,2005,22(5):454-457.
    [164]韦大器,时群,李栒.抗生素对尾巨桉愈伤组织诱导和植株再生的影响[J].植物生理学通讯,2007,43(4):719-720.
    [165]杜丽,庞振凌,周索,等.香樟胚性愈伤组织遗传转化体系建立[J].林业科学,2008,44(4):55-59.
    [166]张松,达克东,曹辰兴,等.抗生素对韭菜根尖培养植株再生的影响[J].核农学报,2003,17(2):101-104.
    [167]康杰芳,王喆之.头孢霉素类抗生素在转基因烟草中作用的初步研究[J].西北植物学报,2003,23(1):60-63.
    [168]OUYANG L. J., HUANG Z. C., SHA Y. E., et al.. Regeneration of Eucalyptus urophylla×Eucalyptus grandis from clonal material stem segments. Brazilian Archives of Biology and Technology(SCI),2012,55(6),2012,55(3):329-334
    [169]王关林,方宏筠.植物基因工程(第二版)[M].北京:科学出版社,2002
    [170]孔华,郭安平,郭运玲,等.尾叶桉U6遗传转化再生体系的建立[J].热带作物学报,2008,29(4):424-429.
    [171]Mezghani N., Jemmali A., Elloumi N., et al.. Morpho-histological study on shoot bud regeneration in cotyledon cultures of pepper(Capsicum annuum L.), Biologia Bratislava,2007,62(6):704-710
    [172]邱礽,陶刚,李奇科,等.农杆菌渗入法介导的基因瞬时表达技术及应用[J].分子植物育种,2009,7(5):1032-1039
    [173]Yang Y.. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves[J]. Plant J,2000,22(6):543-551.
    [174]Negrouk V.. Highly efficient transient expression of functional recombinant antibodies in lettuce[J]. Plant Science,2005,169:433-438.
    [175]Srinivas L. Transient and stable expression of hepatitis B surface antigen in tomato (Lycopersicon esculentum L.) [J]. Plant Biotechnol. Rep,2008,2:1-6.
    [176]Santos-Rosa M. Development of a transient expression system in grapevine via agroinfiltration[J]. Plant Cell Rep,2008,27:1053-1063.
    [177]Choi J. J.. A promoter from pea gene DRR206 is suitable to regulate an elicitor-coding gene and develop disease resistance[J]. Phytopathology,2004,94:651-660.
    [178]Hoffmann T.. RNAi-induced silencing of gene expression in strawberry fruit (Fra-garia ananassa) by agroinfiltration:a rapid assay for genefunction analysis[J]. Plant J,2006, 48:818-826.
    [179]Rushton, P. J.. Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen-and wound-induced signaling [J]. Plant Cell, 2002,14,749-762.
    [180]Wulff B., B., H., Horvath D. M. and Ward E. R.. Improving immunity in crops:new tactics in an old game[J]. Current Opinion in Plant Biology,2011,14:468-476.
    [181]Yang Y., Li R., and Qi M.. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves[J]. Plant J.,2000,22(6):543-551.
    [182]Choi J.J., Klosterman S.J., and Hadwiger L.A.. A promoter rom pea gene DRR206 is suitable to regulate an elicitor-coding gene and develop disease resistance[J]. Phytopathology,2004,94:651-660.
    [183]Burch-Smith T. M., Anderson J. C., Martin G.. B., et al.. Applications and advantages of virus-induced gene silencing for gene function studies in plants [J]. Plant J.2004, 39:734-746.
    [184]王丹丹,王荣,唐丽丽,等.含双病原物诱导启动子植物安全表达载体的构建[J].植物病理学报,2009,39(2):153-159.
    [185]Huang H. E., Ger M. J., Yip M. K., et al.. A hypersensitive response was induced by virulent bacteria intransgenic tobacco plants overexpressing a plant ferredoxin-like Protein (PFLP) [J]. Physiol Mol Plant Pathol,2004,64:103-110.
    [186]Chen C. H., Lin H. J., Feng T. Y.. An amphipathic protein from sweet pepper can dissociate harpin multimeric forms and intensify the harpinPss-mediated hypersensitive response[J]. Physiol Mol Plant Pathol,1998,52:139-149.
    [187]吴志华,谢耀坚,罗联峰,等.我国桉树青枯病研究进展[J].林业科学研到究,2007,20(4):569-575.
    [188]张志良.植物生理学实验指导[M].北京:高等教育出版社,2008.
    [189]Lamb, C. J. and Dixon, R.A.. The oxidative burst in plant disease resistance[J]. Annu. Rev. Plant Physiol.,1997,76:419-422.
    [190]何礼远,康耀卫.植物青枯菌(Pseudomonas solanacearum)致病机理[J].自然科学进展,1995,5:159-168.
    [191]方仲达.植病研究法[M].北京:农业科学出版社,1998,8-18.
    [192]Bestwick C. S., Brown I. R., Bennett M. H. R., et al.. Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola[J]. Plant Cell 1997,9:209-221.
    [193]Ingeborg, Christiane L., Alok K. S.. Cyclopentenone Isoprostanes induced by reactive oxygen species trigger defense gene activation and pHytoalexin accumulation in plants[J]. The plant J.2003,34(3):363-368.
    [194]Fletcher J., Bender C., Budowle B., et al, Plant pathogen forensics:capabilities, needs, and recommendations[J]. Microbiol Mol Biol Rev.2006,70:450-471.
    [195]Josep H. L. M., Tan T..K., Wong S. M., et al. Antifungal effects of hydrogen peroxide and peroxidase on spore germination and mycelial grow of Pseudocercospora species[J]. Canadian Journal of Botany,1998,76(12):2119-2124.
    [196]王玲平.黄瓜感染枯萎病菌后生理生化变化及其与抗病性关系的研究[D].山西农业大学硕士研究生毕业论文,2001,6.
    [197]李妙.不同抗枯萎病类型棉花品种超氧化物歧化酶和过氧化物酶活性研究[J].华北农学报,1993,8(增刊):119-122.
    [198]Alfred M. M.. PolypHenol oxidase in plants-resent progress[J]. Phytochemistry, 1987,26:11-20.
    [199]Peter W. T.. PolypHenol oxidase in potato (A multigene family that exhibits differential expression patterns)[J]. Plant pHysiol,1995,109:525-531.
    [200]Prasad K., Weigle J. L.. Relation of pHenylalanine ammonia-lyase, activity and pHaseollin content with resistance to Rhizoctonia solani in pHaseolus vulgaris[J] Proceedings of the American pHytopathological Society,1975,2:49.
    [201]Moesta P., Grisebach H. L..2-Aminooxy-3-pHenylproipnic acid inhibits pHytoalexin accumulation in soy bean with concomitant loss of resistance against phytophthora megasperma glycinea[J]. pHysiol Plant Pathol,1982,21:65.
    [202]Tarja K., Giinter B., Jing L.. Chlorophyllasel, a damage control enzyme, affects the balance between defense pathways in plants [J]. The Plant Cell,2005,17:282-294.
    [203]Yinong Y., Min Q. and Chuan S. M.. Endogenous salicylic acid protects rice plants from oxidative damage caused by aging as well as biotic and abiotic stress [J].The Plant Journal,2004,40,909-919.
    [204]曾富华,易克,徐向丽,等.不同诱导处理后水稻悬浮细胞的活性氧变化与有关酶系的关系[J].作物学报,2005,31(1):18-23.
    [204]车付彬.徐楠.陈江汉.病原真菌中群体感应现象研究进展[J].第二军医大学学报,2009,3(4):447-449.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700