用户名: 密码: 验证码:
极端干旱区成龄葡萄需水规律及微灌节水技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吐哈地区葡萄举世闻名,为我国著名的葡萄生产基地,同时也是我国资源性严重缺水的地区之一。目前当地葡萄灌溉方式落后,大部分地区采用传统的地面灌灌水方法,部分区域灌溉定额高达1800m3/亩。虽然当地早在80年代就开始葡萄微灌技术的引进与应用,但均未取得较为成功的范式。因此,本研究针对成龄葡萄微灌技术应用中存在的问题,开展了需水规律及耗水特征、微灌灌水技术筛选与优化、农艺节水综合调控技术的田间试验研究。通过3年的试验研究得到如下结论:
     (1)通过吐哈地区近45年气候要素及参考蒸散年际变化特征的分析,表明吐哈地区气温、降水呈增加趋势,风速呈显著减小趋势,参考蒸散发呈现波动下降趋势。通过关联度分析,无论是在季节尺度上还是在年际尺度上,风速与参考蒸散发量的关联度均为最大。
     (2)基于吐哈地区气候环境,对目前常用的蒸散计算模型进行分析评价,研究表明Blany-Criddle模型不仅所用参数最少,便于数据的采集和整理,同时计算精度高,与FA056-PM模型的计算结果达到极显著相关关系。因此,在气象参数不全的情况下,可采用Blany-Criddle模型作为吐鲁番地区参考作物蒸散量的计算模型。
     (3)基于Penman-Monteith公式与吐鲁番地区的气候特征,对Penman-Monteith公式进行了简化,略去了饱和差项。通过建立Penman-Monteith公式计算的参考作物潜在腾发量ETO(PM)与简化公式计算的参考作物潜在腾发量ETO之间的关系,两者之间具有良好的线性关系。通过简化后的Penman-Monteith公式不仅减少了公式所需的监测项目,便于计算,同时因监测项目的减少大大减少了费用和人力。
     (4)在晴朗无云的天气条件下,葡萄园水热平衡各分量的日变化呈典型的单峰曲线。潜热、感热和土壤热通量都是随着净辐射的增减而增减,但峰值出现的时间各异,并潜热通量占净辐射能量支出的大部分,其变化规律与净辐射的日变化规律一致性最好,土壤热通量变化很平缓,趋势与净辐射基本相同,但滞后净辐射2-3h。
     (5)在晴朗无云的条件下,葡萄日间蒸散速率变化呈单峰型。蒸散从早晨8:00以后开始迅速增加,到中午13:00-14:00达到峰值,随后蒸散速率迅速下降。葡萄在整个生长期内耗水呈先增长后减小的单峰曲线,总耗水量为1200mm左右,日均耗水强度为5.0mm/d左右,高峰期(果实膨大期)可达8.78mm/d。葡萄需水敏感期为果实膨大期,其次为展叶期、萌芽期、果粒成熟期与枝蔓成熟期。
     (6)葡萄整个生长期内戈壁砾石区域灌溉定额较壤土区域要高,稳产条件下的灌溉定额为765m3/亩左右,灌水定额35m3/亩,灌水周期根据葡萄需水关键期与非需水关键期确定,非需水关键期灌水周期7-9天,需水关键期灌水周期3-5天;壤土区的灌溉定额为670m3/亩左右,灌水定额30m3/亩,非需水关键期灌水周期9-13天,需水关键期灌水周期5-7天。
     (7)对于极端干旱区的吐哈地区,在传统农业耕作区的壤土类型区,成龄葡萄根系分布范围相对较小,田间滴灌毛管布设宜采用一沟两管的布置方式;在砂砾石土壤改良利用区,成龄葡萄根系分布范围相对较广,田间滴灌布设宜采用一沟三管的布置方式。
     (8)针对吐哈地区干旱恶劣环境条件,研发了葡萄园冠层弥雾微环境调控技术,增强了葡萄抵抗恶劣环境的能力,达到增产、调质效果。与常规微灌技术相比,葡萄在果粒膨大期喷水7-8m3/次,喷4-5次能显著降低葡萄棚架下的日最高温度3~8℃,防止高温对葡萄的灼伤,提高葡萄的产量17%,商品率提高20%。
     (9)通过喷施抗旱蒸腾剂的应用研究,表明喷施抗旱蒸腾剂可有效抑制葡萄蒸腾,降低叶片蒸腾速率,显著提高叶片光合作用和水分利用效率,同时提高葡萄产量20%左右。喷施抗旱蒸腾剂的有效周期大致在9日左右,不同抗蒸腾剂的有效期周稍有差异。
     (10)采用塑料薄膜与草帘子进行了覆盖保墒措施的研究,研究发现采用保墒措施后,表层覆盖减少了土壤表层与空气的接触面,从而减少了土壤水分的散失,减少了土面蒸发,明显增加土壤的蓄水保墒能力和土壤温度。覆盖保墒措施处理在葡萄新梢生长量,平均果粒重,产量等方面均优于无覆盖措施对照处理。
     (11)针对吐哈地区部分高含砾土壤地区,土壤保水性差,深层渗漏严重的问题。通过在高含砾石土壤中施用保水剂的试验研究,研究发现现施用保水剂能有效保留灌溉水分,提高水分利用效率,促进植株生长,提高葡萄品质及产量
     (12)以全面调控系统水分消耗进而提高农田水分利用效率为根本目的,将减少植株奢侈蒸腾的冠层环境调控、喷施抗旱蒸腾剂等技术措施,降低土面无效蒸发的覆盖保墒等技术措施,以及避免根层水分深层渗漏损失的蓄水保墒、精量控制灌溉等技术措施组装集成,提出了干旱区成龄果树植株冠层与大气界面、土壤与大气界面、根系与土壤界面的水肥综合调控立体节水农业技术应用模式。
Turpan and Kumul, famous for their grapes in the world, serve as renowned grape production base and at the same time they are also located in the region where water resource is severely short. At present backward grape irrigation mode is still practised there and the majority of this region still keeps the traditional ground irrigation method, so that irrigation quotas can reach as much as1800m3per mu. Though grape micro-irrigation technique was introduced and practised in this area since the1980s, successful mode of irrigation hasn't been obtained so far. Therefore, this research and study is aimed at the problems existing in the application of microirrigation technique in grown-up grapes and a series of investigations were carried out to find out the rules of water requirement, features of water consumption, screening and optimization of microirrigation technique, field experiment study on comprehensive regulation and control techniques of agricultural water saving. The following are experimental results of research and study in three years:
     (1) Analysis was made on near45years'interannual change features of every climatic change factors, the results of which showed that the temperature and rainfall in Turpan and Kumul were on the rise while wind speed was in the trend of notable decrease. There were dramatic changes in temperature and wind speed in the middle of1980s.The reference evaporation in Turpan and Kumul was in the trend of fluctuating decrease and dramatic changes occurred in1986. Correlation degree analysis showed that there was biggest correlation between wind speed and reference evaporation in both seasonal climate variables and yearly climate variables.
     (2) Based on climate environment in Turpan and Kumul, analysis and evaluation was made on the transpiration calculation model that is frequently used at present, the results of which showed that model of Blany-Criddle was characterized with the least parameters, convenience in data collection and classification and high computational accuracy, which showed notable correlationship with the computational results through model FAO56-PM. Therefore, Blany-Criddle model can be adopted to calculate evapotranspiration quantity of reference crop in Turpan region.
     (3) Based on formula Penman-Monteith and climatic features in Turpan region, formula Penman-Monteith had been simplified, leaving out parameter saturation deficiency. The relations between potential evapotranspiration of reference crop ETO(PM) through formula Penman-Monteith and potential evapotranspiration of reference crop ETO through simplified formula showed that there was favorable linear relationship. Simplified formula Penman-Monteith not only required less monitoring items to make computation easier, but also much less expenses and human resources were required because of decrease in monitoring items.
     (4) In cloudless and fine days, daily change of every component of water and heat balance in the vineyard was in typical unimodal curve. Latent heat, sensible heat and soil heat flux increased and decreased corresponding to the increase and decrease of net radiation, but the peak value appeared in different times. Latent heat flux took up the majority of the expenditure of net radiation, whose changing rules showed the best consistency with the daily changing rules of net radiation. Mild changes showed in soil heat flux and its trend was almost the same with that of net radiation, but behind the trend of net radiation2-3h.
     (5)In cloudless and fine days, the change of daytime evapotranspiration rate of grapes was in unimodal pattern. Evapotranspiration appeared after8:00in the morning with rapid increase afterwards and reached peak value at13:00-14:00at noon with rapid decrease corresponding to evapotranspiration rate. Water consumption by grapes in the whole growing period was in unimodal curve which was on the rise first and on the fall then. The total water consumption by grapes was about1200mm and its daily average water consumption intensity was about5.0mm/d, which could reach as much as8.78mm/d in fruit swelling period. Sensitive period of grape's water consumption is fruit swelling period, followed by budding leaves, burgeoning period and fruit maturity period and maturity period of branches and tendrils.
     (6) In the whole growing period, the irrigation quotas in gobi gravel area was higher than that of loam area. In gobi gravel area, the irrigation quotas in the condition of dependable crop is765m3per mu a year and irrigation quotas was35m3per mu at one time. The irrigation period is determined by water need critical and uncritical period, the latter of which lasts7to9days while the former of which lasts3to5days. In loam area, the irrigation quotas are670m3per mu a year and irrigation quotas is30m3at one time. In this area, critical irrigation period lasts9to13days while uncritical irrigation period lasts5to7days.
     (7) In loam area in Turpan and Kumul basin with extreme arid weather, where traditional farming practice has been adopted, the distribution range of grown-up grape's root system is comparatively smaller, so it would be better to adopt arrangement mode of one-ditch with two pipes; while in gravel land which is under improvement, the distribution range of grown-up grape's root system is comparatively larger, so it would be better to adopt arrangement mode of one-ditch with three pipes.
     (8) In accordance of the arid and severe environmental conditions in Turpan and Kumul region, mist microenvironmental monitoring technology in vineyard crown were developed, through which grapes were strengthened to struggle against severe environment and through which the purpose of production increase and quality improvement could be realized. Compared with conventional microirrigation technology, grapes were sprayed7~8m3at each time for4to5times and the daytime highest temperature under grape arbor could be notably lowered by3to8℃, which could stop high temperature from scorching grapes, enabling grapes' yield to increase by17%and its commodity rate to increase by20%.
     (9) Application of antitranspirant in the vineyard showed that spray of antitranspirant could effectively prevent transpiration in the vineyard and lower transpiration rate on grapes leaves, that the application could notably improve photosynthesis in grape leaves and water use efficiency, that more importantly grape yield could be raised by as much as20%, that the period of validity of using antitranspirant could last about9days, and that there were slight differences in period of validity among different antitranspirants.
     (10) Research and study also involved the measure of soil moisture conservation through the use of plastic film and straw curtain. The results showed that because of the measures to preserve soil moisture, contact surface between soil surface and air had been decreased so that soil moisture was obviously stopped from being evaporated, that the measure could sharply enable soil to retain water and preserve soil moisture and that the measure of soil moisture conservation was advantageous in growth of new shoots, average weight of fruit grain, yield and other aspects over the contrast group where no such measure was adopted.
     (11) The research also involved soil conditions in Turpan and Kumul where the soil is rich in gravels in some area, and the soil is poor in retaining water and where deep percolation has been serious. Research was conducted in using water-retaining agents in the soil rich in gravels. The result showed that the use of water-retaining agents could effectively retain water from irrigation, that water use efficiency was raised sharply, and that grape plants were strengthened so that quality of grapes and its yield were improved at the same time.
     (12) This research and study have been conducted on comprehensive monitoring water consumption to further improve water use efficiency in farmland. The research and study involved a series of measures and techniques, such as the technique of crown layer's environmental regulation and control to decrease large quantity of transpiration, application of antitranspirants and the measure to cover the surface soil to decrease useless evaporation and to preserve soil moisture, and the technique that combined water-retaining and soil moisture conservation to prevent water in root system from leakage loss with fine-tuning dripping irrigation technique, thus forming a comprehensive mode to monitor and control the use of water and fertilizer, in which water-saving agricultural technology was made use of in the interface between grown-up grape's crown layer and air, the interface between soil and air, and the interface between root system and soil.
引文
[1]彭世章,徐俊增.农业高效节水灌溉理论与模式.[M].北京:科学出版社.2009.
    [2]刘捍中,程存刚.葡萄生产技术手册.[M].上海:上海科学技术出版社,2005.
    [3]陈芳芳,王新勇,刘翔宇.吐鲁番地区葡萄节水灌溉技术现状调查及建议[J].新疆农业科学2008,45(S1):175-176.
    [4]K SRINIVAS, S D SHIKHAMANY. Yield and water-use of'Anab-e-Shahi' grape (Vitis vinifera) vines under drip and basin irrigation[J].Indian Journal of Agricultural Science,2000,69(1):21-23.
    [5]房玉林,惠竹梅,陈洁,等.水分胁迫对葡萄光合特性的影响[J].干旱地区农业研究,2006,24(2):135-138.
    [6]谢强,石磊,杜峰,等.CO2、温度对葡萄群体光合作用的影响[J].上海交通大学学报,2007,25(2):110-114.
    [7]花永辉,白云岗,蔡军社,等.不同覆盖方式土壤生态效应与成龄葡萄增产效应研究[J].北方园艺,2009,8:37-39.
    [8]M. CARMEN ANTOLIN, MAROUEN AYARI, MANUEL SANCHEZ-DIAZ. Effects of partial rootzone drying on yield, ripening and berry ABA in pottedTempranillo grapevines with split roots [J]. Australian Journal of Grape and Wine Research,2006,12(1):13-20.
    [9]C.J. SOAR, P.R. DRY, B.R. LOVEYS. Scion photosynthesis and leaf gas exchange in Vitis vinifera L. cv. Shiraz:Mediation of rootstock effects via xylem sap ABA[J].Australian Journal of Grape and Wine Research,2006,12(2):82-96.
    [10]M.L.De la Hera, P.Romero,E.Go'mez-Plaza, et al.Is partial root-zone drying an effective irrigation technique to improve water use efficiency and fruit quality in field-grown wine grapes under semiarid conditions?[J].agricultural water management,2007,87:261-274.
    [11]S.Poni, F.Bernizzoni,S.Civardi.Response of "Sangiovese" grapevines to partial root-zone drying:Gas-exchange, growth and grape composition[J].Scientia Horticulturae,2007,114:96-103.
    [12]C. Acevedo-Opazo, S. Ortega-Farias, S. Fuentes. Effects of grapevine (Vitis vinifera L.) water status on water consumption,vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation [J].Agricultural Water Management,2010,97:956-964.
    [13]Maria Luisa De La HERA ORTS,A. MARTINEZ-CUTILLAS, J. M. LOPEZ ROCA, et al. EFFECT OF DEFICIT IRRIGATION ON ANTHOCYANIN CONTENT OF MONASTRELL GRAPES AND WINES[J].Journal International des Sciences de la Vigne et du Vin,2005,39(2):47-55.
    [14]汤照云,吕明,张霞,等.高温胁迫对葡萄叶片三项生理指标的影响[J].石河子大学学报,2006,24(2):198-200.
    [15]惠竹梅,房玉林,郭玉枝,等.水分胁迫对葡萄幼苗4种主要生理指标的影响[J].干旱地区农业研究,2007,25(3):146-149.
    [16]杜太生,康绍忠,闫博远,等.干旱荒漠绿洲区葡萄根系分区交替灌溉试验研究[J].农业工程学报,2007,23(11):52-58.
    [17]李涛,张建丰,张江辉,等.以灌溉定额为参数的葡萄果实含糖量和果型指数的数学模型[J].中国生态农业学报,2010,18(2):348-351.
    [18]苏培玺.沙地葡萄需水规律研究[J].西北植物学报,2001,21(5):944-951.
    [19]D.S.INTRIGLIOLO, J.R.CASTEL.Vine and soil-based measures of water status in a Tempranillo vineyard[J]. Vitis,2006,45(4):157-163.
    [20]J.Girona, M.Mata, J.del Campo, et al. The use of midday leaf water potential for scheduling deficit irrigation in vineyards [J].Irrigation Science,2006,24:115-127.
    [21]李淑芹,王全九,曾辰,等.根系分区交替滴灌对葡萄生态指标及耗水规律的影响[C].干旱区绿洲农业现代节水技术国际学术研讨会论文集.乌鲁木齐,2010,248-254.
    [22]程慧娟,王全九,白云岗,等.垂直线源灌线源长度对湿润体特性的影响[J].农业工程学报,2010,26(6):32-37.
    [23]M.I.Al-Qinna, A.M.Abu-Awwad.Wetting Patterns under Trickle Source in Arid Soils with Surface Crust[J].J.agric.Engng Res,2001,80(3):301-305.
    [24]F.J.Cook,P. Fitch,P.J. Thorburn,et al.Modelling trickle irrigation:Comparison of analytical and numerical models for estimation of wetting front position with time [J].Environmental Modelling & Software,2006,21:1353-1359.
    [25]程慧娟,王全九,曾辰,等.垂直线源灌溉条件下交汇入渗特性研究[J].灌溉排水学报,2010,29(4):63-66.
    [26]曾辰,王全九,樊军.初始含水率对土壤垂直线源入渗特征的影响[J].农业工程学报,2010,26(1):24-30.
    [27]李涛,张建丰,程慧娟,等.深层坑渗灌田间单点入渗湿润锋分布特性及拟合模型研究[J].干旱地区农业研究,2010,28(4):36-39,45.
    [28]Qingyun Zhou,Shaozhong Kang,Lu Zhang,et al.Comparison of APRI and Hydrus-2D models to simulate soil water dynamics in a vineyard under alternate partial root zone drip irrigation [J].Plant Soil,2007,291:211-223.
    [29]张劲松,孟平,尹昌君.植物蒸散耗水量计算方法综述[C].世界林业研究,2001,14(2)23-28.
    [30]Sellers P J. Asimple biosphere (SiB) for use with in general circulation models. Journal A tmo-spheric Science,1986,43:501-531.
    [31]Shuttleworth W J and Gurney R J. The theoretical relationship between foliage temperature and canopy resistance in sparse crop s.Q J R M eteorol. Soc,1990,116:794-519.
    [32]蔡焕杰.用冠层温度诊断作物水分状况及估算农田蒸散量研究.西北农业大学博士论文,1992.
    [33]莫兴国.土壤-植物-大气间水分传输模拟与试验.中国科学院博士学位论文,1992.
    [34]吴擎龙.田间腾发条件下水热运移数值模拟.清华大学博士论文,1993.
    [35]胡容明.植物与大气、土壤相互作用的数值模拟.中国科学院博士学位论文,1995.
    [36]牛国跃.干旱区非均匀陆面的数值模拟.中国科学院博士学位论文,1995.
    [37]谢正桐.考虑植被影响的陆气耦合模式.力学学报,1998,30(3):267-276.
    [38]Bo rmann H, et al. Effects of data availability on estimation of evapo transp iration. Physics and Chem istry of the Earth,1996,21 (3):171-175.
    [39]F lerch ing G W, et al. Modelling evapo transp iration and surface budgets acro ss a watershed. W ater Resources Research,1996,32(8):2539-2548.
    [40]Grusev Y M. Modelling annual dynam ics of so il water sto rage fo r agro- and natural eco system s of the steppe and fo rest- steppe zones on a local scale. A gri Fo rM eteo ro 1,1997,85 (364): 171-191.
    [41]Kowailik P, et al. D iurnal water relations of beech (Fug us S y lvationca L) trees in the mountains of Italy. A gri. Fo r. M eteo ro 1.,1997,84(1o2):11-23.
    [42]Sco tt R, et al. T imescales of land surface evapo transp iration response. J. of Climate,1997,10 (4):559-566.
    [43]Yamanaka T, et al. Evapo transp iration beneath the so il surface: some observational evidence and numerical experiments. Hydro logical P rocess,1998,12 (13o14):2193-2203.
    [44]M.P. Gonzalez-Dugo,C.M.U. Neale,L.Mateosc,et al A comparison of operational remote sensing-based models for estimating crop evapotranspiration [J].Agricultural and Forest Meteorology,2009,149:1843-1853.
    [45]马兴祥,魏育国,蒋菊芳.沙漠边缘新垦酿造葡萄园土壤贮水及作物耗水特性研究[J].干旱地区农业研究,2006,24(4):58-61.
    [46]白云岗,张江辉,董新光,等.极端干旱区成龄葡萄园蒸散研究[C].极旱区绿洲农业现代节水技术国际学术研讨会论文集.乌鲁木齐,2010,179-184.
    [47]胡博然,李华.葡萄园合理灌溉制度的建立[J].中外葡萄与葡萄酒,2002,5:15-18.
    [48]周青云,康绍忠.葡萄根系分区交替滴灌的土壤水分动态模拟[J].水利学报,2007,38(10):1245-1252.
    [49]梁鹏,杜峰,许文平,等.部分根域干燥栽培条件下藤稔葡萄灌水下限的研究[C].中外葡萄与葡萄酒,2009,7:29-32.
    [50]F. J. Araujo, A. Faria, C. Sanchez. A drip irrigation strapegy for maximizing grapevine water use efficiency intropical vineyards of Venezuela[J].Acta Horticulturae,1999,000(493):117-140.
    [51]Rob M.Stevens, Tim Douglad. Distribution of grapevine roots and salt under drip and full-ground cover microjet irrigation systems[J].Irrigation Science,1994,15:147-152.
    [52]张新宁,赵健,杨东芳.滴灌条件下葡萄根系分布的研究初报[J].中外葡萄与葡萄酒,2005,6:16-18.
    [53]陈若男,极端干旱区滴灌条件无核白葡萄适宜地上净增加生物量确定[C].干旱区绿洲农业现代节水技术国际学术研讨会论文集.乌鲁木齐,2010,219-225.
    [54]杨艳芬,极端干旱地区滴灌条件下葡萄生长发育特征[J].农业工程学报,25(12):45-50.
    [55]杜太生,康绍忠,夏桂敏,等.滴灌条件下不同根区交替湿润对葡萄生长和水分利用的影响[J].农业工程学报,2005,21(11):43-48.
    [56]杨潇,极端干旱地区深层坑渗灌条件下成龄葡萄展叶期生长性状研究[C].干旱区绿洲农业现代节水技术国际学术研讨会论文集.乌鲁木齐,2010,213-215
    [57]卢精林,范春辉,杨德江,等.干旱荒漠区不同覆盖对酿酒葡萄园土壤的综合效应研究[J].土壤通报,2007,38(1):51-54.
    [58]刘裕庆,南宜霞,薛徐柱,等.浅析葡萄膜下滴灌节水节肥的效果[J].山西农业科学,2007,35(9):71-72.
    [59]梁智,冯耀祖,周勃,等.葡萄叶面喷肥技术[J].落叶果树,1998,3:47.
    [60]梁智,冯耀祖,周勃,等.葡萄滴灌施肥的NPK配比研究[J].土壤肥料,2005,3:42-45.
    [61]李淑玲,何尚仁,杨建国,等.葡萄营养与施肥[J].北方园艺,2000,3:19-20.
    [62]白云岗,张江辉,卢震林,等.极端干旱区葡萄园喷施抗旱蒸腾剂效果研究[C].干旱区绿洲农业现代节水技术国际学术研讨会论文集.乌鲁木齐,2010,331-335.
    [63]贺普超.葡萄学[M].中国农业出版社.1994,4.
    [64]张秀玲.温带地区几种绿化树木叶面积的回归测算研究[J].特产研究,2007,(2):54-54.
    [65]涂育合.雷公藤叶面积回归方程法测算[J].西南林学院学报,2007,27(4):16-19.
    [66]王旺田,马静芳,张金林,等,一种新的葡萄叶面积测定方法[J].果树学报,2007,24(5):709-713.
    [67]骆彬,贾亚敏,刘彤,等.利用普通扫描仪精确测量叶面积的技术及方法[J].北方园艺,2007,(5):46-48.
    [68]杨劲峰,陈清,韩旭日,等.数字图像处理技术在蔬菜叶面积测量中的应用[J].农业工程学报,2002,18(4):155-158.
    [69]Guan Jie, Nutter F W Jr. Relationships between percentage defoliation, dry weight, percentage reflectance,leaf-to stem ratio, and green leaf area index in the alfalfa leaf spot pathosystem [J]. Crop Science,2002,42:1264-1273.
    [70]Matthew E O'neal, Douglas A Landis, Rufus Isaacs. An Inexpensive, accurate method for measuring leaf area and defoliation through digital image analysis [J]. Journal of Economic Entomology,2002,2:1190-1194.
    [71]Welles J M. Some indirect methods of estimating canopy structure [J]. Remote Sensor Rev,1990, 5:31-43.
    [72]吴伟斌,洪添胜,王锡平,等.叶面积指数地面测量方法的研究进展[J].华中农业大学学报,2007,26(2):270-275.
    [73]冯冬霞,施生锦.叶面积测定方法的研究效果初报[J].中国农学通报,2005,21(6):150-153.
    [74]李春友,任理,李保国.利用优化方法求算Van Genuchten方程参数[J].水科学进展,2001,12(4):473-478
    [75]马英杰,虎胆·吐马尔白,沈冰.利用阻尼最小二乘法求解Van Genuchten方程参数[J].农业工程学报,2005,21(8):179-180
    [76]廖林仙,邵孝侯,徐俊增.基于智能算法推求Van Genuchten方程的参数[J].水利学报,2007,增刊:696-700
    [77]许小健,涂芬芬,黄小平,等.差异演化算法在Van Genuchten方程参数优化估计中的应用[J].合肥工业大学学报,2008,31(11):1863-1866
    [78]许小健,黄小平,张金轮.用遗传算法优化估计Van Genuchten方程参数[J].岩土工程技术,2008,22(2):75-78
    [79]Tuller M, Or D. Unsaturated hydraulic conductivity of structured prous media: a review of liquid configuration based models[J]. Vadose Zone Journal,2002 (1):14-37.
    [80]Schaap M G, Leij F J, Van genuchten M Th. Neural network Analysis for hierarchical Prediction of soil water retention and saturated hydraulic conductivity [J]. Soil Sci. Soc. Am.1998,62:847-855.
    [81]李玉琪.负压计测定土壤水分的应用分析[J].中国农村水利水电,1999,3:18-19.
    [82]刘思春,王国栋,朱建楚,等.负压式土壤张力计测定法改进及应用[J].西北农业学报,2002,11(2):29-33.
    [83]王凤新,康跃虎.用负压计拟定滴灌马铃薯灌溉计划的方法研究[J].干旱地区农业研究,2005,23(3):58-64.
    [84]高歌,陈德亮,任国玉,陈峪,廖要明.1956-2000年中国潜在蒸散量变化趋势.地理研究,2006,25(3):378-387.
    [85]Han S J, Hu H P, Yang D W, et al. Differences in changes of potential evaporation in the mountainous and oasis regions of the Tarim Basin, northwest China.Sci China Ser E-Tech Sci,2009, 52(7):1981-1989, doi:10.1007/s11431-009-0123-3
    [86]Lorenz, D. J., E. T. DeWeaver, and D. J. Vimont. Evaporation change and global warming: The role of net radiation and relative humidity. Journal of Geophysical Research,2010,115, D20118, doi: 10.1029/2010JD013949.
    [87]Allen R.G, Pereira L.S., Raes D., et al. Crop evapotranspiration guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper No.56. Rome:FAO,1998.
    [88]袁嘉祖,张汉雄.黄土高原地区森林植被建设的优化模型.北京:科学出版社,1991:36-42.
    [89]施雅风,沈永平等.中国西北气候由暖干向暖湿转型的特征和趋势探讨[J].第四纪研究,2003,23(2):152-164.
    [90]Chen X, Wu JL, Hu Q.2008.Simulation of Climate Change Impacts on Streamflow in the Bosten Lake Basin Using an Artificial Neural Network Model.Journal of Hydrologic Engineering,13(3): 180-183.
    [91]赵双喜,张耀生,赵新全,等.三江源温性草原蒸散量计算方法的比较[J].西北农林科技大学学报,2009,37(1):79-83.
    [92]毛飞,张光智,徐祥德.参考作物蒸散量的多种方法及其结果比较[J].应用气象学报,2000,11:128-136.
    [93]樊军,邵明安,王全九.黄土区参考作物蒸散量多种计算方法的比较研究[J].农业工程学报,2008,24(3):98-102.
    [94]刘倪,夏伟,吴晓蔚,等.几种参考作物蒸散量计算方法的比较[J].河北科技大学学报,2009,30(1):17-24.
    [95]刘绍民,孙中平,李小文,等.蒸散量测定与估算方法的对比研究[J].自然资源学报,2003,18(2):161-167.
    [96]Axel T H. Spatial and temporal characteristics of potential evapotranspiration trends over China[J]. International Journal of Climatology,2000,20:381-396.
    [97]苏春宏,陈亚新,王亚东,等.ETO计算模型及其主要输入因子的影响分析评估[J].灌溉排水学报,2006,25(1):14-19.
    [98]闫浩芳,史海滨,薛铸,等.内蒙古河套灌区ETO不同计算方法的对比研究[J].农业工程学报,2008,24(4):103-106.
    [99]史晓楠,王全九,王新,等.参考作物腾发量计算方法在新疆地区的适用性研究[J].农业工程学报,2006,22(6):19-23.
    [100]李彦,陈祖森,张保,等.参考作物蒸发蒸腾量的多元线性回归模型研究[J].新疆农业大学学报,2005,28(1):70—72.
    [101]王则玉,冯耀祖,陈署晃,等.彭曼-蒙太斯法制定阿克苏红枣根渗灌灌溉制度[J].新疆农业科学,2010,47(11):2189-2194.
    [102]赵旭,李毅,刘俊民.新疆旱区草地参考作物腾发量随机模拟及其应用[J].水利学报,2008,39(11):1267-1272,1278.
    [103]李彦,王金魁,门旗,等.修正温度法计算农作物蒸散量ETO研究[J].灌溉排水学报,2004,23(6):62—64.
    [104]刘晓英,林而达,刘培军Priestley-Taylor与Penman法计算参照作物腾发量的结果比较[J].农业工程学报,2003,19(1):32-36.
    [105]王声锋,段爱旺,张展羽.半干旱地区不同水文年Hargreaves和P-M公式的对比分析[J].农业工程学报,2008,24(7):29—33.
    [106]王幼奇,樊军,邵明安,等.黄土高原地区近50年参考作物蒸散量变化特征[J].农业工程学报,2008,24(9):6—10.
    [107]宋振伟,唐衡,孔箐锌,等.京郊平原参考作物腾发量及其与气象因子相关性研究[J].灌溉排水学报,2009,28(6):74—77.
    [108]胡顺军,艾尼瓦尔·吾买尔,宋郁东,等.渭干河灌区参考作物潜在腾发量的计算及相关分 析[J].干旱区地理,2001,24(1):62-66.
    [109]李孝广,毕华兴,刘胜,等.Penman- Monteith蒸散模型及其在森林下垫面中参数的确定[J].水土保持研究,2005,12(6):257-261.
    [110]徐俊增,彭世彰,张行南,等.两种Penman-Monteith公式计算草坪草参考腾发量的适用性[J].农业工程学报,2009,25(12):32-37.
    [111]王笑影.农田蒸散估算方法研究进展[J].农业系统科学与综合研究,2003,19(2):81-84.
    [112]王力飞,朝伦巴根,王亚娟,等.草甸草原区羊草生育期蒸散量变化规律研究[J].节水灌溉,2008,(5):1-5.
    [113]吴申燕.塔里木盆地水热状况研究—蒸发及其相关问题[M].北京:海洋出版社,1992,67-83.
    [114]康燕霞,蔡焕杰,王健,等.夏玉米日蒸发蒸腾量计算方法的试验研究[J].干旱地区农业研究,2006,24(2):110-113.
    [115]张小由,龚家栋,周茂先,等.柽柳灌丛热量收支特性与蒸散研究[J].高原气象,2004,24(3):228-232.
    [116]司建华,冯起,张小由,等.极端干旱条件下柽柳种群蒸散量的日变化研究[J].中国沙漠,2005,25(3):380-385.
    [117]吴锦奎,丁永建,王根绪,等.干旱区人工绿洲间作农田蒸散研究[J].农业工程学报,2006,22(9):16-20.
    [118]康峰峰,马钦彦,牛德奎,等.山西太岳山地辽东栎林夏季热量平衡的研究[J].江西农业大学学报,2003,25(2):209-214.
    [119]曹建生,韩淑敏,张万军.波文比在石榴经济林地水热平衡研究中的应用[J].资源生态环境网络研究动态,2001,12(1):18-23.
    [120]Teixeira A H, Bastiaanssen W G M, Bassoi L H. Crop water parameters of irrigated wine and table grapes to support water productivity analysis in the sa~o francisco river basin,brazil[J]. Agricultural Water Management,2007,94(31-42).
    [121]陈玉民,郭国双,王广兴.1995.中国主要作物蓄水里与灌溉,pp.23-49,38-319.北京:水利电力出版社.
    [122]Van Vosselena A,Verplanckea H, Van Ranst E. Assessing water consumption of banana:Traditional versus modelling approach[J]. Agricultural Water Management,2005,74: 201-218.
    [123]Liang Z S, Yang J W, Shao H B, et al. Investigation on water consumption characteristics and water use efficiency of poplar under soil water deficits on the loess plateau[J]. Colloids and Surfaces B:Biointerfaces,2006,54:23-28.
    [124]Li H J, Zheng L, Lei Y P, et al. Estimation of water consumption and crop water productivity technology of winter wheat in north china plain using remote sensing[J]. Agricultural Water Management,2008,95:1271-1278.
    [125]王克武,王志平,郑雅莲,等.小麦高wue品种筛选和田间耗水规律研究[J].干旱地区农业研究,2009,27(2):69-73.
    [126]朱德兰,杨涛,王得祥,等.黄土丘陵沟壑区三种不同植被土壤水分动态及蒸散耗水规律研究[J].水十保持研究,2009,16(1):8-12.
    [127]张永胜,成自勇,薛翎燕,等.甜椒在非充分灌溉条件下的耗水特征[J].水资源与水工程学报,2009,20(2):63-66.
    [128]任罡,武朝宝,张海泉.花生耗水规律及其节水灌溉制度试验研究[J].山西水利科技,2009, 8(3):84-86.
    [129]Shuqin Wan, Yaohu Kang. Effect of Drip Irrigation Frequency on Radish Growth and Water Use [J]. Irrigation Science,2006,24 (3):161-174.
    [130]Suat Sensoy, Ahmet Ertek, Ibrahim Gedik, et al. Irrigation Frequency and Amount Affect Yield and Quality of Field-grown Melon (Cucumis melo L.)[J]. Agricultural Water Management 2007, 88(1/2/3):269-274.
    [131]Salah E. E1-Hendawy, Essam A. Abd E1-Lattief, Mohamed S. Ahmed,et al..Irrigation Rate and Plant Density Effects on Yield and Water Use Efficiency of Drip-irrigation Corn [J]. Agricultural Water Management,2009. (95):836-844.
    [132]王振华,郑旭荣,刘洪光,等.非充分灌溉对地下滴灌棉花根系生长分布影响的初步研究[J].节水灌溉,2008,(4):20-22.
    [133]孔清华,李光永,王永红,等.地下滴灌施氮及灌水周期对青椒根系分布及产量的影响[J].农业工程学报,2009,25(增刊2):38-42.
    [134]仵峰.2002.地下滴灌条件下灌水器水力性能研究.北京:中国农业科学院研究生院.
    [135]Devitt M W W. Subsurface drip irrigation of bermudagress with saline water[J]. Applied Agricultural Resources,1988,3(3):133-143.
    [136]Lamm F R, Stone L R. Optimum lateral spacing for subsurface drip irrigation corn[J]. Trans of the ASAE,1997,89(3):375-379.
    [137]马孝义,王凤翔.陕西省果树地下滴灌的应用前景、存在问题与建议[J].干旱地区农业研究,1999,17(2):127-131.
    [138]Darusman, Khan A H, Stone L R. Water flux below the root zone vs drip line spacing in drip irrigated corn[J]. Agron J,1997,89(3):375-379.
    [139]孔繁宇,胡同军.不同滴灌带和不同铺设间距的地下滴灌效果试验[J].中国农学通报,2004,20(6):331-33.
    [140]Skaggs T H, Trout T J, Simunek J, et al. Comparison of hydrus-2d simulations of drip irrigation with experimental observations[J]. Journal of Irrigation and Drainage Engineering ASCE,2004, 67(6):1657-1671.
    [141]Khumoetsile M, Dani O. Experimental and numedcal evaluation of analytical volume balance model for soil water dynamics under drip irrigation[J]. Soil Science Society of America Journal, 2003,67(6):1657-1671.
    [142]Siyal A A, Skaggs T H. Measured and simulated soil wetting patterns under porous clay pipe sub-surface irrigation[J]. Agricultural Water Management,2009,96:893-904.
    [143]Lu H, Zhu Y, Skaggs T H, et al. Comparison of measured and simulated water storage in dryland terraces of the loess plateau, china[J]. Agricultural Water Management,2009,96:299-306.
    [144]李洪,黄国强,李鑫钢.自然条件下土壤不饱和区中水含量分布模拟[J].农业环境科学学报,2004,23(6):1232-1234.
    [145]康绍忠.农业水土工程概论[M].北京:中国农业出版社,2007:496-498.
    [146]冯建灿,郑根宝,何威,等.抗蒸腾剂在林业上的应用研究进展与展望[J].林业科学研究,2005,18(6):755-760.
    [147]滕元文.抗蒸腾剂及其在果树上的应用[J].干旱地区农业研究,1992,10(3):20-23.
    [148]李茂松,李森,张述义,等.灌浆期喷施新型FA抗蒸腾剂对冬小麦的生理调节作用研究[J].中国农业科学,2005,38(4):703-708.
    [149]朱遐龄,甘吉生,王雁.抑制蒸腾剂黄腐酸对小麦抗旱生理的影响[J].北京农业科学,1995, 13(4):20-21.
    [150]王文颇.喷施黄腐酸对花生生长发育的影响[J].花生科技,2000,(1):25-27.
    [151]杨培岭,王勇,李云开,等.农业化控节水技术原理及应用[M].北京:科学出版社,2010,50.
    [152]郭克贞,赵淑银,苏佩凤,等.草地SPAC水分运移消耗与高效利用技术[M].北京:中国水利水电出版社,2008.
    [153]D. S. INTRIGLIOLO, J. R. CASTEL. Vine and soil-based measures of water status in a Tempranillo vineyard[J]. Vitis,2006,45(4):157-163.
    [154]J. Girona, M. Mata, J. del Campo, et al. The use of midday leaf water potential for scheduling deficit irrigation in vineyards [J]. Irrigation Science,2006,24:115-127.
    [155]康绍忠,刘晓明,熊运章.土壤-植物-大气连续体水分传输理论及其应用[M].北京:水力电力出版社,1994.
    [156]赵萍,孙向阳,等.毛乌素沙地SPAC系统中各部分水分状况及其关系的研究[J].生态环境,2004,13(3):365-36.
    [157]刘广全,匡尚富,等.黄土高原半干旱区沙棘林SPAC水势时空变异[J].国际沙棘研究与开发,2009,6(4):1-5,11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700