用户名: 密码: 验证码:
玉米氮素营养无损诊断及水氮效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮肥过量施用和水资源缺乏是全球面临的共同问题,而土壤肥力和水分状况是作物生长发育的物质基础,是限制农业可持续发展的主要因素,合理水肥管理是实现农业节能减排的关键。本研究以玉米(Zea mays L.)为材料,利用SPAD-502叶绿素仪、Dualex-3多酚(类黄酮)仪、Dualex-4氮平衡指数仪和Multiplex荧光仪对植株氮素营养状况进行无损诊断,通过分析不同土壤水分、施氮量、生育期及其互作对各诊断指标的影响,根据最佳氮素营养诊断指标筛选标准,即与施氮量有高度相关性、受土壤水分影响较小和整个生育期表现比较稳定原则,挑选玉米较佳氮素营养诊断指标;并对不同生育期各无损诊断指标与籽粒产量、籽粒含氮量和土壤硝态氮含量间的关系进行量化推测,对于补充和完善目前流行的氮素化学诊断方法具有重要的理论和实践意义,为精确农业的发展奠定基础。同时,研究不同水氮处理对玉米光合特性、籽粒产量以及土壤空间硝态氮含量和残留量的影响,为氮肥和水资源的合理利用提供理论基础。本研究主要结果如下:
     1.各无损诊断指标值与常规诊断指标(植株生物量、植株含氮量和植株氮素营养指数NNI)值间均有显著相关性;并且,通过比较相关系数,Dualex-3多酚仪参数中1/NSIDualex和Multiplex荧光仪参数中BGF_G、RF_G、RF_R、NSI_RF_G、NSI_RF_R和NSI_BGF_UV不适宜应用于玉米氮素营养状况诊断中。
     2.根据最佳氮素营养诊断指标筛选标准,无损诊断指标中NSISPAD/Dualex、NSI_NBI_Dualex-4、RF_UV、FRF_UV、NSI_RF_UV、NSI_FRF_UV、NSI_NBI_G和NSI_NBI_R均符合筛选标准,但不同施氮处理下RF_UV和FRF_UV值范围小于其它指标,而参数NSI_RF_UV和NSI_FRF_UV对玉米籽粒预测潜力较差。因此,本研究中推荐无损诊断指标中氮素平衡指数的氮素饱和指数为玉米最佳氮素营养诊断指标;且当玉米处于V5-VT生育期时,最佳诊断指标达到0.94~0.98时才能获得高产。
     3. SPAD-502叶绿素仪和Dualex-3多酚仪参数值与玉米籽粒产量、籽粒氮含量和土壤硝态氮含量间均有极显著线性或非线性相关性。通过比较相关系数,诊断指标Dualex、SPAD/Dualex和NSISPAD/Dualex值能较好预测籽粒产量;Dualex和SPAD/Dualex值能较好预测籽粒含氮量;SPAD/Dualex值能较好预测土壤硝态氮含量。Multiplex参数中SFR_G、FLAV、NBI_G、NBI_R、NSI_SFR_G、1/NSI_BRR_FRF、1/NSI_FLAV、NSI_NBI_G、NSI_NBI_R和1/NSI_ANTH+1值对玉米籽粒产量的预测潜力较大。
     4.当追肥处理发生在干旱胁迫之前,增施氮肥有利于改善叶片净光合速率(PN);相反,当追肥处理发生在干旱胁迫之后,增施氮肥反而使叶片PN下降;且干旱复水后,PN能够快速恢复,甚至高于水分良好条件。同时,叶片叶绿素荧光参数Fv′/Fm′对施氮量和土壤水分敏感性较差,整个生育期无显著性影响。玉米叶面积指数(LAI)和冠层叶绿素密度(SPAD×LAI)随施氮量的增加相应增加,但当施氮量超过180kg ha~(-1)时,二者均呈下降趋势,因而氮肥施用过多(250kg ha~(-1))或过少(0~60kg ha~(-1))均加快玉米生长后期LAI和SPAD×LAI的下降进程,使叶片提前衰老。冠层光合特性(PN×LAI)随氮肥施用量的增加相应增加,且整个生育期与籽粒产量具有极显著相关性,表明提高冠层光合能力是籽粒产量提高的关键;然而,施氮量超过180kg ha~(-1)时,对玉米籽粒增产效果不明显。
     5.土壤硝态氮含量随施氮量的增加逐渐增加,且同一施氮水平下,土壤硝态氮含量随土壤深度的增加逐渐减少。随着土壤水分的增加,0-30cm土层中土壤硝态氮含量相应增加,而30-60cm土层中土壤硝态氮含量无显著性变化。收获后,土壤中硝态氮残留量随施氮量和土壤水分的增加相应增加;然而,施氮量对不同土层中硝态氮残留量的影响不同。当总氮量<140kg ha~(-1)时,硝态氮残留量主要集中于0-60cm土层中;当总氮量>180kg ha~(-1),硝态氮残留量主要集中于60-90cm土层。
Excessive nitrogen (N) application and water deficit are the major global problems. Theyare the foundation of crop growth and development and become the main factors on limitingagricultural sustainable development. Therefor, the reasonable management of irrigation andfertilizer application is the key to achieve energy conservation and emission reduction inagriculture. In current study, the SPAD-502chlorophyll meter, Dualex-3polyphenol meter,Dualex-4N balance index meter, and Multiplex fluorescence meter were emplyed to assesssthe plant N status in maize (Zea mays L.). The effects of different soil moisture and nitrogenapplication rates on SPAD, Dualex, Multiplex’s parameters readings and their N sufficiencyindex [NSI] of the latest fully leaf were investigated. According to three criterions includinghighly strong relationships with applied N rates, independence from soil water content, andconsistency among growing stages, the corn optimal N diagnosis indicator was selected.Furthmore, the relationships between N assessment indicators, on the one hand, and grain yield,grain NO3-N content, and soil NO3-N content, on the other hand, were analysised. Moreover,the responses of corn leaf phtosyntheis, grain yield, and the soil NO3-N content in differentlays to different soil moisture and N application rates have been studied. It got the mainfindings as follows:
     1. The N assessment indicator values of the uppermost fully expanded leaves in cornplants, on the one hand, and plant biomass, tissue N content, and plant N nutrition index (NNI),one the other hand, were highly significant. Compared among N assessment indicators,1/NSIDualex, BGF_G, RF_G, RF_R, NSI_RF_G, NSI_RF_R, and NSI_BGF_UVwere notsuitable to assess N status in corn.
     2. According to three criterions including highly strong relationships with applied Nrates, independence from soil water content, and consistency among growing stages,NSISPAD/Dualex, NSI_NBI_Dualex-4, RF_UV, FRF_UV, NSI_RF_UV, NSI_FRF_UV,NSI_NBI_G, and NSI_NBI_R were up to criterions, howerver, the range of RF_UV andRF_UV under different N application rates were less than other N assessment indicators, andNSI_RF_UV and NSI_FRF_UV were bad for predicting grain yield. Therefor, NSISPAD/Dualex,NSI_NBI_Dualex-4, NSI_NBI_G, and NSI_NBI_R were optimal N status diagnosis indicators in cuurent study. Furthermore, the grain yield could achieved the maximum vales as the cornoptimal N diagnosis indicators were reach to0.94-0.98during V5-VT growth stages.
     3. The significant linear or non-linear correlation between SPAD, Dualex, SPAD/Dualex,NSISPAD,1/NSIDualex, and NSISPAD/Dualexreadings, one the one hand, and grain yield, grainNO3-N content, and soil NO3-N content, one the other hand, were observed. Compared amongN assessment indicators, Dualex, SPAD/Dualex, and NSISPAD/Dualexreadings could predictepreferably grain yield; Dualex and SPAD/Dualex readings could predicte preferably grainNO3-N content; and SPAD/Dualex readings could predicte preferably soil NO3-N content.Among Multiplex’s parameters, SFR_G, FLAV, NBI_G, NBI_R, NSI_SFR_G,1/NSI_BRR_FRF,1/NSI_FLAV, NSI_NBI_G, NSI_NBI_R, and1/NSI_ANTH+1readingscould predicte preferably grain yield in corn.
     4. The N fertilizer topdressing treatments could improve the PNas it was done beforedrought stress, but resulted in reduction after; and the PNin leaves induced drought stressthrough rewatering recovered rapidly and even was higher than rich-watered control. Itindicated that more N supply did not alleviate the effects of drought but aggravated thephoto-damage. Little significant effects of N rates and SWC levels were existent on Fv′/Fm′. Inthe field experiment, LAI and SPAD×LAI increased gradually with increasing N from0to180kg ha~(-1), but decreased as N application rate was higer than180kg ha~(-1). It indicates thatexcessive (250kg ha~(-1)) or less (0-60kg ha~(-1)) N application rates could decreased the LAI andSPAD×LAI process at the end of corn growth stages and the leaf became aged in advance.PN×LAI increased progressively with N rates. The correlation between PN×LAI and corn grainyield was extremly significant, indicating that the improvement of the canopy photosynthesis isthe key to increase grain yield, but there was little value for increasing grain yield as Napplication rates was higher than180kg ha~(-1).
     5. Soil NO3-N contents increased with increasing N ferilization rates, but decreased withincreasing the depth of soil layer regardless of N ferilization rates. With increasing soil watercontents, soil NO3-N contents increased in0-30cm soil layer and had a little change in30-60cm soil layer. After harvest, soil residual NO3-N contents increased with N fertilization rates orsoil water contents. Soil residual quantity of NO3-N was highest in0-60cm soil layer whentotal N fertilization rate was below140kg ha~(-1)and was highest in60-90cm soil layer whentotal N fertilization rate was below180kg ha~(-1).
引文
曹秀娟,徐晓梅.2008.不同基质与施肥量对玉米幼苗生长的影响.上海农业科技,5:54~55.
    陈新平,李志宏,王兴仁,等.1999.土壤、植株快速测试推荐施肥技术体系的建立与应用.土壤肥料,(2):6~10.
    程国平,安兴智,和盛,等.2008.氮肥对黔兴201植株性状和产量的影响.种子,27(4):55~56.
    董树亭,胡昌浩,周关印.1993.玉米叶片气孔导度、蒸腾和光合特性研究.玉米科学,1(2).58~64.
    东先旺.1999.超高产夏玉米需水规律与灌水指标的研究.华北农学报,2:254~259.
    范亚宁,李世清,李生秀.2008.半湿润地区农田夏玉米氮肥利用率及土壤硝态氮动态变化.应用生态学报,19(4):799~806.
    葛体达,隋方功,白莉萍,等.2005.不同土壤水分对玉米光合特性和产量的影响.上海交通大学学报(农业科学版),23(2):143~147.
    关迎春,安福全,赵菊,等.2007.氮素对玉米生理特性的影响.现代化农业,3:14~16.
    郭建华,赵春江,王秀,等.2008.作物氮素营养诊断方法的研究现状及进展.中国土壤与肥料,4:10-14.
    郭佩秋,李絮花,王克安,等.2009.氮肥用量对日光温室黄瓜和土壤硝态氮含量的影响.华北农学报,24(1):185~188.
    何萍,金继运,林葆.1998.氮肥用量对春玉米叶片衰老的影响及其机理研究.中国农业科学,31(3):66~71.
    黄高宝,张恩和,胡恒觉.2001.不同玉米品种氮素营养效率差异的生态生理机制.植物营养与肥料学报,7(3):293~297.
    姜东燕,于振文.2008.灌溉量对冬小麦产量和土壤硝态氮含量的影响.土壤通报,3(6):703~705.
    荆家海.1994.植物生理学.西安:陕西科技出版社.13~35.
    李潮海,刘奎,周苏玫,等.2002.不同施肥条件下夏玉米光合对生理生态因子的响应.作物学报,28(2):265~269.
    李桂娟,朱丽丽,李井会.2008.作物氮素营养诊断的无损测试研究与应用现状.黑龙江农业科学,4:127~129.
    李世清,李生秀.2004.半干旱地区农田生态系统中硝态氮的淋失.应用生态学报,11(2):240~242.
    李志宏,张福锁,王兴仁.1997.我国北方地区几种主要作物氮营养诊断及追肥推荐研究,Ⅱ:植物硝酸盐快速诊断方法的研究.植物营养与肥料学报,3(3):268~273.
    梁银丽,陈培元.1996.土壤水分和氮磷营养对小麦根系生理特性的调节作用.植物生态学报,3:255~262.
    刘建安,米国华,张福锁.1999.不同基因型玉米氮效率差异的比较研究.农业生物技术学报,7(3):248~254.
    刘克礼,盛晋华.1989.春玉米叶片叶绿素含量与光合速率的研究.内蒙古农牧学院学报,19(2):48~51.
    刘婷婷,樊明寿,李春俭.2005.不同氮效率玉米自交系对氮素供应的反应.华北农学报,20:83~86.
    刘微,赵同科,王丽英.2006.不同水分、施氮量对土壤中硝态氮含量分布的影响.华北农学报,21(3):27~30.
    陆景陵主编.1994.植物营养学.北京:北京农业大学出版社/张继澍主编.1999植物生理学.西安,世界图书出版社.
    吕殿青,杨进荣,马林英.1999.灌溉对土壤硝态氮淋洗效应影响的研究.植物营养与肥料学报,5(4):307~315.
    吕丽华,赵明,赵久然,等.2008.不同施氮量下夏玉米冠层结构及光合特性的变化.中国农业科学,41(9):2624~2632.
    马兴林,王庆祥,钱成明,等.2008.不同施氮量玉米超高产群体特征研究.玉米科学,16(4):158~162.
    邵国庆,李增嘉,苏诗杰,等.2008.氮水耦合对玉米产量和品质及氮肥利用率的影响.山东农业科学,9:29~32.
    沈阿林,宋保谦.2000.沿黄稻区主要水稻品种的需肥规律、叶色动态与施氮技术研究[J].华北农学报,15(4):131-136.
    沈秀瑛,戴俊英,胡安畅,等.1993.玉米群体冠层特征与光截获量及产量关系的研究.作物学报,19(3):246~252.
    宋朝玉,张继余,刘洪明,等.2009.氮磷钾、秸秆还田和密度对玉米产量及农业性状的影响.山东农业科学,2:37~40.
    孙红春,李存东,周彦珍.2005.不同氮素水平对棉花功能叶生理特性、植株性状及产量构成的影响.河北农业大学学报,28(6):9~141.
    陶勤南,方萍,吴良欢,等.1990.水稻氮素营养的叶色研究.土壤,22(4):190-193.
    田纪春.2001.氮素追肥后移对小麦子粒产量和旗叶光合特性的影响.中国农业科学,34(1):1~4.
    王进军,柯福来,白鸥,等.2008.不同施氮方式对玉米干物质积累及产量的影响.沈阳农业大学学报,39(4):392~395.
    王克磊,蒋芳玲,吴震,等.2009.水分和光照互作对番茄生长发育和生理特性的影响。西北农业学报,18(4):208~212,260.
    王旭明,张铮,王海红,等.2010.局部根区水氮耦合对玉米幼苗养分吸收利用的影响.干旱地区农业研究,28(5):107~113.
    王启现,王璞,杨相勇,等.2003.不同施氮时期对玉米根系分布及其活性的影响.中国农业科学,36(12):1469~1475.
    王启现,王璞,申丽霞,等.2004.施氮时期对玉米土壤硝态氮含量变化及氮盈亏的影响.生态学报,24(8):1582~1588.
    王双,陈家宙,罗勇.2008.施氮水平对不同干旱程度夏玉米生长的影响.植物营养与肥料学报,14(4):646~651.
    王宗明,梁银丽.2003.氮磷营养对夏玉米水分敏感性及生理参数的影响.生态学报,4:751~725+752~757.
    韦泽秀,梁银丽,井上光弘,等.2009.水肥处理对黄瓜土壤养分、酶及生物多样性的影响.应用生态学报,20(7):1678~1684.
    韦泽秀,梁银丽,周茂娟,等.2010.水肥组合对日光温室黄瓜叶片生长和产量的影响.农业工程学报,(3):69~74.
    邬飞波,许馥华,金珠群.199.利用叶绿素计对短季棉氮素营养诊断的初步研究.作物学报,25(4):483-488.
    熊亚梅,梁银丽,周茂娟.2007.氮肥水平对甘蓝产量和品质及土壤硝态氮含量的影响.西北植物学报,27(4):839-843.
    杨德光,牛海燕,张洪旭,等.2008.氮胁迫和非胁迫对春玉米产量和品质的影响.玉米科学,16(4):55~57,60.
    叶冰,韩晓日,战秀梅,等.2010.不同施肥时期对春玉米土壤硝态氮含量变化的影响.杂粮作物,30(4):302~305.
    殷延勃,马洪文.2008.粳稻剑叶不同发育时期SPAD值遗传效应分析.西北农业学报17(5):171-173,193.
    于亚利,贾文凯,王春宏,等.2011.春玉米叶片SPAD值与氮含量及产量的相关性研究.玉米科学,19(4):89~92,97.
    鱼欢,杨改河,王之杰.2010.不同施氮量及基追比例对玉米冠层生理性状和产量的影响.植物营养与肥料学报,16(2):266~273.
    袁新民,同延安,杨学云,等.2000.灌溉与降水对土壤NO3-N累积的影响.水土保持学报,14(3):71~73.
    张国印,孙世友,王丽英,等.2003.氮肥施用量对土壤硝态氮含量和分布的影响.河北农业科学,7(4):7~12.
    张建华,李迎春.1989.水分影响作物发育进程的研究.气象,23(6):53~56.
    张绍长,胡昌浩,龚江,等.2004.低磷胁迫对磷不同利用率玉米叶绿素荧光参数的影响.作物学报,30(4):365~370.
    张树兰,同延安,梁东丽,等.2004.氮肥用量及施用时间对土体中硝态氮移动的影响.土壤学报,41(2):270~277.
    赵满兴,周建斌,翟丙年,等.2005.旱地不同冬小麦品种氮素营养的叶绿素诊断.植物营养与肥料学,11(4):461-466.
    周顺利,张福锁,王兴仁.2002.土壤硝态氮时空变异与土壤氮素表观盈亏II.夏玉米.生态学报,22(1):48~53.
    周晓舟,唐创业.2008.氮磷钾对秋玉米农艺性状和植株养分的影响.河南农业科学,(9):26-29.
    朱新开,盛海君,顾晶,等.2005.应用SPAD值预测小麦叶片叶绿素和氮含量的初步研究.麦类作物学报,25(2):46.
    Agati G, Cerovic ZG, Marta AD et al.2008. Optically-assessed preformed flavonoids and susceptibility ofgrapevine to Plasmopara viticola under different light regimes. Function Plant Biology,35:77~84.
    Agehara S, Warncke DD.2005. Soil moisture and temperature effects on nitrogen release from organicnitrogen sources. Soil Science Society American Journal,69:1844~1855.
    Alvarez de Toro J.1987. Respueta del girasol (Helianthus annuus L.) a un suministro variable de agua dereigo y de nitrogeno, University of Cordoba.
    Anderson JV, Hess JL, Cheione BJ.1990. Purification, characterization, and immunological properties fortwo isoforms of glutathione reductase from eastern white pine needles. Plant Physiol,94:1402~1409.
    Argenta G, Ferreira da Silva PR, Sangoi L.2004. Leaf relative chlorophyll content as an indicatorparameter to predict nitrogen fertilization in maize. Ciênc. Rural,34:1379~1387.
    Arora Y, Juo ASR.1982. Leaching of fertilizer ions in a Kaolinitic Ultisol in the high rainfalltropics:Leaching of nitrate in field plots under cropping and bare fallow. Soil Science Society AmericaJournal,46:1212~1218.
    Arregui LM, Lasa B, Lafarga A, et al.2006. Evaluation of chlorophyll meters as tools for N fertilization inwinter wheat under humid Mediterranean conditions. European Journal of Agronomy,24:140~148.
    Aulakh MS, Malhi SS.2005. Interaction of nitrogen with other nutrients and water: effect on crop yield andquality, nutrient use efficiency, carbon sequestration and environmental pollution. AdvancedAgronomy,86:341~409.
    Azedo-Silva J, Osório J, Fonseca F, et al.2004. Effects of soil drying and subsequent re-watering on theactivity of nitrate reductase in roots and leaves of Helianthus annuus, Funct. Plant Biol.31,611~621.
    Bennett JM, Mutti LSM, Rao PSC, et al.1989. Interactive effects of nitrogen and water stresses on biomassaccumulation, nitrogen uptake, and seed yield of maize. Field Crops Research,19:297~311.
    Blackmer TM, Schepers JS.1995. Use of a chlorophyll meter to monitor nitrogen status and schedulefertigation for corn. J. Prod. Agric.8:56~60.
    Canadela L.1991. Diffused pollution of groundwater by agriculture:a study in the Maresme area ofarcelona.Spain proc Int Conf Environ Pollute,:161~169·
    Carlos M, Correia JM, Moutinho P, et al.2005. Ultraviolet-B radiation and nitrogen affect thephotosynthesis of maize: a Mediterranean field study. Europ. J. Agronomy,22:337~347.
    Cartelat A, Cerovic ZG, Goulas Y, et al.2005. Optically assessed contents of leaf polyphenolics andchlorophyll as indicators of nitrogen deficiency in wheat (Triticum aestivum L.). Field Crops Research,91:35~49.
    Cate RBJr, Nelson LA.1971. A simple statistical procedure for partitioning soil test correlation data intotwo classes. Soil Science Society of America Proceedings,35:658~660.
    Chapin FS,1980. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst.1,233~260.
    Cheng, LL.2003. Xanthophyll cycle pool size and composition in relation to the nitrogen content of appleleaves. Journal of Experimental Botany,54(381):385~393.
    Cheruiyot EK, Mumera LM, Ngètich WK, et al.2007. Polyphenols as potential indicators for droughttolerance in tea (Camellia sinensis L.). Biosci. Biotechnol. Biochem,71(9):2190~2197.
    CorreiaMJ, Fonseca F, Azedo-Silva J, et al.2005. Effects of water deficit on the activity of nitratereductase and content of sugars, nitrate and free amino acids in the leaves and roots of sunflower andwhite lupin plants growing under two nutrient supply regimes, Physiol. Plantarum,124,61~70.
    Cruz, JL, Mosquim PR, Pelacani CR, et al.2003. Photosynthesis impairment in cassava leaves in responseto nitrogen deficiency. Plant and Soil,257:417~423,2003.
    DaMatta, FM, Loos RA, Silva EA, et al.2002. Limitations to photosynthesis in coffea canephora as a resultof nitrogen and water availability. Journal of Plant Physiology,159:975~981.
    Debaeke P, Rouet P, Justes E.2006. Relationship between the normalized SPAD index and the nitrogennutrition index: application to durum wheat. Journal of Plant Nutrition,29:75~92.
    Demotes-Mainard S, Boumaza R, Meyer S et al.2008. Indicators of nitrogen status for ornamental woodyplants based on optical measurements of leaf epidermal polyphenol and chlorophyll contents. ScienceHorti,115:377~385.
    Ding L, Wang KJ, Jiang GM, et al.2006. Diurnal variation of gas exchange, chlorophyll fluorescence, andxanthophyll cycle components of maize hybrids released in different years. Photosythetica,44:26~31.
    Dou ZL.1989. On some aspects in soil nitrogen research. Progress in Soil Science,2:1~9.
    Dwyer LM, Anderson AM, Stewart DW, et al.1995. Changes in maize hybrid photosynthetic response toleaf nitrogen, from pre-anthesis to grain fill. Agronomy Journal,87:1221~1225.
    Dwyer LM, Anderson AM, Ma BL et al.1995. Quantifying the nonlinearity in chlorophyll meter responseto corn leaf nitrogen concentration. Canadian Journal of Plant Science,75:179~182.
    Efeo lu B, Ekmek i Y, i ek N.2009. Physiological responses of three maize cultivars to drought stressand recovery. South African Journal of Botany,75:34~42.
    Elwadie ME, Pierce FJ, Qi J.2005. Remote sensing of canopy dynamics and biophysical variablesestimation of corn in Michigan. Agronomy Journal,97:99~105.
    Esfahani M, Abbasi HRA, Rabiei B, et al.2008. Improvement of nitrogen management in rice paddy fieldsusing chlorophyll meter (SPAD). Paddy Water Environment,6:181~188.
    Estiarte M, Penuelas J, Kimball BA, et al.1999. Free-air CO2enrichment of wheat: leaf flavonoidconcentration throughout the growth cycle. Physiology Plant,105:423~433.
    Evans, JR.1983. Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). PlantPhysiology,72:297~302.
    Evans JR, Terashima I.1988. Photosynthetic characteristics of spinach leaves grown with differentnitrogen treatments. Plant Cell Physiol,29:157~165.
    Ferguson RB, Hergert GW, Schepers JS, et al.2002. Site-specific nitrogen management of irrigated maize:Yield and soil residual nitrate effects. Soil Science Society America Journal,66:544~553.
    Fox RH, Piekielek WP, Macneal KM.1994. Using a chlorophyll meter to predict nitrogen fertilizer eeds ofwinter wheat.Communications in Soil Science and Plant Analysis,25(3,4):171-181.
    Genty B, Briatais JM, Baker NR.1989. The relationships between the quantum yield of photosyntheticelectron transport and quenching of chlorophyll fluorescence. Biochim Bioph Acta,990:87-92.
    Gerik TJ, Oosterhuis DM, Torbert HA,1998. Managing cotton nitrogen supply. Adv. Agron.64,115~147.
    Gianquinto G, Goffart JP, Olivier M, et al.2004. The use of hand-held chlorophyll meters as a tool to assessthe nitrogen status and to guide nitrogen fertilization of potato crop. Potato Research,47:35~80.
    Goulas Y, Cerovic ZG, Cartelat A, et al.2004. Dualex: a new instrument for field measurements ofepidermal ultraviolet absorbance by chlorophyll fluorescence. Appl. Opt.43:4488~4496.
    Guo S, Brueck H, Sattelmacher B.2002. Effects of supplied nitrogen form on growth and water uptake ofFrench bean (Phaseolus vulgaris L.) plants. Plant and Soil,239:267~275.
    Guo S, Schinner K, Sattelmacher B, et al.2005. Different apparent CO2compensation points in nitrate andammonium-grown Phaseolus vulgaris L. and the relationship to non-photorespiratory CO2evolution.Physiol. Plant.123:288~305.
    Guo SW, Zhou Y, Gao YX, et al.2007. New Insights into the Nitrogen Form Effect on Photosynthesis andPhotorespiration. Pedosphere.17(5):601~610.
    Gruzdeva LI, Matveeva EM, Kovalenko TE.2007. Changes in soil nematode communities under theimpact of fertilizers. Eurasian Soil Science,40,681~693.
    Haefele SM, Jabbar SMA, Siopongco JDLC, et al.2008. Nitrogen use efficiency in selected rice (Oryzasativa L.) genotypes under different water regimes and nitrogen levels. Field Crops Research,107:137~146.
    Hawkins JA, Sawyer JE, Barker DW, et al.2007. Using relative chlorophyll meter values to determinenitrogen application rates for corn. Agronomy Journal,99:1034~1040.
    Hedeker D, Gibbons RD.2006. Longitudinal data analysis. John Wiley&Sons, Inc. Hoboken, New Jersey.
    Heitholt JJ, Johnson RC, Ferris DM.1991. Stomatal limitation to carbon dioxide assimilation innitrogen-and drought-stressed wheat. Crop Science,31,135~139.
    Henriques FS.2009. Leaf chlorophyll fluorescence: background and fundamentals for plant biologists.Botanical Reiew.75:249~270.
    Hinzman LD, Bauer ME, Daughtry CST.1986. Effectsof nitrogen fertilization on growth and reflectancecharacteristics of winter wheat. Remote Sensing Environment,19:47~61.
    Holden NM.1995. Paper test strip for rapid determination of nitrate tracer. Communications in SoilScience and Plant Analysis,26:1885~1894.
    Horner JD.1990. Nonlinear effects of water deficits on foliar tannin concentration. BiochemicalSystematics and Ecology,18:211~213.
    Hosseini NM, Palta JA, Berger JD, et al.2009. Sowing soil water content effects on chickpea (Cicerarietinum L.): Seedlin emergence and early growth interaction with genotype and seed size.Agricultural Water Management,96:1732~1736.
    Hsiao TC.1973. Plant responses to water stress. Annual Review of Plant Physiology,24:519~570.
    Hunt JE, McNeil DL.1998. Nitrogen status affects UV-B sensitivity of cucumber. Australian journal ofPlant Physiology,25,79~86.
    Hussain F, Bronson KF, Yadvinder S, et al.2000. Use of chlorophyll meter sufficiency indices for nitrogenmanagement of irrigated rice in Asia. Agronomy Journal,92:875~879.
    Isaac RA, Johnson WC.1976. Determination of total nitrogen in plant tissue using a block digester. JournalAssociation of Offical Analytical Chemists.59:98~100.
    Johnkutty I, Palaniappan SP.1996. Use of chlorophyll meter for nitrogen management in lowland rice.Fertilizer Research,45:21~24.
    Jones CG, Hartley SE.1999. A protein competition model of phenolic allocation. OIKOS,86:27~44.
    Jones JW, Zur B, Bennett JM.1986. Interactive effects of water and nitrogen stress on carbon and watervapour exchange of corn canopies. Agricultural and Forest Meteorology,38:113~126.
    Jovanovic Z, Djakovic TR, Stikic L, et al.2004. Effect of N deficiency on leaf growth and cell wallperoxidase activity in contrasting maize genotypes. Plant and Soil,265:211~223.
    Kang SZ, Shib WJ, Zhang JH.2000. An improved water-use efficiency for maize grown under regulateddeficit irrigation. Field Crops Research,67:207~214.
    Kayode GO, Agboola AA.1981. Effect of different nitrogen levels, plant population and soil nutrient statuson yield and yield components of maize (Zea mays L.) in different ecological zones of Nigeria.Fertilizer Research,2:177~191.
    Khanizadeh S.1992. Quick mathematical calculation. Submitted to: Consumer and Corporate AffairsCanada, Copyright Office.
    Khamis S, Lamaze T, Lemoine Y, et al.1990. Adaptation of the Photosynthetic Apparatus in Maize Leavesas a Result of Nitrogen Limitation. Plant Physiology,94:1436~1443.
    Klaus H, Oscar K.2008. Design and Analysis of Experiments. John Wiley&Sons, Inc., Hoboken, NewJersey.
    Ksouri R, Megdiche W, Debez A, et al.2007. Salinity effects on polyphenol content and antioxidantactivities in leaves of the halophyte cakile maritime. Plant Physiology and Biochemistry,45:244~249.
    Lachat Instruments.2005. Methods list for automated ion analyzers (flow injection analyses, ionchromatography). http://www.lachatinstruments.com/applications/MethodsList.PDF.
    Labidi M, Dahmane ABK, Mansour HB, et al.2003. Soil P-status and cultivar maturity effects onpea-Rhizobium symbiosis. Plant and Soil,252:339~348.
    Latiri-Souki K, Nortcliff S, Lawlor DW.1998. Nitrogen fertilizer can increase dry matter, grain productionand radiation and water use efficiencies for durum wheat under semi-arid conditions. EuropeanJournal of Agronomy,9:21~34.
    Larsson M.1992. Translocation of nitrogen in osmotically stressed wheat seedlings, Plant Cell&Environment.15,447~453.
    Larsson M, Larsson CM, Whitford PN, et al.1989. Influence of osmotic stress on nitrate reductase activityin wheat (Triticum aestivum L.) and the role of abscisic acid, Journal fo Experimental Botany,40,1265~1271.
    Lau TSL, Eno E, Goldstein G, et al.2006. Ambient levels of UV-B in Hawaii combined with nutrientdeficiency decrease photosynthesis in near-isogenic maize lines varying in leaf flavonoids: Flavonoidsdecrease photoinhibition in plants exposed to UV-B. Photosynthetica44(3):394~403.
    Lawlor DW.2002. Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key tounderstanding production systems. Journal of Experimental Botany,53:773~787.
    Lawlor DW, Cornic G.2002. Photosynthetic carbon assimilation and associated metabolism in relation towater deficits in higher plants, Plant Cell&Environment,25,275~294.
    Leidi EO, Silberbush M, Soares MIM, et al.1992. Salinity and nitrogen nutrition studies on peanut andcotton plants. Journal of Plant Nutrition,15(5):591~604.
    Lemaire G, Gastal F.1997. N uptake and distribution in plant canopies, in: G. Lemaire (Ed.), Diagnosis ofthe nitrogen status in crops, Springer Verlag, Berlin, Germany. pp.3~43.
    Li ZZ, Li WD, Li WL.2004. Dry-period irrigation and fertilizer application affect water use and yield ofspring wheat in semi-arid regions. Agricultural Water Management,65:133~143.
    Liang WJ, Lou YL, Li Q, et al,2008. Nematode faunal response to long-term application of nitrogenfertilizer and organic manure in Northeast China. Soil Biology&Biochemistry:1~8.
    Lichtenthaler HK, Buschmann C.2001. Chlorophylls and carotenoids–Measurement and characterizationby UV-VIS. In: Lichtenthaler HK editor. Current Protocols in Food Analyticial Chemistry (CPFA),(Supplement1).New York: Wiley.
    Lin XQ, Zhou WJ, Zhu DF, et al.2005. Effect of SWD irrigation on photosynthesis and grain yield of rice(Oryza sativa L.). Field Crops Research,94:67~75.
    Little TM, Hills F J.1978. Agricultural Experimentation: Design and Analysis. Paperback. Wiley.
    Liu H, Duan AW, Sun JS, et al.2009. Effects of soil moisture regime on greenhouse tomato yield and itsformation under drip irrigation. Chinese Journal of Applied Ecology,20(11):2699~704.
    Longnecker N, Kirby EJM, Robson A.1993Leaf emergence, tiller growth, and apical development ofnitrogen-deficient spring wheat. Crop Science,33:154~160.
    Lu CM, Zhang JH.2000. Photosynthetic CO2assimilation, chlorophyll fluorescence and photoinhibition asaffected by nitrogen deficiency in maize plants. Plant Science,151:135~143.
    Lu C, Zhang J, Zhang Q, et al.2001. Modification of photosystemⅡ photochemistry in nitrogendeficientmaize and wheat plants. Plant physiology,158(11):1423~1430.
    Ma BL, Dwyer LM, Gregorich EG.1999. Soil N amendment, effects on seasonal N mineralization and Ncycling in maize production. Agronomy Journal,91:1003~1009.
    Ma BL, Subedi KD, Costa C.2005. Comparison of crop-based indicators with soil nitrate test for cornnitrogen requirement. Agronomy Journal,97:462~471.
    Mandal A, Patra AK, Singh D, et al.2007. Effect of long-term application of manure and fertilizer onbiological and biochemical activities in soil during crop development stages. Bioresource Technology98,3585~3592.
    Mansouri-Far C, Sanavy SAMM, Saberali SF.2010. Maize yield response to deficit irrigation duringlow-sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agricultural WaterManagement,97:12~22.
    Markwell J, Osterman JC, Mitchell JL.1995. Calibration of the Minolta SPAD-502leaf chlorophyll meter.Photosynthesis Research,46:467~472.
    Martìnez DE, Guiamet JJ.2004. Distortion of the SPAD-502chlorophyll meter readings by changes inirradiance and leaf water status. Agronomy,24:41~46.
    McCullough D E, Girardin P, Mihajlovic M, et al.1994Influence of N supply on development and drymatter accumulation of an old and new maize hybrid. Canadian journal of Plant Science,74,471~477.
    Meyer S, Cerovic ZG, Goulas Y et al.2006. Relationships between optically assessed polyphenols andchlorophyll contents and leaf mass per area ratio in woody plants: A signature of the carbon–nitrogenbalance within leaves? Plant, Cell and Environment,29:1338~1348.
    Milliken GA, Johnson DE.2001. Analysis of messy data: volume III analysis of covariance.Chapman&hall/crc. A CRC Press Company. Boca Raton London New York Washington, D.C.
    Morgan JA.1984. Interaction of water supply and N in wheat. Plant Physiology,76:112~117.
    Murdock LW, Bowley C, Jones S, et al.1994. Nitrogen recommendations for wheat using the chlorophyllmeter. p.95~100. In Proc. North Central Extension-Industry Soil Fertility Conf., St. Louis, MO.26–27Oct.1994. Potash and Phosphate Inst., Brookings, SD.
    Navari-Izzo F, Pinzino C, Quartacci MF, et al.1994. Intracellular membranes: kinetics of superoxideproduction and changes in thylakoids of resurrection plants upon dehydration and rehydration. Proc RSoc Edinburgh,102B:187~191.
    Nelson LA, Anderson RL.1977. Partitioning of soil test-crop response probability. In: Soil Testing:Correlating and Interpreting the Analytical Results. eds. M. Stelly and D. M. Kral, pp.19-38. SpecialPublication29. Madison, WI: American Society of Agronomy.
    Neilsen D, Hogue EJ, Neilsen GH, et al.1995. Using SPAD-502values to assess the nitrogen status ofapple trees. HortScience,30(3):508~512.
    Olle B., Powles S.B.1984. Inhibition of photosynthetic reactions under water stress: interaction with lightlevel. Planta,161:490~504.
    O’Neill PM, Shanahan JF, Schepers JS.2006. Use of chlorophyll fluorescence assessments to differentiatecorn hybrid response to variable water conditions. Crop Science,46:681~687.
    Ortuzar-Iragorri MA, Alonso A, Castellon A, et al.2005. N-Tester use in soft winter wheat: Evaluation ofnitrogen status and grain yield prediction. Agronomy Journal,97:1380~1389.
    Palmer S, Berridge DM, McDonald AJS, et al.1996. Control of leaf expansion in sunflower (Helianthusannuus L.) by nitrogen nutrition. Journal of Experimental Botany.47,359~368.
    Pandey RK, Maranville JW, Admou A.2000. Deficit irrigation and nitrogen effects on maize in a Sahelianenvironment I. Grain yield and yield components. Agricultural Water Management,46:1~13.
    Peng S, Garcia FV, Laza RC, et al.1996. Increased N-use efficiency using a chlorophyll meter onhigh-yielding irrigated rice. FieldCrops Res,(47):243-252.
    Peng S, Laza MRC, Garcia FV, et al.1995. Chlorophyll meter estimates leaf area-based nitrogenconcentration of rice. Communications in Soil Science and Plant Analysis,26:927~935.
    Plènet D, Lemaire G.2000. Relationships between dynamics of nitrogen uptake and dry matteraccumulation in maize crops. Determination of critical N concentration. Plant Soil,216:65~82.
    Piekielik W P, Fox R.H.1992. Use of a chlorophyll II meter to predict side dress nitrogen requirement formaize.Agron,84:59-65.
    Prasertsak A, Fukai S.1997. Nitrogen availability and water stress interaction on rice growth and yield.Field Crops Research,52:249~260.
    Raab T K, Terry N.1995. Carbon, nitrogen, and nutrient interactions in Beta vulgaris L. as influenced bynitrogen source, NO3-versus NH4+. Plant Physiol.107:575~584.
    Radin JW., Boyer JS.1982Control of leaf expansion by nitrogen nutrition in sunflower plants. Role ofhydraulic conductivity and turgor. Plant Physiol.69,771~775.
    Radin JW, Parker LL, Guinn G.1982Water relations of cotton plants under nitrogen deficiency. V.Environmental control of abscisic acid accumulation and stomatal sensitivity to abscisic acid. PlantPhysiol.70,1066~1070.
    Reddy AR, Reddy KR, Padjung R, et al.1996. Nitrogen nutrition and photosynthesis in leaves of pimacotton. J. Plant Nutr.19,755~770.
    Reddy KR, Matcha SK.2010. Quantifying nitrogen effects on castor bean (Ricinus communis L.)development, growth, and photosynthesis. Industrial Crops and Products31:185~191.
    Rouhi V, Samson R, Lemeur R., et al.2007. Photosynthetic gas exchange characteristics in three differentalmond species during drought stress and subsequent recovery. Environ. Exp. Bot.59:117~129.
    Samborski SM, Tremblay N, Fallon E.2009. Strategies to Make Use of Plant Sensors-based DiagnosticInformation for Nitrogen Recommendations. Agronomy Journal,101:800~816.
    Sanchez RA, Hall AJ, Trapani N, et al.1983. Effects of water stress on the chlorophyll content, nitrogenlevel and photosynthesis of leaves of two maize genotypes. Photosynthesis Research,4:35~47.
    Saneok H, Moghaie REA, Premachandr GS, et al.2004. Nitrogen nutrition and water stress effects on cellmembrane stability and leaf water relations in Agrostis palustris Huds. Environmental andExperimental Botany,52:131~138.
    Sayed OH.2003. Chlorophyll fluorescence as a tool in cereal crop research. Photosythetica,41(3):321~330.
    Scalabrelli G, Saracini E, Remorini D, et al.2007. Changes in leaf phenolic compounds in two grapevinevarieties (Vitis vinifera L.) grown in different water conditions. Acta Hort.,754:295~299.
    Scharf PC, Brouder SM, Hoeft RG, et al.2006. Chlorophyll meter readings can predict nitrogen need andyield response of corn in the North-Central USA. Agronomy Journal,98:655~665.
    Schepers JS, Raun WR.2008. Nitrogen in Agricultural Systems. Madison, Wis.: Am. Soc. Agron Inc, CropSci. Soc. Am. Inc, and Soil Sci. Soc. Am Inc. UAS.
    Schlemmer MR, Francis DD, Shanahan JF, et al.2005. Remotely measuring chlorophyll content in cornleaves with differing nitrogen levels and relative water content. Agronomy Journal,97:106~112.
    Schr der JJ, Neeteson JJ, Oenema O, et al.2000. Does the crop or the soil indicate how to save nitrogen inmaize production? Reviewing the state of the art. Field Crops Research,66(2):151~164.
    Serrano L, Filella I, Pe nuelas J,2000. Remote sensing of biomass and yield of winter wheat underdifferent nitrogen supplies. Crop Science,40:723~731.
    Shangguan ZP, Shao MA, Dyckmans J.2000. Nitrogen nutrition and water stress effects on leafphotosynthetic gas exchange and water use efficiency in winter wheat. Environ. Exp. Bot.44:141~149.
    Shimshi D.1970. The effect of nitrogen supply on some indices of plant-water relations of beans(Phaseolus vulgaris L.). New Phytol.69(2):413~424.
    Shoji S.2005. Innovative use of controlled availability fertilizerswith high performance for intensiveagriculture and environmental conservation. Science in China Series C (Life Sciences),48(22):912~920·
    Singh B, Singh Y, Ladha JK, et al.2002. Chlorophyll meter-and leaf color chart-based nitrogenmanagement for rice and wheat in Northwestern India. Agronomy Journal,94:821~829.
    Skillman JB, Osmond CB,1998. Influence of nitrogen supply and growth irradiance on photoinhibition andrecovery in Heuchera americana (Saxifragaceae). Physiol. Plant,103,567~573.
    Suprayogo DM, van Noordwijk KH, Cadisch G.2002. The inherent safety net of Ultisols: Measuring andmodeling retarded leaching mineral nitrogen. Eur. J. Soil Sci.,53:185~194.
    SAS institute.2003. SAS for windows. V.9.1. SAS Inst., Cary, NC.
    Thomos DS, Turner DW.2001. Banana (Musa sp.) leaf gas exchange to soil drought, shading and laminafolding. Sci. Horti.90:93~108.
    Tilling AK, O’Leary GJ, Ferwerda JG, et al.2007. Remote sensing of nitrogen and water stress in wheat.Field Crops Research,104:77~85.
    Tremblay N, Bélec C.2006. Adapting nitrogen fertilization to unpredictable seasonal conditions with theleast impact on the environment. Horttechnology,16:408~412.
    Tremblay N, Fortier é, Mellgren R, et al.2009a. The Dualex-a new tool to determine nitrogen sufficiencyin broccoli. Acta Horti.824:121~131.
    Tremblay N, Wang Z, Bèlec C.2007. Evaluation of the Dualex for the assessment of corn nitrogen status.Journal Plant Nutrition,30:1355~1369.
    Tremblay N, Wang Z, Bélec C.2010. Performance of Dualex in spring wheat for crop nitrogen statusassessment, yield prediction and estimation of soil nitrate content. Journal Plant Nutrition,33:57~70.
    Tremblay N, Wang ZJ, Ma BL, et al.2009b. A comparison of crop data measured by two commercialsensors for variable-rate nitrogen application. Precision Agric.10:145~161.
    Triboi-Blondel AM.1978. Effets de differents régimes d’alimentation hydrique sur l’activité in vivo de lanitrate-reductase, C.R. Acad. Sci. Paris,286:1795~1798.
    Turner FT, Jund MF.1991. Chlorophyll meter to predict nitrogen topdressing requirement for semid-waterrice. Agronomy Journal,83:926~928.
    van Kooten O, Snel J.1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology.Photosynth Research,25:147~150.
    Varvel GE, Schepers JS, Francis DD.1997. Ability for in-season correction of nitrogen deficiency in cornusing chlorophyll meters. Soil Science Society American Journal,61:1233~1239.
    Vidal I, Longeri L, Hétier JM.1999. Nitrogen uptake and chlorophyll meter measurements in spring wheat.Nutrient Cycling in Agroecosystems,55:1~6.
    Walch-Liu P, Neumann G, Bangerth F, et al.2000. Rapid effects of nitrogen form on leaf morphogenesis intobacco. Journal of Experimental Botany,51(343):227~237.
    Wang JR, Hawkins CDB, Letchford T.1998. Photosynthesis, water and nitrogen use efficiencies of fourpaper birch (Betula papyrifera) populations grown under different soil moisture and nutrient regimes.For. Ecol. Manag.112:233~244.
    Wood CW, Reeves DW, Duffield RR, et al.1992. Field chlorophyll measurements for evaluation of cornnitrogen status. Journal of Plant Nutrition,15(4):487~500.
    Wu FB, Wu LH, Xu FH.1998. Chlorophyll meter to predict nitrogen side-dress requirements forshort-season cotton (Gossypium hirsutum L.). Field Crops Research,56:309~314.
    Wu FZ, Bao WK, Li FL, et al.2008. Effects of water stress and nitrogen supply on leaf gas exchange andfluorescence parameters of Sophora davidii seedlings. Photosythetica,46(1):40~48.
    Yu H, Tremblay N, Wang ZJ, et al.2010. Evaluation of nitrogen sources and application methods fornitrogen-rich reference plot establishment in corn. Agronomy Journal,102(1):23~30.
    Zebarth BJ, Drury CF, Tremblay N, et al.2009. Opportunities for improved fertilizer nitrogen managementin production of arable crops in eastern Canada: A review. Canadian Journal Soil Science,89:113~132.
    Zhang J, Blackmer AM, Ellsworth JW, et al.2008. Sensitivity of chlorophyll meters for diagnosingnitrogen deficiencies of corn in production agriculture. Agronomy Journal,100:543~550.
    Zhao D, Reddy KR, Kakani VG, et al.2005. Nitrogen deficiency effects on plant growth, leafphotosynthesis, and hyperspectral reflectance properties of sorghum. European Journal of Agronomy,22,391~403.
    Zhu JJ, Tremblay N, Liang YL.2011. A corn nitrogen status indicator less affected by soil water content.Agronomy Journal,103:890~898.
    Zhu JJ, Liang YL, Zhu YL, et al.2012. The interactive effects of water and fertilizer on photosyntheticcapacity and yield in tomato plants. Australia Journal of Crop Science,6(2):200-209.
    Ziadi N, Brassard M, Bélanger G, et al.2008. Critical nitrogen curve and nitrogen nutrition index for cornin eastern Canada. Agronomy Journal,100:271~276.
    Zotarelli L, Dukes MD, Scholberg JMS, et al.2009. Tomato nitrogen accumulation and fertilizer useefficiency on a sandy soil, as affected by nitrogen rate and irrigation scheduling. Agricultural WaterManagement,96:1247~1258.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700