用户名: 密码: 验证码:
水稻品种DUS测试标准品种多样性和测试性状稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用水稻DUS测试指南中选定的49个标准品种和59个测试形态性状进行表型多样性和性状稳定性及重要性进行分析;采用农业行业标准(NY/1433-2077)推荐的24对水稻SSR引物对49个标准品种和949份申请保护水稻测试材料进行DNA指纹图谱多样性研究;利用表型和基因型多样性参数对标准品种和测试品种进行聚类分析。旨在评价当前水稻DUS测试中标准品种、形态测试性状及SSR标记选择的合理性,为DUS测试指南(标准)的改进提供参考依据。主要结论如下:
     (1)以DUS测试指南中选定的49个水稻标准品种为材料,根据2008年在杭州田间试验对59个形态性状的调查数据,利用PopGen32软件计算了等位变异数、有效等位变异数和Shannon's多样性信息指数,对标准品种的形态性状多样性进行了评价;并根据其多样性参数采用NTSYS软件对标准品种进行了聚类分析。结果表明,59个形态性状在19份籼稻和30份粳稻品种中分别检测到201和262个等位变异,平均每个性状可以检测到3.4068(籼稻)和4.4407(粳稻)个等位变异,籼、粳稻类群中59个性状的平均Shannon's多样性指数分别为0.8318(0-1.7674)和0.9828(0-1.8547)。聚类分析结果表明,籼、粳稻群体内品种间的形态性状相似系数分别介于0.45-0.81和0.36-0.76,取相似系数0.70为阈值,可将19份籼稻和30份粳稻品种分别分为16和27类。多样性分析表明本研究的49个品种形态性状多样性丰富,具有性状描述的示例和校正作用。
     (2)以DUS测试指南中选定的49个水稻标准品种为材料,采用农业行业标准(NY/1433-2077)中推荐的24对水稻SSR引物进行DNA指纹图谱构建和遗传多样性分析。结果表明,24对SSR引物在19份籼稻和30份粳稻品种中分别检测到141和156个等位变异,平均每对引物可以检测到5.88(籼稻)和6.50(粳稻)个等位变异,籼、粳稻类群中24对SSR引物的平均Shannon's多样性指数分别为1.5141(1.0460-1.9959)和1.4389(0.4677-2.4503)。聚类分析结果表明,籼、粳稻群体内品种间的形态性状相似系数分别介于0.13-0.80和0.15-0.75,取相似系数0.65为阈值,可将19份籼稻和30份粳稻品种分别分为17和27类。分析表明,本研究的49个品种形态性状和DNA指纹图谱多样性丰富,结合形态性状和基因型聚类分析结果,可将现有的49个水稻DUS测试标准品种减少到46个
     (3)对水稻测试品种进行DNA指纹图谱多样性研究结果表明,24对SSR引物在949份水稻测试材料中共检测到227个等位变异,平均每对引物可以检测到9.46个等位变异;949份水稻材料中24对SSR引物的平均Shannon's多样性指数为1.4783,变幅介于0.8872-2.084。大部分标记都适合应用于DUS测试,极少部分标记如RM274和RM85的多样性相对较差,建议开发新的多样性好的SSR标记。聚类分析结果表明,相似系数在0.3处可大体将949份测试品种分为籼稻和粳稻两个大的类群,且这一分类结果与品种来源信息基本吻合。测试品种间大部分遗传相似系数都大于0.7,表明多数品种显示出较近的遗传距离,共有126组测试品种的基因型相似系数在0.8以上,部分品种间的相似系数高达0.95以上,说明当前水稻育种主要采用少数骨干亲本,遗传基础较狭窄。测试中4组的基因型相似系数为100%,且其DUS测试的形态性状也未表现出明显差异,可视为同一品种。
     (4)应用AMMI模型对DUS测试指南中列出的49份水稻品种DUS测试性状进行稳定性分析,并采用随机森林算法对测试性状的重要性进行评价。结果显示35个目测性状的稳定性相对较高,但性状间也有一定变化,Di值介于0.028-0.886。其中,护颖长度、剑叶卷曲等15个性状稳定性很高,Di值都在0.1以下,而叶茸毛和茎节包露二性状的稳定性相对较低,在不同的环境中表现出较大的变异性。量测性状的稳定性总体上较目测性状差,其中结实率、茎杆长度、抽穗期、每穗粒数和成熟期等性状的稳定性相对较低,稳定性参数Di都在0.5以上。测试性状的重要性分析表明,以量测方式观测的性状的重要性参数较大,而以目测方式观测的性状重要性参数相对较小
     (5)对不同施氮水平51个测试性状表达状态的研究结果表明,氮素施用量对目测性状和量测性状均有不同程度影响。其中,38个目测性状中,抽穗期、叶片绿色深浅与茎节花青甙显色对氮素的反应较明显,其他性状稳定性相对较好;13个量测性状中,最长芒长度稳定性较好,其他性状在不同氮素施用水平下均发生显著变化。
In this study,59morphological characteristics'phenotypic diversity of49example varieties which listed as example varieties in the DUS testing guidelines was studied; genetic diversity based on DNA fingerprint of the49example varieties and949rice test materials was analyzed by using24rice SSR primers recommended by testing guidelines; The clustering analysis for the example varieties and test varieties was conducted according to their phenotypic and genotypic diversity parameters; the stability and the importance of morphological characteristics for the example varieties in rice DUS testing was also analyzed. It aims to evaluate the current DUS test example varieties, the morphological test characteristics and SSR markers in the DUS testing guidelines, and to provide a criterion for selection and optimization of example varieties, morphological test characteristics and SSR markers in rice DUS testing system; it could also give a reference for developing DUS testing guidelines for other plant species. The main results are as follows:
     (1) Diversity analysis, including observed number of alleles, effective number of alleles and Shannon's information index, were conducted with49rice varieties which listed as example varieties in the DUS testing guidelines as materials, combining with the59morphological characteristics investigated at Hanzhou in2008. The clustering analysis for the example varieties was also conducted according to their species diversity parameters. The results showed that total of201and262alleles for59morphological characteristics were observed in the indica and japonica rice group, respectively, with an average of3.4068and4.4407alleles for each characteristic in the two subspecies. The Shannon's diversity index averaged from59morphological characteristics was0.8318with a range of0-1.7674and0.9828with a range of0-1.8547in the indica and japonica rice group, respectively. Several groups, with each includes2-3rice varieties with similarity over0.7, were found in both indica and japonica rice group, based on the clustering results. The results indicated that the49example varieties, which with rich diversity in morphological characteristics, could be used for demonstration and adjusting for characteristics' describing in DUS testing.
     (2) DNA fingerprinting and genetic diversity were conducted with49rice varieties which listed as example varieties in the DUS testing guidelines as materials, combining with24SSR markers. The clustering analysis for the example varieties was also conducted according to their species diversity parameters. The results showed that the total of141and156alleles for24SSR markers were observed in the indica and japonica rice group, respectively, with an average of5.88and6.50alleles for each marker in the two subspecies. The Shannon's diversity index averaged for24SSR markers were1.5141with a range of1.0460-1.9959and1.4389with a range of1.4389in the indica and japonica rice group, respectively. Several groups, with each includes2-3rice varieties with similarity over0.65, were found in both indica and japonica rice group, based on the clustering results. The results indicated that the49example varieties, which with rich diversity based on DNA fingerprint, could be used for demonstration and adjusting for SSR markers in DUS testing. The49rice example varieties could be reduced to46combined with the results of morphological characteristics and genotypic cluster analysis.
     (3) DNA fingerprinting and genetic diversity were conducted with949rice test varieties as materials, combining with the24SSR markers. The clustering analysis for the example varieties was also conducted according to their species diversity parameters. The results showed that a total of227alleles for24SSR markers were observed in the949rice varieties, with an average of9.46alleles for each marker. The Shannon's diversity index averaged for24SSR markers were1.4783with a range of0.8872-2.0841. Most of the markers are suitable for DUS test, a very small part of the SSR markers'diversity was relatively poor, such as RM274and RM85, it is recommended to develop new SSR markers. The cluster analysis showed that the949test rice varieties can be roughly divided into two large groups of indica and japonica according the threshold with similarity of0.3, and this classification was consistent with the varieties'sources information. Most of the test varieties'genetic similarity coefficient was greater than0.7; and a total of126test varieties'genetic similarity coefficient was above0.8, which indicated these varieties showed close genetic distance. Some test varieties'genetic coefficient was above0.95, which indicated the narrow genetic basis of current rice breeding. Among them, the genetic similarity coefficient of4rice groups was100%and their morphological characteristics also didn't show significant differences, field phenotypic identification was needed to decide whether they are the same rice varieties.
     (4) The stability analysis of DUS testing characteristics were conducted with49rice varieties which listed as example varieties in the DUS testing guidelines as materials, combining with AMMI model. The results showed that the stability of the35visual characteristics are relatively high, but there are some differences between different characteristics, the Di values ranged from0.028to0.886. The15morphological characteristics, such as glum length, leaf roll degree have high stability; the Di values were all below0.1. While the leaf hairs and phimosis degree have relatively low stability, they showed large variability in different environments. In a whole, the stability of measured characteristics was worse than the visual characteristics. Some of the measured characteristics'stability was relatively low, such as seed setting rate, stem length, heading date, grains per panicle and maturity date, the stability parameter Di was more than0.5. The importance parameters of the characteristics by measurement observation were greater than the characteristics by visual observation.
     (5) The51morphological characteristics of44rice varieties which listed as example varieties in the DUS testing guidelines were investigated by different nitrogen treatment. The results showed that application amount of nitrogen had varying degrees affects on visual characteristics and measured characteristics. Among them,38visual characteristics, such as heading date, leaf green degree and internodes anthocyanin coloration had obvious response to nitrogen, other visual characteristics had relatively better stability. The length of the longest awn had better stability among the13measurement indexes; other characteristics all had significant change in different nitrogen fertilizer levels.
引文
[1]袁克兴,李晓林,杭三八.国际植物新品种保护文选[M].北京:中国农业科技出版社,1996
    [2]李云海,肖晗,张春庆,等.用微卫星DNA标记检测中国主要杂交水稻亲本的遗传差异[J].植物学报1999,41(10):1061-1066
    [3]UPOV (Union for the protection of new varieties of plants). TC/38/14-CAJ/45/5[M], 2002
    [4]马世青,郑学莉.植物新品种保护基础知识[M].北京:蓝天出版社,1999
    [5]李晓辉,李新海,张世煌.植物新品种保护与DUS测试技术[J].中国农业科学,2003,36(11):1419-1422
    [6]Gill K S, Gill B S, Endo T R, et al. Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat[J]. Genetics,1996,143: 1001-1012
    [7]Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucl Acid Res,1990,18: 6531-6535
    [8]陆朝福,朱立煌.植物育种中分子标记辅助选择[J].生物工程进展,1995,15(4):11-17
    [9]Onna L, Miyao A, Inoue T, et al. Development of RAPD markers in rice and their conversion into sequence-tagged sites (STSs) and STS-specific primers[J]. DNA Res, 1994,(1):139-148
    [10]Zabeau M, Vos P. Selective restriction fragment amplification:a general method for DNA finger-printing European[P]. Patent Application Number:1992402629
    [11]王斌,翁曼丽.AFLP (?)勺原理及其应用[J].杂交水稻,1996,(5):27-30
    [12]伊佟明,黄敏仁.AFLP分子标记及其在植物育种上的应用[J].生物工程进展,1997,17(1):6-11
    [13]Lit T M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of dinucleotide repeat within the cardiac muscle action gene[J]. Am J Hum Gene,1989, 44:397-401
    [14]李莉,杨剑波,汪秀峰,等.利用ARPD和微卫星标记对协优杂交稻及其亲本进 行区别与鉴定[J].中国水稻科学,2000,14(4):203-217
    [15]朱作峰,孙传清,姜廷波,等.水稻品种SSR与AFLP及其与杂种优势的关系比较研究[J].遗传学报,2001,28(8):738-745
    [16]段世华,毛加宁,朱英国.用微卫星标记对我国杂交水稻主要恢复系遗传差异的检测分析[J].遗传学报,2002,29(3):250-254
    [17]Garland S H, Lewin L, Abedinia M, et al. The use of microsatellite polymorphisms for the identification of Australian breeding lines of rice(Oryza sativa L.)[J]. Euphytica,1999,108:53-63
    [18]Singh K N, Nnadi R, Shnamugasundarm P, et al. High-resolution DNA fingeprinting of Indian rice(Oryza sativa L.) varieties by amplified fragment length polymophism[J]. Genetic Resources and Crop Evolution,1999,46:427-433
    [19]Ayres N M, McClung A M, Larkin P D, et al. Microsatellites and a single nucleotide polymorphism differentiate apparent analysis classes in an extended pedigree of US rice germplasm[J]. Theor Appl Genet,1997,94:993-781
    [20]Dib C S, Paure C A. Comprehensive genetic map of the human genome based on 5264 microsatellites[J]. Nature,1996,380:152-154
    [21]Panaud O, Chen X. Frequency of microsatellite sequences in rice (Oryza sativa L.)[J]. Genome,1995,(38):1170-1176
    [22]Russell J R. Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs[J]. Theor Appl Genet,1997, (95): 714-722
    [23]Mitchell S E. Application of multiplex PCR and fluorescene-based, semiautomated allele sizing technology for genotyping plant genetic resources[J]. Crop Science,1997, 37:617-624
    [24]Milbourne D. Comparison of PCR-based marker systems for analysis of genetic relationship in cultivated potato[J]. Molecular Breeding,1997,3:127-136
    [25]Akagi H. Highly polyorphic microsatellites of rice consist of AT repeats and a classification of closely related cultivars with these microsatellite loci. Theor Appl Genet,1997,94:61-67
    [26]Olufowote J O, Xu Y. Comparative evaluation of with in cultivar variation of rice (Oryza sativa L.) using microsatellite and RFLP markers[J]. Genome,1997, (40): 782-790
    [27]樊叶杨,庄杰云,吴建利,等.应用微卫星标记鉴别水稻籼粳亚种[J].遗传,2000, 22(6):392-394
    [28]苏顺宗,黄玉碧,杨俊品,等.利用SSR鉴定水稻杂交种子纯度的研究[J].种子2003,127(1):23-24
    [29]李进波,周元飞,万丙良,等.利用SSR标记鉴别两系杂交稻鄂粳杂1号的真假[J].湖北农业科学,2003,(1):23-24
    [30]彭锁堂,庄杰云,颜启传,等.我国主要杂交水稻组合及其亲本SSR标记和纯度鉴定[J].中国水稻科学,2003,17(1):1-5
    [31]谭亚玲,谭学林.滇-型杂交粳稻恢复基因的分子鉴定研究[J].分子植物育种,2004,2(2):209-214
    [32]李莉,杨剑波.水稻SSR不同检测和分析方法的比较研究[J].中国水稻科学,2000,14(3):185-188
    [33]Cooke R J. SNPs in barley:a potential "Option 1" approach. Document for UPOV work group on biochemical and molecular techniques and DNA-profiling in particular[M]. UPOV, Geneva, Switzerland,2005
    [34]Vosman B, visser D, voort J R, et al. The establishment of'essential derivation"among rose varieties, using AFLP[J]. Theor Appl Genet,2004,109:1718-1725
    [35]Dillmann C, Bar-Hen A, Guerin D, et al. Comparison of RFLP and morphological distances between maize (Zea mays L.) inbred lines consequences for germplasm protection purposes [J]. Theor Appl Genet,1997,95:92-102
    [36]Tommasini L, Batley J, Arnold G M, et al. The development of multiplex simple sequence repeat (SSR) markers to complement distinctness, uniformity and stability testing of rape (Brassieana Pusl) varieties [J]. Theor Appl Genet,2003,106: 1091-1101
    [37]Roldan-Ruiz I, van Eeuwijk F A, Gilliland T J, et al. A comparative study of molecular and morphological methods of describing relationships between perennial ryegrass(Lolium Perenne L.) varieties[J]. Theor Appl Genet,2001,103:1138-1150
    [38]Rotondi A, Magli M, Ricciolini C, et al. Morphological and molecular analyses for the characterization of a group of Italian olive cultivars[J]. Euphytica,2003,132: 129-137
    [39]张瑞英.玉米DUS测试概述[J].玉米科学,2005,13(3):130-132
    [40]刘殊,程慧,王飞,等.我国杂交水稻主要恢复系的DNA多态性研究[J].中国水稻科学,2002,16(1):1-5
    [41]肖小余,王玉平,张健勇,等.四川省主要杂交稻亲本的SSR多态性分析和指纹图谱的构建与应用[J].中国水稻科学,2006,20(1):1-7
    [42]徐一力.英国植物新品种保护的测试[J].世界农业,2000,6(254):29-31
    [43]王凤格,赵久然,邢锦丰,等.关于玉米品种DUS测试的几点思考[J].玉米科学,2005,13(3):126-129
    [44]Vosman B, Cooke R, Gnaal M, et al. Standardization and application of microsatellite markers for variety identification in tomato and wheat[J]. Acta Hort,2001,546: 307-316
    [45]Cooke R J, Bredemeijer G M M, Ganal M W, et al. Assessment of the uniformity of wheat and tomato varieties at DNA microsatellite loci[J]. Euphytica,2003,132: 331-341
    [46]Cooke R J, Reeves J C. Plant genetic resources and molecular markers:variety registration in a new era[J]. Plant Genetics Resources,2003,1(2-3):81-87
    [47]Berdemejier G M M, Cooke R J, Gnaal M W, et al. Construction and testing of a microsatellite database containing more than 500 tomato varieties[J]. Theor Appl Genet,2002,105:1019-1016
    [48]Roder M S, Bredemeijer G M M, Cooke R J, et al. Construction and analysis of a microsatellite-based database of European wheat varieties[J]. Theor Appl Genet,2002, 106:67-73
    [49]李文军.保护世界的生物多样性[A].生物多样性译丛(一)[M].北京:中国科学技术出版社,1992
    [50]郭小平,赵元明.SSR技术及其在植物遗传育种中的应用[J].华北农学报,1998,13(3):73-76
    [51]Morgante M, Olivieri A M. PCR-amplified Microsatellite markers in plant genetics[J]. The Plant Journal,1993,3:175-182
    [52]Lagervrants U, Ellegren H. The abundance of various polymophic Microsatellite motifs differs between plants and vertebrates [J]. Nucleic Acids Res.1993,25: 1111-1115
    [53]Wang Z. Survey of plant short tandem DNA. Theor Appl Genet,1994,88:1-6
    [54]PowerW. Hypervariable micerosatellite provides a general source of polymorphic DNA markers for chloroplast genome [J]. Current Biology,1995,15:1023-1029
    [55]Wu K S, Tanksley S D. Abundance polymorphism and genetic mapping of microsatellite in rice[J]. Mol Gen Genet.1993,241:225-235
    [56]Pejic I P, Ajmone-Marsan M, Morgante V, et al. Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs AND AFLPs[J].Theor Appl Genet,1998(97):1248-1255
    [57]齐永文,张冬玲,张洪亮,等.中国水稻选育品种遗传多样性及其近50年变化趋势[J].科学通报,2006,51(6):693-699
    [58]Xie J H, Tanksey S D. Abundance, polymorphism and genetic mapping of microsatellites in rice[J]. Mol Gen Genet,1993,241:225-235
    [59]王瑞珍,赵朝森,程春明,等.用微卫星DNA标记检测中国主要杂交水稻亲本的遗传差异[J].植物学报,1999,41(10):1061-1066
    [60]马艳明,范玉顶,李斯深,等.黄淮麦区小麦品种(系)品质性状多样性分析[J].植物遗传资源学报,2004,5(2):133-138
    [61]郑威,洪美艳,孙东发,等.长江流域小麦地方品种农艺性状多样性分析[J].麦类作物学报,2009,29(6):987-991
    [62]Ying C S. Conservation and utilization of rice genetic resources in China[J]. China Rice Res Newsl,2000,8:13-14
    [63]Yang G P, Saghai Maroof M A, Maroof, et al. Comparative analysis of microsateIlite DN A polymorphism in landraces and cultivars of rice [J]. Mol Gen Genet,1994,245: 187-194
    [64]闰锋,崔秀辉,李清泉,等.谷子农艺性状的遗传多样性分析[J].湖南农业科学,2010,12(3):8-9
    [65]唐浩,余汉勇,肖应辉,等.基于DUS测试的水稻标准品种形态性状多样性分析[J].遗传资源学报,2011,11(6):853-859
    [66]中国农业出版社.中华人民共和国植物新品种保护条例[M],1997
    [67]唐浩,唐智斌,李军民.国外植物新品种保护经验对我国的启示[J].世界农业,2007(2):22-24
    [68]张坚勇,万向元,肖应辉,等.水稻品种食味品质性状稳定性分析[J].中国农业科学,2004,37(6):788-794
    [69]蒋开锋,郑家奎,杨莉,等.杂交稻品质性状的稳定性研究[J].西南农业学报,2008,21(6):1495-1499
    [70]柏章才,马亚怀,李彦丽.2008年国家甜菜品种区域试验品种稳定性测定[J].中国糖料,2010(2):23-26
    [71]向世平,朱列书,朱静娴.烤烟主要经济性状的稳定性分析和适应性评价[J].湖南农业科学,2010(3):13-17
    [72]徐良年,邓祖湖,陈如凯.甘蔗新品种产量品质性状的稳定性分析[J].热带作物学报,2006,27(2):50-54
    [73]田西,余毅,安静.黄连的特异性、一致性和稳定性测试性状的选择[J].华西药学杂志,2011,26(1):14-16
    [74]杨仕华,廖琴,谷铁城,等.我国水稻品种审定回顾与分析.中国稻米,2010,16(2):1-4
    [75]农业部植物新品种保护办公室.1999-2010年品种权申请情况汇总表(2010.8.31),http://www.cnpvp.cn/Detail.aspx?k=776&itemID=1
    [76]滕海涛,堵苑苑,余毅,陈海荣.我国农业植物新品种DUS测试指南研制概况[J].作物杂志,2009(2):86-89
    [77]卢柏山,王荣焕,王凤格,等.基于DUS测试性状的玉米自交系形态多样性分析[J].植物遗传资源学报,2010(1):103-107
    [78]解艳华.大豆DUS测试标准品种测试性状表达差异性分析[J].大豆科学,2007(2):284-286
    [79]王彦荣,崔野韩,南志标,等.植物新品种DUS测试指南中的性状选择与标样品种确定[J].草业科学,2002,19(2):44-46
    [80]Qian W, Ge S, Hong D Y. Genetic variation within and among populations of a wild rice Oryza granulata from China detected by RAPD and ISSR markers [J]. Theor Appl Genet,2001,201:440-449
    [81]Garris A J, Tai T H, Coburn J, et al. Genetic structure and diversity in Oiyza sativa L.[J]. Genetics,2005,169:1631-1638
    [82]Ni J J, Colowit P M, Mackill D J. Evaluation of genetic diversity in rice subspecies using microsatellite markers[J]. Crop Sci,2002,42:601-607
    [83]Fuentes J L, Escobar F, Alvarez A, et al. Analyses of genetic diversity in Cuban rice varieties using isozyme, RAPD and AFLP markers[J]. Euphytica,1999,109(2): 107-115
    [84]Song Z P, Xu X, Wang B, et al. Genetic diversity in the northernmost Oryza rufipogon populations estimated by SSR markers[J]. Theor Appl Genet,2003,107(8): 1492-1499
    [85]马琳,余显权,赵福胜.贵州地方水稻品种的SSR遗传多样性分析[J].中国水稻 科学,2010(3):237-243
    [86]玄英实,姜文洙,刘宪虎,等.中国东北地区水稻主要栽培品种的遗传多样性分析[J].植物遗传资源学报,2010,11(2):206-212
    [87]应杰政,施勇烽,庄杰云,等.用微卫星标记评估中国水稻主栽品种的遗传多样性.中国农业科学,2007,40(4):649-654
    [88]Xiao J, Li J, Yuan L, et al. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers[J]. Theor Appl Genet,1996, 92(6):637-643
    [89]Zhu Y Y, Chen H R, Fan J H, et al. Genetic diversity and disease control in rice[J]. Nature,2000,406:718-722
    [90]国家质量技术监督局.植物新品种特异性、一致性和稳定性测试指南水稻[M].北京:中国农业出版社,2007
    [91]Shannon C E, Weaver W. The mathematical theory of communication[M]. Urbana: Univ. of Illinois Press,1949
    [92]Yeh F C, Yang R C, Boyle T B J. POPGENE, The user friendly shareware for population genetics data analysis[M]. Molecular biology and biotechnology center, University of Alberta, Canada,1997
    [93]Rohlf F J. NTSYSpc, numerical taxonomy and multivariate analysis system version 2.10e[M]. Exeter Software, Setauket,2000
    [94]UPOV:TGP/7/1. Development of test guidelines[M]. Geneva, Switzerland,2004
    [95]Khush G S, D S Brar. Evolution and adaptation of crops[M]. Delhi:Oxford and IBH Publ Co,2002
    [96]Zheng K L, Subudhi P K, Domingo J, et al. Rapid DNA isolation for marker assisted selection in rice breeding[J]. Rice Genet Newsl,1995,12:255-258
    [97]刘海珍,李莉,藤滨,等.42个杂交粳稻亲本SSR亲本SSR指纹图谱的构建及遗传多样性分析[J].安徽农业科学,2009,37(10):4420-4423
    [98]Chakravathi K B, Naravaneni R. SSR marker based DNA finger-printing and diversity study in rice(Oryza Sativa L.)[J]. African J Biotech,2006,5(9):684-688
    [99]Lu H, Redus M A, Coburn, et al. Population structure and breeding patterns of 145 US rice cultivars based on SSR marker analysis [J]. Crop Sci,2005,45:66-76
    [100]McCouch S R, Chen X, Panaud, et al. Microsatellite marker development, mapping and application in rice genetics and breeding[J]. Plant Mol Biol,1997,35:89-99
    [101]张羽,李新生,冯志峰,等.陕西省水稻种质资源的遗传多样性分析和指纹图谱构建[J].西北农业学报,2011,20(12):59-65
    [102]李红宇,侯昱铭,陈英华,等.用SSR标记评估东北三省水稻推广品种的遗传多样性[J].中国水稻科学,2009,23(4):383-390
    [103]辛业芸,张展,熊易平,等.应用SSR分子标记鉴定超级杂交水稻组合及其纯度[J].中国水稻科学,2005,19(2):95-100
    [104]于永红,应杰政,王磊,等.鉴定水稻品种的微卫星标记筛选[J].中国水稻科学,2005,19(3):195-201
    [105]丁立,齐永文,张洪亮,等.中国三系杂交稻恢复系资源的遗传多样性[J].作物学报,2007,33(10):1587-1594
    [106]郑康乐,庄杰云,陆军,等.籼稻骨干亲本的STS多态性[1J].农业生物技术学报,1997,5(4):325-330
    [107]Li Z, Rutger J N. Geographic distribution and multilocus organization of isozyme variation of rice (Oryza sativa L.)[J]. Theor Appl Genet,2000,101:379-387
    [108]万勇,刘红梅,胡标林,等.水稻种质资源指纹与多样性分析的分子标记体系研究[J].江西农业学报,2011,23(6):1-7
    [109]肖子发,朱克永,刘之熙,等.利用SSR标记构建湖南省杂交水稻品种DNA指纹图谱[J].杂交水稻,2011,26(3):51-56
    [110]Sundaram R M, Naveenkumar B, Birdar S K, et al. Identification of informative SSR markers capable of distinguishing hybrid rice parental lines and their utilization in seed purity assessment [J]. Euphytica,2008,163:215-224
    [111]Santhy V. DNA markers for testing distinctness of rice(Oryza sativa L.) varieties[J]. Plant Varieties and Seeds,2000,13(3):141-148
    [112]Law J R. Most similar variety comparisons-a grouping tool for use in DUS testing[J]. Acta Horticulture,2001,546:90-100
    [113]王立新,常立芳,李宏博,等.小麦区试品系DUS测试的分子标记[J].作物学报,2010,36(7):1114-1125
    [114]李晨,潘大建,毛兴学,等.用SSR标记分析高州野生稻的遗传多样性[J].科学通报,2006,51(3):551-557
    [115]王风格,赵久然,戴景瑞,等.利用SSR标记进行玉米品种一致性检测研究[J].分子植物育种,2007,5(1):95-104
    [116]陆光远,伍晓明,张冬晓,等.SSR标记分析国家油菜区试品种的特异性和一致性[J].中国农业科学,2008,41(1):32-42
    [117]韩凤龙,李正玲,胡琳,等.用于河南省小麦品种特异性和一致性鉴定的SSR分子标记研究[J].中国农业科学,2010,43(18):3698-3704
    [118]王如琼,余显贵,姜敬伟,等.贵州省2011年水稻区试品种DNA指纹图谱的构建及遗传多样性分析[J].种子,2012,4:35-39
    [119]Sarika M, Narendra J, Altafhusain N. Diversity analysis in selection non-basmati secented rice collection[J]. Rice Science,2010,17(1):35-42
    [120]Bhuyan N, Borah B K, Sarma R N. Genetic diversity analysis in traditional lowland rice (Oryza Sativa L.) of Assam using RAPD and ISSR markers[J]. Curr Sci,2007, 93(7):967-972
    [121]Davierwala A P, Chawdari K V, Kumar S, et al. Use of three different marker systems to estimate genetic diversity of Indian elite rice varieties[J]. Genetica,2000, 108:269-284
    [122]Saker M M, Youseef S S, Abdallah N A, et al. Genetic analysis of some Egyptian rice genotypes using RAPD, SSR, and AFLP[J]. Afr J Biotech,2005,4(9):882-890
    [123]Raghunathachari P, Khanna V K, Singh U S, et al. RAPD analysis of genetic variability in Indian scented rice germplasm(Oryza sativa L.)[J]. Curr Sci,2000, 79(7):994-998
    [124]胡秉民,耿旭.作物稳定性分析法[M].北京:科学出版社,1993
    [125]刘文江,李浩杰,汪旭东,等.用AMMI模型分析杂交水稻基本性状的稳定性[J].作物学报,2002,28(4):569-573
    [126]Kempton R A. The use of biplots in interpreting variety by environment interactions [J]. Journal of Agricultural Science,1984,103:123-135
    [127]Nachit M M. Use of AMMI and linear regression models to analyze genotype environment interaction in durum wheat[J]. Theor Appl Genet,1992,83:597-601
    [128]Cooper M. Concepts and strategies for plant adaptation research in rainfed lowland rice[J]. Field Crops Research,1999,64:13-34
    [129]王磊,杨仕华,沈希宏,等.作物品种区试数据分析的主效可加互作可乘模型(AMMI)图形[J].南京农业大学学报,1998,21(2):18-23
    [130]许乃银,陈旭升,郭志刚,等AMMI模型在棉花区试数据分析中的应用[J].江苏农业学报,2001,17(4):205-210
    [131]张斯梅,杨四军,顾克军.小麦区域试验产量性状及其稳定性分析[J].中国农学通报,2012,28(3):172-176
    [132]俞琦英.油菜区域试验产量性状及其稳定性分析[J].浙江农业学报,2010,22(3):337-340
    [133]刘鑫,石建尧,王明湖.浙江省早稻区试品种稻米品质的相关性与稳定性分析[J].江西农业学报,2010,22(6):47-48
    [134]蒋开锋,郑家奎,赵甘霖,等.基于AMMI模型的NCⅡ交配设计试验的配合力分析[J].作物学报,2000,26(6):959-962
    [135]万向元,胡培松,王海莲,等.水稻品种直链淀粉含量、糊化温度和蛋白质含量的稳定性分析[J].中国农业科学,2005,38(1):1-6
    [136]万向元,陈亮明,王海莲,等.水稻品种胚乳淀粉RVA谱的稳定性分析[J].作物学报,2004,30(12):1185-1191
    [137]张坚勇,肖应辉,万向元,等.水稻品种外观品质性状稳定性分析[J].作物学报,2004,30(6):548-554
    [138]Breiman L. Random Forests[J]. Machine Learning,2001,45:5-32
    [139]赵铜铁钢,杨大文,蔡喜明,等.基于随机森林模型的长江上游枯水期径流预报研究[J].水力发电学报,2012,(3):18-24
    [140]马昕,郭静,孙啸.蛋白质中RNA-结合残基预测的随机森林模型[J].东南大学学报:自然科学版,2012,(1):50-54
    [141]郭颖婕,刘晓燕,郭茂祖,等.植物抗性基因识别中的随机森林分类方法[J].计算机科学与探索,2012,(1):67-77
    [142]李建更,高志坤.随机森林:一种重要的肿瘤特征基因选择法[J].生物物理学报,2009,(1):51-56
    [143]彭国兰,林成德.基于随机森林的企业信用评估模型[J].福州大学学报:自然科学版,2008,(S1):153-156
    [144]李建更,高志坤,阮晓钢.基于随机森林的胃癌微阵列数据基因通路分析[J].生物学杂志,2010,(2):1-4
    [145]SAS Institute Inc. SAS/STAT User's Guide[M], Cary, NC, USA,1988
    [146]Tang Q Y, Zhang C X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research[J].Insect Science.2012.doi:10.1111/j.1744-7917.2012.01519.x
    [147]董钻,沈秀瑛.作物栽培学总论[M].北京:中国农业出版社,2000
    [148]潘圣刚,黄胜奇,翟晶,等.氮肥用量与运筹对水稻氮素吸收转运及产量的影响[J].土壤,2012,44(1):23-29
    [149]李世峰,刘蓉蓉,周宇.不同施氮量对高沙土地区机插水稻产量及氮肥利用的影响[J].中国稻米,2012,18(3):47-49,53
    [150]胡鹏,杨友斌,程二卫.氮肥施用量对水稻产量及构成因素的影响[J].农技服务,2012,(5):7-8
    [151]潘博,赵海,夏天舒,等.高氮肥对寒地水稻产量和群体形态的影响[J].黑龙江农业科学,2012,(2):35-37
    [152]佟彤,付立东.氮肥不同施入量对水稻新品种盐粳228产量的影响[J].北方水稻,2012,42(1):16-19
    [153]谢黎虹,叶定池,胡培松,等.氮肥用量和施用方式对水稻“甬优6号”产量和品质的影响[J].植物营养与肥料学报,2011,17(4):789-794
    [154]张文香,王成玻,王伯伦,等.氮肥用量对水稻产量及产量性状的影响[J].垦殖与稻作,2005,(6):35-38
    [155]周有炎,沙安勤,孙东海,等.不同施氮量对水稻产量及氮肥利用率的影响[J].现代农业科技,2011,(4):274-275
    [156]汪寿根,陈润兴.不同氮肥用量对中嘉早17水稻产量的影响[J].现代农业科技,2011,(5):61,63
    [157]戈长水,应武,孔万根,等.不同氮肥量对水稻成熟期剑叶外观及氮含量的影响[J].杭州农业与科技,2010,(4):36-38
    [158]殷春渊,王书玉,薛应征,等.氮肥处理对新稻18号水稻产量及叶片形态特征的影响[J].中国农业科技导报,2012,14(3):101-106
    [159]刘丽霞,李海波.氮肥水平对不同穗型水稻品种叶片性状的影响[J].湖北农业科学,2011,50(6):1111-1113
    [160]包灵丰,林纲,赵德明,等.杂交水稻不同氮肥水平下产量和农艺性状变化分析[J].吉林农业大学学报2010,32(S):1-4,8
    [161]杨越超,张民,陈剑秋,等.控释氮肥对水稻秧苗形态特征和生理特性的影响[J].植物营养与肥料学报,2010,16(5):1126-1135
    [162]胡春花,罗革彬,曾建华,潘孝忠.不同类型缓释氮肥对水稻产量和氮肥利用率的影响[J].中国农学通报,2011,27(15):174-177
    [163]袁嫚嫚,叶舒娅,刘枫,等.不同控释氮肥对水稻产量和氮肥利用率的影响[J].广东农业科学,2011,(9):56-57
    [164]伍少福,韩科峰,吴良欢,等.控释掺混尿素对水稻产量、品质和氮肥利用率的影响[J].浙江农业学报,2011,23(5):983-987
    [165]曾祥明,韩宝吉,徐芳森,等.不同基础地力土壤优化施肥对水稻产量和氮肥利用率的影响[J].中国农业科学,2012,45(14):2886-2894
    [166]吴文革,张玉海,张健,等.氮肥运筹对机插杂交中籼水稻群体质量及产量形成的影响[J].安徽农业大学学报,2011,38(1):1-5
    [167]李启红,贺双明,刘琼峰,李明德.氮肥不同基追比例对水稻产量和氮素吸收利用的影响[J].湖南农业科学,2012,(13):56-58,61
    [168]刘玉平,高彩虹,王士强,等.氮肥不同施用时期及用量对寒地水稻叶长与节间长的影响[J].现代化农业,2010,(7):13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700