用户名: 密码: 验证码:
松嫩草地羊草种子发育进程、休眠特性及与盐碱耐性关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羊草(Leymus chinensis),是禾本科赖草属根茎型优质禾草,不但营养价值高、适口性好,而且具有较强的耐旱、耐寒和耐盐碱性。羊草既是东北松嫩平原的优势种,也是干旱与半干旱地区建植人工草地的优良草种。近年来,随着畜牧业的发展及生态环境治理力度的加大,人工羊草草地不断的建植,为此,人们对羊草种子的需求量与品质的要求也越来越高。本文通过研究羊草种子的发育进程、休眠特性及与盐碱耐性的关系,一方面明确羊草种子的最适宜收获时间,为农业生产上收获高品质羊草种子提供科学依据,另一方面挖掘羊草种子的发芽潜能、深入解析抗逆机理,为提高其利用率及抗逆新品种的选育提供理论基础。主要研究结果与结论如下:
     (1)通过对羊草种子发育动态的研究结果表明,羊草种子在发育过程中,随着成熟度的不断提高,种子的颜色由绿色变为浅绿色,再变成黄色,最后变为棕黑色。种子的千粒重不断的增加,在盛花后33d达到最大值,之后趋于恒定。含水量与种子浸出液电导率则呈下降趋势,含水量在盛花后36d达到最小值,而两个试验年份电导率值有所差异,分别在盛花后27d和30d达到最小值。标准发芽试验结果显示,羊草种子在盛花后39d发芽率最高,此时种子的开始发芽时间、50%种子发芽时间、发芽势等指标均为最优。尽管加速老化试验的发芽指标与标准发芽试验略有差异,但是盛花后39d的种子同样具有最强的抗老化能力。上述试验结果表明,盛花后39d羊草种子活力最高,品质最佳,是种子最适宜的收获时间。
     (2)不同成熟度的羊草种子对土壤埋深与盐碱胁迫同样具有不同的响应方式。羊草种子出苗与其后的幼苗生长能力随着种埋深度的增加而降低,1cm是最适宜的播种深度,此时的出苗率最高、出苗时间最短,并且叶片与根系长度与生物量最大;另外不同成熟度的羊草种子同样表现出不同的出土成苗能力,盛花后39d的羊草种子活力最大,其上述各项幼苗生长指标均为最优。种子的成熟度与盐、碱胁迫及其交互作用显著影响羊草种子的发芽率与发芽势,盛花后39d的羊草种子在胁迫下具有最高的发芽率与发芽势,特别是在高浓度(400mM)盐胁迫下,尤为明显。复萌试验结果显示,盛花后39d的羊草种子在盐碱胁迫(特别是高盐环境)解除后同样具有最高的发芽率。上述结果表明,尽管不同成熟度的羊草种子均具有发芽能力,但是盛花后39d的羊草种子出苗及抵御盐碱胁迫伤害的能力最强,这也进一步支撑了39d是羊草种子适宜收获时间这一结论。另外羊草适宜浅播,1cm是其最适宜的播种深度。
     (3)通过人工手段处理可以明显打破羊草种子的休眠特性。研究结果表明,除了热水浸种处理外,其余方法如浓硫酸、冷层积、PEG、GA_3、KNO_3及清水浸种均能一定程度上提高羊草种子的发芽率,发芽速率、开始发芽时间及50%种子发芽时间。但是在生产实际中,既要考虑高效性也要考虑经济耗费,结合本试验的研究结果,我们推荐在生产中采用低温浸种20d的方法来打破羊草种子的休眠,提高其发芽率。
     (4)稃是抑制羊草种子萌发的重要因素,但同时也一定程度提高了种子的抗盐性。通过测定稃对羊草种子吸水、脱水、不同温度条件下的发芽响应以及不同持续时间盐胁迫对种子发芽的影响,结果发现稃可以显著提高羊草种子的吸水量,并同时减缓种子在干旱环境下的脱水速率,使种子不会过度脱水而死亡。稃、不同温度处理及两者交互作用显著降低羊草种子的发芽率与发芽速率,表明稃对羊草种子萌发具有一定的抑制作用。在不同持续时间的盐胁迫处理下,未萌发的带稃种子复萌率均高于去稃种子,特别是在长时间及高盐胁迫下尤为明显,表明稃对羊草种子耐盐性起着重要的调节作用,一旦雨水、融雪等条件降低了土壤盐浓度,带稃种子就可以继续萌发出土。
     (5)20-30°C是羊草种子最适宜的发芽温度,高温、低温均显著降低种子的发芽率与发芽速率,并且此温度可一定程度上减缓盐胁迫与碱胁迫对种子发芽的抑制效应。随着盐、碱胁迫浓度的增加,羊草种子发芽率与发芽速率均呈下降趋势,且在碱胁迫下的下降幅度更大。在盐胁迫下,当盐浓度<200mM时,低温是影响种子萌发的主要因素,随着盐浓度的不断增加,高温则更加剧了盐胁迫对种子萌发的抑制作用;而在碱胁迫下,即使碱浓度较低,高温与其交互作用也大大加剧了对种子发芽的抑制。盐胁迫下未萌发的羊草种复萌率随盐浓度增加而增加,而在碱胁迫下则随着碱浓度增加呈先上升后下降的趋势,高浓度碱胁迫使羊草种子失去活力而死亡,并且碱胁迫下种子的复萌率低于盐胁迫,25-35°C同样不利于种子的复萌。幼苗生长对温度与盐碱胁迫交互作用的响应方式与发芽阶段相似,20-30°C同样是最适宜温度;另外,盐碱胁迫均对羊草幼苗根生长的抑制作用更强。基于以上研究结果,我们建议在初夏(七月上旬),高降雨过后,温度与土壤条件适宜的情况下进行播种,以提高羊草种子的发芽率,更好的达到恢复退化草地的效果。
     (6)在混合盐碱胁迫下,羊草种子的发芽率与发芽速率均随着盐浓度的增加不断下降,且碱性盐比例越大下降越明显。在250mM盐浓度下,A组处理发芽率为6.5%,而其余5组处理发芽率均为0。羊草幼苗生长阶段同样受盐浓度、pH及两者交互作用影响,并且根系对胁迫伤害更敏感,所受抑制作用更强。逐级回归分析结果表明,在种子萌发阶段,盐浓度是羊草种子在混合盐碱胁迫下能否萌发的决定性因素,而一旦胚根突破种皮进入幼苗生长阶段,pH就转变为主导因素。上述研究表明,混合盐碱胁迫对羊草种子萌发与早期幼苗生长阶段的抑制机理有所不同,其中高盐浓度与高pH的交互作用对种子萌发与幼苗生长的抑制效应最强。
     (7)盐胁迫与碱胁迫均显著降低羊草幼苗的长度、鲜重与含水量,且碱胁迫抑制作用更强。两种胁迫均造成羊草幼苗Na~+浓度与Na~+/K~+升高,并且K~+浓度下降,但是在碱胁迫下,Na~+浓度、Na~+/K~+上升幅度与K~+下降幅度均大于盐胁迫。另外,在盐胁迫下,羊草幼苗大量积累Cl~-,有机酸含量变化不大;而在碱胁迫下,Cl~-、NO_3~-与H_2PO_4~-均呈下降趋势,而有机酸则大量积累,其中苹果酸、柠檬酸是主要的有机酸组分,可溶性糖是羊草幼苗在两种胁迫下共同的渗透调节物质。上述结果表明,碱胁迫由于具有高pH,对羊草早期幼苗生长的抑制作用更强,Cl~-与有机酸积累特征的差异表明羊草早期幼苗在盐胁迫与碱胁迫下具有不同的适应策略。
Leymus chinensis (Trin.) Tzvel. is a perennial rhizomatous high quality species of thefamily Poaceae. It not only has high forage value and good palatability, but also has greattolerant to drought conditions, cold extremes and salt-alkaline conditions. This plant is adominant grass species in Songnen Plain of Northern China, and also an ideal grass forrangeland use in arid and semiarid regions. In recent years, with the development of animalhusbandry and the intensified efforts on ecological environment, artificial grasslands of L.chinensis were constantly built. Therefore, the request on the quantity and quality of L.chinensis seeds was also more and more high. In this paper, we investigated seed development,dormancy characters and salt-alkaline tolerance of Leymus chinensis. On the one hand, weclearly determined the optimum seed harvest time of this species, and provided scientificbasis for agricultural production and high quality seed harvest. On the other hand, weexcavated seed germinating potential, deeply analysed the stresses tolerance mechanism, andprovided theoretical basis for the utilization rate and breeding the new varieties of Leymuschinensis. The main results and conclusions from our experiments were as follows:
     (1) The results of seed development of Leymus chinensis showed that, seed colorchanged from green to light green, yellow and heavy brown into the final along with seedmaturity.1000seeds weight increased constantly, and reached hightest at33days after peakanthesis. However, water content and electric conductivity of the seeds showed a decliningtrend, water content reached lowest at36days after peak anthesis, and the values of electricconductivity of two experimental years were different, which reached minimum at27and30days after peak anthesis, respectively. The results of standard germination test showed thatgermination percentage was highest at39days after peak anthesis. At this time, germinationstarting days,50%germination days and germination energy were all reached the optimalvalue. Although slightly difference was found between standard germination test andaccelerated aging test, seeds at39days after peak anthesis also had the strongest anti-agingcapability. Above results showed that seeds at39days after peak anthesis has the hightestvigor and best quality, and is the optimum seed harvest time of Leymus chinensis.
     (2) Response to burial depth and salt-alkaline stress of Leymus chinensis seeds atdifferent maturation time were also greatly differed. The ability of seedling emergence andgrowth were decreased with increasing burial depth, and1cm was the most suitable plantingdepth. At this time, the seedling emergence rate was highest, time to seedling emergence wasshortest, and the length and biomass of the shoot and root were also highest. In addition, theability of seedling growth of the seeds at different maturation time was also different. Seeds at 39days after peak anthesis had the highest vigor, the above index of seedling growth wereoptimum. Germination percentage and energy were significantly affected by seed maturationtime, salt-alkaline stress and their interactions. Highest germination percentage andgermination energy were occurred at at39days after peak anthesis, especially at highest salinrstress (400mM). The recovery test showed that recovery percentage was also highest at39days after peak anthesis. Above results show that although seed of different maturation timehas germination ability, the ability of seedling emergence and resistance to salt-alkaline stressis highest at39days after peak anthesis, which further support the view that39days afterpeak anthesis is the optimum seed harvest time of Leymus chinensis. In addition, shallowsowing is suitable for Leymus chinensis, and1cm is the most optimum planting depth.
     (3) Artificial treatments can obviously break the seed dormancy of L. chinensis. Theresults showed that many methods such as H2SO4, cold stratification, PEG, GA_3, KNO_3andsoaking in the water all enhanced germination percentage, germination rate, startinggermination time, and50%germination time. However, in production practice, bothefficiency and ecomomic cost should be considered, and combined with our results, werecommend the way of soaking seeds in water under lower temperature for20d in order tobreak seed dormancy and increase germination percentage of Leymus chinensis.
     (4) Lemma is an important fator inhibiting seed germination of Leymus chinensis, but itcan also improve salt resistance of the seeds. We investigated the effects of lemmas on seedimbibition and dehydration, germination responses to various temperature regimes and theimpact of different duration salt stress on seed germination. The results showed that lemmascould significantly enhance water absorption, and slowed down the dehydration rate underdrought conditions. Lemmas, temperature regimes and their interactions significantlydecreased germination percentage and germination rate, indicating that lemmas could inhibitgermination process of Leymus chinensis. Under different duration of salt stress, recoverypercentages of non-germinated seeds with lemmas were higher than that without lemmas,especially under long duration of salt stress, indicating that lemmas could enhance the saltresistance of seed. Once the precipitation and melting snow decreased salinity concentrationin the soil, seeds with lemmas can geminate again.
     (5) Germination percentages and rates were inhibited by either an increase or decreasetemperature from the optimal temperature20-30°C, and this temperature can alleviate theinhibitory effects of salt-alkaline stress on seed germination. With the increasing salinity andalkalinity, seed germination and germination rate were both decreased, and the reductionswere much greater under alkaline stress. Under salt stress, when salinity<200mM, lowertemperature was the main factor inhibiting seed germination. With the increasing salinity,higher temperature aggravated the adverse effects. While under alkali stress, germinationpercentage and germination rate were both decreased markedly at25-35°C even though the alkalinity was very low. Recovery percentage of non-germinated seeds increased with theincreasing salinity, but increased at first and then declined under alkaline stress, and recoverypercentages were lowest in both stresses at25-35°C, especially under alkaline stress. Seedlinggrowth had similar response to the interactions of temperature and salt-alkaline stress,20-30°C was also the optimum temperature. In addition, both of the two stresses inhibitedroot growth much stronger. Due to the above results, early July sowings in field would berecommended, when temperature is appropriate and salinity-alkalinity concentrations arealways reduced by the high rainfall.
     (6) Under mixed salt-alkaline stresses, germination percentage and germination ratedecreased with increasing salinity under all the stress treatments, and the reductions weregreater under treatment which the proportion of alkaline salts was greater. At250mM salinity,germination percentage of treatment A was6.5%, but the other five treatments were0.Seedling growth was also affacted by salinity, pH and their interactions. However, radiclelength decreased more markedly with increasing salinity and pH. Stepwise regression analysisresults showed that salinity was the dominant factor for seed germination under mixedsalt-alkaline stress conditions. However, once radicle break through the seed coat, and pHchanged into the dominant factor for seedling establishment. Above results indicate thatmixed salt-alkaline stresses has different impacts on germination and early seedling stages ofL.chinensis. The interactions of high salinity and high pH have the strongest inhibition onseed germination and seedling growth.
     (7) Both saline stress and alkaline stress significantly decreasd seedling length, freshweight and water content, and the reductions were much greater under alkaline stress. TheNa~+concentration, Na~+/K~+ratio increased butK~+concentration decreased under both stresses,and the changes were greater under alkali stress. Under salt stress, shoots mainly accumulatedCl~-and little change was found in organic acids. While under alkali stress, the concentrationsof Cl~-, NO_3~-and H_2PO_4~-were all decreased, and organic acids were accumulated, especiallymalic acid and citric acid. In addition, soluble sugar was the same osmoregulation under thetwo stresses. Above results indicate that alkali stress inhibited early seedlings of Leymuschinensis much greater because of the high pH, different accumulation characters of Cl~-andorganic acids indicated that different adaptive mechanism to saline and alkaline stresses wereexist of Leymus chinensis during early seedling stage.
引文
[1]汉弗莱斯L R,里弗莱斯F.牧草种子生产-理论及应用.李淑安,赵俊权译[M].昆明:云南科技出版社,1989,225-265.
    [2] Pegler R A D. Harvest ripeness in grass seed crops [J]. Jounal of the British Grassland.1976,31:7-13.
    [3] Andersen S, Andersen K. The relationship between seed maturation and seed yield in grasses
    [A]. In: Hebblathwaite P. D. ed. Seed Production [C].1980,151-172.
    [4]王颖.广布野豌豆荚果和种子发育动态及种子适宜收获时间的确定[D].[博士学位论文].长春:东北师范大学,2008.
    [5] Young B A. Heritability of resistance to seed shedding in kleingrass[J]. Crop Science,1911,31:1156-1158.
    [6] Burson B L, Correa J and Potts H C. Anatomical basis for seed shedding in Kleingrass andGuineagrass[J]. Crop Science,1983,23:747-751.
    [7] Lemke B M, Gibson L R, Knapp A D, et al. Maximizing seed production in easterngamagrass[J]. Agronomy Journal,2003,95:863-869.
    [8] Phaikaew C, Pholsen P, Tudsri S, et al. Maximising seed yield and seed quality of Paspalumatratum through choice of harvest method[J]. Tropical Grasslands,2001,35:11-18.
    [9] Lawrence T. Quality of Russian wild ryegrass seed as influenced by time and method ofharvesting [J]. Can. J. Plant Sci.,1960,40:474-481.
    [10] Miyajima D. Zinnia seed harvest time affects germination and plant growth [J]. HortScience,1997,32:687-689.
    [11] Chandler J, Corbesier L, Spielmann P, et al. Modulating flowering time and prevention ofpod shatter in oilseed rape[J]. Mol. Breed.,2005,15:87-94.
    [12] Berdahl J D and Frank A B. Seed maturity in four cool-season forage grasses[J]. Agron. J,1998,90:483-488.
    [13] Bedane G M, Gupta M L, George, D L. Optimum harvest maturity for guayule seed[J].Industrial Crops and Products.2006,24:26-33.
    [14] Wang Ying, Mu Chunsheng, Hou Yu, et al. Optimum harvest time of Vicia cracca in relationto high seed quality during pod development[J]. Crop Science,2008,48(2):709-715.
    [15] Eastin J D, Hultquist J H, Sullivan C Y. Physiologic maturity in grain sorghum [J]. CropScience,1973,13:175-178.
    [16]蔬菜种子的收获适期[M].东北园艺,2004,53.
    [17] Wang Ping, Zhou D W, Valentine I. Seed maturity and harvest time effects seed quantity andquality of Hordeum brevisubulatum[J]. Seed Sci Technol,2006,(34):125-132.
    [18] TeKrony D M, Egli D B, Balles J, et al. Physiological maturity on soybean[J]. Journal ofAgronomy,1979,71:771-775.
    [19]张笑妹,郝丽珍,杨忠仁等.不同发育期沙葱种子萌发特性和贮藏物质的变化规律[J].内蒙古农业大学学报,2009,30(3):55-58.
    [20] Copeland P J, Crookston. R K. Visible indicators of physiological maturity in barley[J]. CropScience,1985,25:843-847.
    [21] Hebblethwaite P D, Ahmed M el H. Optimum time of combine harvesting for amenity grassesgrown for seed [J]. Journal of the British Grassland Society,1978,33:35-40.
    [22]张众,云锦凤,逯晓萍等.不同播种因素对蒙古冰草种子产量和品质的影响[J].华北农学报,2006,21(6):95-99.
    [23]兰剑,沈艳.多年生黑麦草收获时间对种子发芽特性及其活力的影响[J].种子,2005,24(10):57-60.
    [24]毛培胜,韩建国,吴喜才.收获时间对老芒麦种子产量的影响[J].草地学报,2003,11(1):33-37.
    [25]蔺吉武,王善发.高粱种子不同收获时期对种子活力的影响[J].辽宁农业职业技术学院学报,2005,7(1):20-22.
    [26]马继凤.收获期对春大豆产量与品质的影响[J].湖南农业科学,2010,21:32-33.
    [27]吴素琴,张自和.影响苜蓿种子丰产的主要因子研究[J].草业科学,2004,21(1):10-14.
    [28]王立群,杨静,石凤翎.多年生禾本科牧草种子脱落机制及适宜采收期的研究[J].中国草地,1996,3:7-16.
    [29]钟声.纳罗克非洲狗尾草结实性及适宜收种时间的研究[J].种子,2007,4(26):32-35.
    [30]李世忠,谢应忠,徐坤.国内外禾本科牧草种子生产的研究进展[J].中国种业,2005,(7):17-19.
    [31]刘文辉,梁国玲,周青平等.青海扁茎早熟禾种子成熟过程中落粒性与生长生理特性的研究[J].种子,2009,28(6):18-22.
    [32] Fraser J, Egli D B, Leggett J E. Pod and seed development in soybean cultivars withdifferences in seed size [J]. Agron. J,1982,74:81-85.
    [33]谢国平,呼天明,王佺珍等.施N量和收获时间对西藏野生垂穗披碱草种子产量影响研究[J].草业学报,2010,19(2):89-96.
    [34] Hampton J G. Herbage seed lot vigour: Do problems start with seed production [J]. J.App1.Seed Produ,1991,9:87-93.
    [35] Hill M J. Watkin B R. Seed production studies on perennial ryegrass,timothy and prairiegrass2.Changes in physiological components during seed development and time and methodof harvesting for maximum seed yield[J]. Journal of the British Grassland Society,1975,30:13l-140.
    [36]毛培胜,韩建国,盛亦兵.不同收获期高羊茅种子活力测定方法的比较研究[J].草地学报,1999,7(2):121-128.
    [37]孙群,王建华,孙宝启.种子活力的生理和遗传机理研究进展[J].中国农业科学,2007,40(1):48-53.
    [38]王显国,韩建国,陈志宏.新麦草种子成熟过程中活力变化的研究[J].草地学报,2000,8(4):306-311.
    [39]陈志宏,韩建国,秦歌菊等.冰草种子发育过程中活力变化的研究[J].草业学报,2004,13(2):94-98.
    [40]李鸿祥,韩建国,马春晖等.草木樨种子成熟过程中的活力特性及产量形成[J].草地学报,2000,8(4):297-305.
    [41] Wang Ying, Hou Yu, Li Xiaoyu, et al. Optimum harvest time of Vicia cracca in relation toseed tolerance as influenced by harvest time Acta Agronomica Sinica[J].2012,38(3):1-6.
    [42]毛培胜,韩建国,戚贵彦.收获时问对老芒麦种子质量的影响[J].中国草地,2002,6(24):21-46.
    [43]马春晖,韩建国,孙洁峰等.结缕草种子发育过程中生理生化变化的研究[J].草业学报,2009,18(6):174-179.
    [44] Lemke B M, Gibson L R, Knapp A D, et al. Maximizing seed production in easterngamagrass[J]. Agron. J,2003,95:863-869.
    [45] Finch Savage W E, Leubner Metzger G. Seed dormancy and the control of germination[J].New Phytol,2006,171,501-523.
    [46] Baskin J M, Baskin C C. A classification system for seed dormancy[J]. Seed Sci Res,2004,14:1-16.
    [47]颜启传.种子学[M].北京:中国农业出版社,2001.
    [48]杨期和,叶万辉,宋孙泉等.植物种子休眠的原因及休眠的多形性[J].西北植物学报,2003,23(5):837-843.
    [49]杨期和,叶万辉等.顽拗型种子的生物学特性及种子顽拗性的进化[J].生态学杂志,2006,25(1):79-86.
    [50] Baskin C C, Baskin J M. Seeds: Ecology,Biogeography and Evolution of Dormancy andGermination[M]. Academic Press: San Diego,CA,USA.1998.
    [51] Baskin C C, Baskin J M, Li XJ. Taxonomy,anatomy and evolution of physical dormancy inseeds[J]. Plant Species Biology,2000,15:139-152.
    [52]王小春,杨文钰.作物种子穗发芽研究现状[J].种子,2003,4:51-53.
    [53] Finkelstein R, Reeves W, Ariizumi T, et al. Molecular aspects of seed dormancy[J]. Annu RevPlant Biol.2008,59:387-415.
    [54] Allen P S, Meyer S. Ecological aspects of seed dormancy loss [J]. Seed Sci.Res,1998,8:183-191.
    [55] Vleeshouwers L M, Bouwmeester H J. A simulational model for seasonal changes indormancy and germination of weed seeds [J]. Seed Sci.Res,2001,11:77-92.
    [56] Norton C R. Seed technology. Aspect of woody ornamental seed germination[J]. Acta Hort.1987,202:23-34.
    [57] Baskin C C, Baskin J M. Dormancy types and dormancy breaking and germinationrequirements in seeds of halophytes[A]. In:Khan M A, Ungar eds IA, eds. Biology of salttolerant plant[C]. Michigan:Chelsea,1995:23-30.
    [58]付婷婷,程红焱,宋松泉.种子休眠的研究进展[J].植物学报,2009,44(5):629-641.
    [59]潘琳,徐程扬.种子休眠与萌发过程的生理调控机理[J].种子,2010,29(6):42-47.
    [60]穆春生,王颖,孟安华.松嫩草地主要豆科牧草种子硬实破除方法研究[J].四川草原,2005,10:6-8.
    [61] Hilhorsth H W M. Acritical update on seed dormancy.Ⅰ.Primary dormancy[J]. Seed Sci. Res.,1995,5:61-73.
    [62]蔺经,杨青松,李小刚,颜志梅,盛宝龙.砂梨种子休眠原因与解除休眠方法的研究[J].江西农业大学学报,2006,28(4):525-528.
    [63] Debeaujon I, Koornneef M. Gibberellin requirement for Arabidopsis seed germination isdetermined both by testa characteristics and emhryonic abscisic acid[J]. Plant Physiol.,2000,122:415-424.
    [64]郭海林,刘建秀.结缕草种子的休眠机理及其打破休眠的方法[J].种子,2003,129:46-48.
    [65] Geneve R L. Some Common Misconceptions about Seed Dormancy[J]. CombinedProceedings International Plant Propagators Society,2005,55:9-12.
    [66]胡晋.种子生物学[M].北京:高等教育出版社,2006,5:127-128.
    [67]李蓉,叶勇.种子休眠与破休眠机理研究进展[J].西北植物学报,2005,25(11):2350-2355.
    [68] Khan A A. Cytokinins-permissive role in seed germination[J]. Science,1971,171:853-859.
    [69] Smith H. Phytochrome and Photomorphogenesis. An Introduction to the Photocotrol ofPlant Development[M]. Maidenhead.UK: McGraw-Hill,1974.
    [70] Roberts E H. Seed dormancy and oxidation processes[J]. Symp Soc Exp Biol.1969,23:161-192.
    [71]江玲,万建民.植物激素ABA和GA调控种子休眠和萌发的进展[J].江苏农业学报,2007,23(4):360-365.
    [72]曹雅君,江玲,罗林广等.水稻品种休眠特性的研究[J].南京农业大学学报,2001,24(2):1-5.
    [73] Brandy S M, Mccourt P. Hormone cross-talk in seed dormancy[J]. J Plant Growth Regul,2003,22:25-31.
    [74]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1995:281-284.
    [75] Bewley J D, Black M. Physiology and biochemistry of seeds in relation to germination:viability, dormancy and environmental control[M]. Berlin:Springer-Verlag,1982,2:258-374.
    [76] Finneseth C H, Layne D R, Geneve R L. Requirements for seed germination in NorthAmerican pawpaw (Asimina triloba L)[J]. Dunal,1998,26:471-480.
    [77]浦心春.结篓草种子休眠过程中呼吸途径的研究[J].草业学报,1996,(3):56-60.
    [78]施和平,陶少飚.三裂叶野葛种子的休眠及萌发(简报)[J].植物生理学通讯,2001,37(1):29-30.
    [79]冯毓琴,曹致中.天蓝苜蓿种子休眠特性的研究[J].草业科学,2003,20(1):20-23.
    [80]许桂芳,刘明久,席世丽等.破除红蓼种子休眠研究初报[J].种子,2005,24(1):24-25.
    [81]鱼小军,王芳,龙瑞军.破除种子休眠方法研究进展[J].种子,2005,24(7):46-49.
    [82]金飚,陈宇,王莉等.影响琼花种子休眠的因素[J].植物生理学通讯,2005,41(5):610-612.
    [83]余玲.虎尾草种子萌发特性的研究[J].草业科学,1999,16(3):51-54.
    [84]崔聪淑,卢新雄,陈辉等.野生苋种子休眠特性及发芽方法研究[J].种子,2001,2:55-56.
    [85]鱼小军,王彦荣,曾彦军等.温度和水分对无芒隐子草和条叶车前种子萌发的影响[J].生态学报,2004,24(5):883-887.
    [86]徐秀梅,张新华,王汉杰.60Coγ射线辐照对马蔺种子萌发芽的影响[J].南京林业大学学报,2003,27(1):55-58.
    [87]刘丽莉,冯涛,严明理等.几种破除美洲商陆种子休眠的方法[J].植物生理学通讯,2007,43(4):795-796.
    [88]李铁华.木荷种子休眠与萌发特性的研究[J].种子,2004,23(6):15-17.
    [89]杨映根,郭明,郭毅等.羊草种子生产及提高种子萌发率的研究进展[J].种子,2001,5:40-42.
    [90]鱼小军,王彦荣,孙建华等.无芒隐子草和条叶车前种子萌发特性研究[J].草原与草坪,2004,(4):51-55.
    [91]陈芳,刘彤,周玲玲.新疆野生郁金香生物学特性及种子发芽特性的研究[J].石河子大学学报(自然科学版),2001,5(3):197-200.
    [92]胡小文,武艳培,王彦荣等.豆科种子休眠破除方法初探[J].西北植物学报,2009,29(3):568-573.
    [93]牟新待,龙瑞军,任云宇等.几种牧草苗期耐盐性的研究[J].草业科学,1987,4(1):31-35.
    [94]武之新,纪剑勇,陈志德.几种牧草耐盐性的研究初报[J].草业科学,1989,6(5):43-47.
    [95]王彦荣,曾彦军.浸种对提高兰引Ⅲ号结缕草种子发芽的影响[J].草业学报,1997,6(2):41-46.
    [96] Richards J F. Land transformation. In: Turner II, BL, et al. The Earth as transformed byhuman action[M]. New York: Cambridge University Press,1990:163-178.
    [97] Pawl B. Cities and economic development: from the dawn of history to the present[M].Chicago: Chicago University Press,1998.
    [98] Rengasamy P. Transient salinity and subsoil constraints to dryland farming in Australian sodicsoils: an overview[J]. Aust.J.Exp.Agric,2002,42:351-361.
    [99]李建东,郑慧莹.松嫩平原盐碱化草地治理及其生物生态机制[M].北京:科学出版社,1997:1-271.
    [100]郑慧莹,李建东.松嫩平原的草地植被及其利用保护[M].北京:科学出版社,1993:1-195.
    [101]郑慧莹,李建东.松嫩平原盐生植物与盐碱化草地的恢复[M].北京:科学出版社,1999:1-100.
    [102]蔺吉祥,李晓宇,张兆军等.温度与盐碱胁迫交互作用对羊草种子萌发与幼苗生长的影响[J].草地学报,2011,19(6):1005-1009.
    [103]赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M].北京:科学出版社,2005:1-2.
    [104] Jixiang Lin, Junfeng Wang and Xiaoyu Li, et al. Effects of saline and alkaline stresses invarying temperature regimes on seed germination of Leymus Chinensis from the SongnenGrassland of China[J]. Grass and Forage Science,2011,66:578-584.
    [105] Jixiang Lin, Xiaoyu Li and Zhaojun Zhang, et al. Salinity-alkalinity tolerance in wheat: Seedgermination, early seedling growth, ion relations and solute accumulation[J]. AfricanJournal of Agricultural Research,2012,7(3):467-474.
    [106] Rehman S.The effect of sodium chloride on germination and the potassium and calciumcontents of Acacia seeds[J]. Seed Sci Technol,1996,25:45–57.
    [107] Lovato M B. Germinationin Stylosanthes humilis population in the presence of NaCl[J].Aust J Bot,1994,42:717–723.
    [108]郭彦,杨洪双,赵家斌.混合盐碱对大豆种子萌发的影响[J].种子,2008,27(12):92-94.
    [109]王军伟,魏佑营,邱红等.盐胁迫对不同品种菠菜种子萌发特性的影响[J].山东农业科学,2007(6):48-53.
    [110]沈禹颖,王锁民,陈亚明.盐胁迫对牧草种子萌发及其恢复的影响[J].草业学报,1999,8(3):54-60.
    [111]马翠兰,刘星辉.盐胁迫对柚、福橘种子萌发和幼苗生长的影响[J].福建农业大学学报(自然科学版),2003,32(3):320-324.
    [112]卢素锦.盐碱胁迫对同德小花碱茅种子萌发和幼苗生长的影响研究[D].[硕士学位论文].西宁:青海大学畜牧兽医科学院,2008.
    [113]颜宏,赵伟,秦峰梅等.盐碱胁迫对羊草、地肤种子萌发以及幼苗生长的影响[J].东北师大学报,2006,38(4):117-123.
    [114] Papadopoulos L, Rendig V V. Tomato Plant response to salinity. J. Agric,1983,75:696-700.
    [115] Nanawati G L, Maliwal G L. Note on the effect of salts on the growth, mineral nutrition andquality of tomato (Lycopersicone sculentum Mill). Indian J.Agric.Sci.1974,43:612-614.
    [116]刁西成,刁西文.保护地黄瓜形态诊断技术[J].北方园艺,1995(4):6-10.
    [117] Elizamar C S, Rejane, J M C N, Francisco P A. Physiological responses to salt stress inyoung umbu plants[J]. Environmental and Experimental Botany,2008,63:147-157.
    [118] Hussain M K, Rehman O U. Breeding sunflower for salt tolerance: Association of shootgrowth and mature plant traits for salt tolerance in cultivated sunflower (Helianthus annuusL.)[J]. Helia,1995,18:69-76.
    [119]庞丙亮,曹帮华,张玉娟等.不同盐碱胁迫对紫菀生理生化的影响[J].林业科技开发,2011,25(3):44-46.
    [120] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol,2008,59:651-681.
    [121] Cramer G R,Bowman D C. Short-term leaf elongation kinetics of maize in response tosalinity are independent of the root[J]. Physiol Plant,1991,95:965-967.
    [122] Agastian P,Kingsley S J, Vivekanandan M. Effect of salinity on photosynthesis andbiochemical characteristies in mulberry genotypes[J]. Photosynthetica.2000,38(2):287-290.
    [123] Gadallah M A A. Effects of proline and glycinebetaine on Vicia faba response to saltstress[J]. Biologia Plantarum,1999,42(2):249-257.
    [124] Khavari, R A. and Y Mostofi. Effects of NaCl on photosynthetic pigments, saccharides andchloroplast ultra structure in leaves of tomato cultivars[J]. Photosynthetica,1998,35:151-154.
    [125]陈俊.碱地肤幼苗抗氧化酶系统对盐碱混合胁迫的生理响应特点[D],2006,4-10.
    [126] Qiu N W, Lu Q T, Lu C M Photosynthesis. PhotosystemII efficiency and the xanthophyIIcycle in the salt-adapted halophyte (Atriplex centralasiatica)[J]. New Phytologis,2003,159(2):479-486.
    [127] Winieov I, Button J D. Accumulation of Photosynthesis gene transcripts in response tosodium chloride by salt tolerant alfalfa cells[J]. Planta.,1991,183(4):478-483.
    [128] Lu C M,Qiu N W,Lu Q T,Wang B S, et al. Does salt stress lead to increased susceptibilityof photosystemII to photoinhibition and changes in photosynthetic pigment composition inhalophyte Suaeda salsa grown out doors[J]. Plant Science,2002,163(5):1063-1068.
    [129]王玉祥,张博,王涛.盐胁迫对苜蓿叶绿素、甜菜碱含量和细胞膜透性的影响[J].草业科技,2009,26(3):53-56.
    [130]陈京,叶姜瑜,王之槐.渗透胁迫对甘薯叶绿体超微结构及膜质过氧化的影响[J].西南师范大学学报(自然科学版),1997,2(22): l69-176.
    [131]刘青,王燕,华春等.外源多胺对盐胁迫下北美海蓬子类囊体膜光能转换特性的影响[J].江苏农业科学,2009(3):54-57.
    [132]江行玉,窦君霞,王正秋. NaC1对玉米和棉花光合作用与渗透调节能力影响的比较[J].植物生理学通讯,2001,37(4):303-305.
    [133]丁菲,杨帆,张国武等. NaCl胁迫对构树幼苗叶片水势、光合作用及Na+、K+吸收和分配的影响[J].林业科学研究,2009,22(3):428-433.
    [134]朱新广,张其德. NaC1对光合作用影响的研究进展[J].植物学通报,1999,16(4):332-338.
    [135]姜国斌,丁丽娜,金华等.盐胁迫对杨树幼苗叶片光合特性及叶绿素荧光参数的影响[J].辽宁林业科技,2007,43(1):20-23.
    [136]李秀霞,齐曼·尤努斯,高桥久光等. Na2SO4胁迫对沙枣光合速率及其它生理指标的影响[J].新疆农业科学,2005,42(2):102-106.
    [137]杨晓慧,蒋卫杰,魏珉等.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报(自然科学版),2006,37(2):302-305.
    [138] Kozlowaki T T. Responses of woody plants to flooding and salinity. Tree PhysiologyMonograph,1997,(1): l-29.
    [139]王艳青,蒋湘宁,李悦等.盐胁迫对刺槐不同组织及细胞离子吸收和分配的变化[J].北京林业大学学报,2001,23(l):19-23.
    [140]陈秀兰.提高棉花耐盐性的途径[J].棉花学报,1998,10(2):64-68.
    [141]郭玉双,李祥羽,任学良.植物体内活性氧(ROS)的产生及其作用研究进展[J].黑龙江农业科学,2011,8:146-148.
    [142]陈万超.三个杨树品种耐盐性和耐盐机制的比较研究[D].2007,1-10.
    [143]方孝东,林栖凤,屈良鹄.植物耐盐机制及植物耐盐基因工程[J].植物科学进展,2000,3:155-165.
    [144]陈俊.碱地肤幼苗抗氧化酶系统对盐碱混合胁迫的生理响应特点[D].2006,4-10.
    [145] Harper D B, Harvey B M R. Mechanisms of paraquat tolerance in perennial ryegrass II.Role of superoxide dismutase, catalase, and peroxidase[J]. Plant Cell Environ.,1978,1:211-215.
    [146] Dhindsa R S, Matowe W. Drought tolerance in two mosses: correlated with enzymaticdefense against lipid peroxidation[J], J.Exp.Bot.,1981,32:79-91.
    [147] Spychalla J P, Desborough S L. Superoxide dismutase, catalase, and alpha-tocopherolcontent of stored potato tubers[J]. Plant Physiol.,1990,94:1214-1218.
    [148] Mittova V, Tal M, Volokita M, et al. Up-regulation of the leaf mitochondrial andperoxisomal antioxidative systems in response to salt-induced oxidative stress in the wildsalt-tolerant tomato species Lycopersicon pennellii[J]. Plant Cell Environ,2003,26:845-856.
    [149] Lee D H, Kim Y S, Lee C B. The inductive responses of the antioxidant enzymes by saltstress in the rice (Oryza sativa L.)[J]. Plant Physiol,2001,158:737-745.
    [150] Benhayyim G, Faltin Z, Gepstein S, et al. Isolation and characterization of salt-associatedprotein in citrus[J]. Plant Sci.,1993,88:129-140.
    [151] Sreenivasulu N, Grimm B, Wobus U, et al. Differential response of antioxidant compoundsto salinity stress in salt-tolerant and salt-sensitive seedlings of fox-tail millet (Setariaitalica)[J]. Physiol.Plant,2000,109:435-442.
    [152] Sehmer L, Alaoui-Sosse B, Dizengremel P. Effect of salt stress on growth and on thedetoxyfying pathway of pedunculate oak seedlings (Quercus robur L.)[J]. Plant Physiol.,1995,147:144-151.
    [153] Hernandez J, Jimenez A, Mullineaux P, et al. Tolerance of pea plants(Pisum sativum)tolong-term salt stress is associated with induction of antioxidant defences[J]. Plant CellEnviron,2000,23:853-862.
    [154] Hernandez J A, Olmos E, Corpas F J, et al. Salt-induced oxidative stress in chloroplasts ofpea plants[J]. Plant Sci.,1995,105:151-167.
    [155] Gossett D R, Millhollon E P, Lucas M C. Antioxidan response to NaCl stress in salt tolerantand salt sensitive cultivar of cotton[J]. Crop Sci.,1994,34:706-714.
    [156]马文月.植物抗盐性研究进展[J].农业技术,2004,24(4):95-99.
    [157]赵可夫.植物抗盐生理[M].北京:中国科学出版社,1993,1-320.
    [158]韦存虚,王建波,陈义芳等.盐生植物星星草叶表皮具有泌盐功能的蜡质层[J].生态学报,2004,24(11):2451-2456.
    [159] Lauchli A. Salt Exclusion:An adaptation of Legumes for crops and Pastures under salineconditions.Salinity tolerance in plants, In staples R C, Toenniesson G H (eds).[J] New York,John Wiley Sons,1984,171-187.
    [160] Reddy M P, Sanish S, Iyengar E R R. Photosynthetic studies and compartmentation of ionsin different tissues of Salicornia brachiata Roxb under saline conditions[J]. Photosynthetica,1992,26:173-179.
    [161] Iyengar E R R, Reddy M P. Photosynthesis in highly salt-tolerant plants [M]. In:Pesserkali,M.(Ed.). Handbook of photosynthesis.Marshal Dekar, Baten Rose, USA,1996,897-909.
    [162] Blumwald E. Sodium transportand salt tolerance in plants.[J]. Current Opinion in CellBiology,2000,12:431-434.
    [163] Adams P, Thomas J C, Vernon D M, et al. Distinct cellular and organismic responses to saltstress[J]. Plant Cell Physiol,1992,33:1215-1223.
    [164] Shi Huazhong, Quintero F J, Pardo J M, et al.2002. Role of SOS1as a plasma membraneNa+/H+antiporter that controls long distance Na+transport in plant[J]. Plant Cell,14:465-477.
    [165] Vance C P. The molecular biology of N metabolism[J]. In: Dennis D T, Turpin D H, LefebrreD D, Layzell D B, editors. Plant Metabolism Ed2. London: Longman Scientific,1997,449-477.
    [166] Bohnert H J, Jensen R G. Strategies for engineering water stress tolerance in plants[J].Trends Biotechnol,1996,14:89-97.
    [167] Zhu G L, Deng X W, Zuo W N. Determination of free proline in plants[J]. Plant physiol,commun,1983,1:35-37.
    [168] Zheng H Y, Li J D. A preliminary study on the formation of saline-alkaline plantcommunities in the Songnen Plain[J]. Acta phytoecol,1995(19):1-12.
    [169] Wang Y, Yang C, Liu G, et al. Development of a cDNA microarray to identify geneexpression of Puccinellia tenuiflora under saline–alkali stress[J]. Plant Physiol Biochem,2007,45:567-576.
    [170] Yang C, Jianaer A, Li C, et al. Comparison of the effects of salt-stress and alkali-stress onthe photosynthetic production and energy storage of an alkali-resistant halophyte Chlorisvirgata[J]. Photosynthetica,2008,46:273-278.
    [171] Yang C, Wang P, Li C, et al. Comparison of effects of salt and alkali stresses on the growthand photosynthesis of wheat[J]. Photosynthetica,2008,46:107-114.
    [172] Yang C, Zhang M, Liu J, et al. Effects of buffer capacity on growth, photosynthesis, andsolute accumulation of a glycophyte (wheat) and a halophyte (Chloris virgata)[J].Photosynthetica,2009,47(1):55-60.
    [173] Yang C, Shi D, Wang D. Comparative effects of salt stress and alkali stress ongrowth,osmotic adjustment and ionic balance of an alkali resistant halophyte Suaedaglauca(Bge.)[J]. Plant Growth Regul,2008,56:179-190.
    [174] Yang C, Xu H H, Wang L, et al. Comparative effects of salt-stress and alkali-stress on thegrowth, photosynthesis, solute accumulation, and ion balance of barley plants[J].Photosynthetica,2009,47(1):79-86.
    [175] Jitao Zhang and Chunsheng Mu. Effects of saline and alkaline stresses on the germination,growth, hotosynthesis, ionic balance and anti-oxidant system in an alkali-tolerantleguminous forage Lathyrus quinquenervius[J]. Soil Science Plant Nutrition,2009,55:685-697.
    [176] Rui Li, Fuchen Shi, Kenji Fukuda, et al. Effects of salt and alkali stresses on germination,growth, photosynthesis and ion accumulation in alfalfa (Medicago sativa L)[J]. Soil Scienceand Plant Nutrition,2010,56:725-733.
    [177] Rui Guo, Lianxuan Shi and Yunfei Yang. Germination, growth, osmotic adjustment andionic balance of wheat in response to saline and alkaline stresses[J]. Soil Science and PlantNutrition,2009,55:667-679.
    [178] J Liu and D C Shi. Photosynthesis, chlorophyll fluorescence, inorganic ion and organic acidaccumulations of sunflower in responses to salt and salt-alkaline mixed stress[J].Photosynthetica,2010,48(1):127-134.
    [179] Xiaoping Wang, Shujuan Geng, Yong jun Ri, et al. Physiological responses and adaptivestrategies of tomato plants to salt and alkali stresses[J]. Scientia Horticulturae,2011,130:248-255.
    [180] H Wang, Z Wu, Y Chen, et al. Effects of salt and alkali stresses on growth and ion balance inrice (Oryza satiba L.)[J]. Plant soil environ,2011,57(6):286-294.
    [181] Kemple A K, Macpherson H T. Liberation of amino acid in perennial ryegrass duringwilting[J]. Biochemistry,1954,58:46-49.
    [182] Munns R, Tester M. Mechanisms of salinity tolerance[J]. Annu Rev Plant Biol,2008,59:651-681.
    [183] Sakamoto A, Murara N. The role of glycine betaine in the protection of plants fromstress:clues from transgenic plants[J]. Plant, Cell and Environment,2002,25:163-171.
    [184]张立新,李生秀.甜菜碱与植物抗旱/盐性研究进展[J].西北植物学报,2004,24(9):1765-1771.
    [185]戴高兴,彭克勤,皮灿辉.钙对植物耐盐性的影响[J].中国农学通报,2003,19(3):97-101.
    [186]史跃林,罗庆熙,刘佩瑛. Ca2+对盐胁迫下黄瓜幼苗中CaM、MDA含量和质膜透性的影响(简报)[J].植物生理学通讯,1995,31(5):347-349.
    [187]张乃华,高辉远,邹琦. Ca2+缓解NaCl胁迫引起的玉米光合能力下降的作用[J].植物生态学报,2005,29(2):324-330.
    [188] Sander D, Pelloux J, Brownlee C, et al. Calcium at the crossroads of signaling[J]. Plant Cell,2002,14:401-417.
    [189] Trewavas A. Le calcium, Cest la Vie: Calcium makes waves`[J]. Plant Physiol,1999,120:1-6.
    [190] Wang Z W, Li L H, Han X G and Dong M. Do rhizome severing and shoot defoliation affectclonal growth of Leymus chinensis at ramet population level[J]. Acta Oecologica,2004,26,255-260.
    [191] Chen M J, Jia S X. Fodder plants of China.2002, pp.194–198.(Agriculture Press of China:Beijing).
    [192]李建东.我国的羊草草原[J].吉林师范大学学报(自然科学版),1978,1:145-159.
    [193]王克平,娄玉杰,成文革等.吉生羊草营养物质动态变化规律的研究[J].草业科学,2005(08):24-27.
    [194] Donohue K. Seeds and seasons: Interpreting germination timing in the field[J]. Seed ScienceResearch,2005,15:175-187.
    [195] Donohue K, Dorn L, Griffith C, et al. Nieh construction through germination cueing:life-history responses to timing germination in Arabidopsis thaliana[J]. Evolution,2005,59:771-785.
    [196] Grime J P, Mason G, Curtis A V, et al. A comparative study of germination characteristics ina local flora[J]. Journal of Ecology,1981,69:1017-1059.
    [197] Evenari M, Koller D, Gutterman Y. Effects of the environment of the mother plant ongermination by control of seed-coat permeability to water in Ononis sicula Guss[J].Australian Journal of Biological Sciences,1966,19:1007-1016.
    [198]黄振英, Gutterman Y.油嵩与中国和以色列沙漠中的两种嵩属植物种子萌发策略的比较[J].植物学报,2000,42:71-80.
    [199] Venable D L, Lawlor L. Delayed germination and dispersal in desert annuals: Escape inspace and time[J]. Oecologia,1980,46:272-282.
    [200] Venable D L, Brown J S. The seleetive interactions of dispersal, dormaney, and seed size asadapations for reducing risk in variable environments[J]. American Naturalist,1988,131:360-384.
    [201] Olff H, Pegtel D M, Van Groenendael, et al. Germination strategie during grasslandsueeession[J]. Journal of Ecology,1994,82:69-77.
    [202] Vera M L. Effects of altitude and seed size on germination and seedling survival ofheathland plants in north Spain[J]. Plant Ecology,1997,133:101-106.
    [203]崔喜艳,郭继勋.不同盐碱化草地羊草甜菜碱含量和甜菜碱醛脱氢酶活性的变化[J].吉林农业大学学报,2006,28(6):606-609.
    [204]张玉芬,周道玮.羊草分化及育种研究进展[J].中国草地,2002,24(2):54-58.
    [205]王小春,杨文钰.作物种子穗发芽研究现状[J].种子,2003,(4):51-53.
    [206]韩建国,毛培胜,浦心春,李敏.草坪型高羊茅种子活力的研究[J].草地学报,1995,3(4):269–275.
    [207]韩建国.牧草种子学[M].北京:中国农业大学出版社,2000.
    [208] Wellington P S.Handbook for Seedling Evaluation[M].ISTA,1969,98-129.
    [209] Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seeddormaney release and germination[J]. Seed Science Researeh,2005,15:281-307.
    [210] Sanderson M A, Elwinger G F. Emergence and seedling structure of temperate guasses atdifferent planting depths[J].2004.
    [211] Ries R, Hofmann L. Grass seedling morphology when planted at different depths[J]. Journalof Range Management,1995:218-223.
    [212] Seiwa K, Watanabe A, Saitoh T, et al. Effects of burying depth and seed size on seedlingestablishment of Japanese chestnuts[J]. Castanea Crenata,2002,164:149-156.
    [213] Maun M A. Adaptations of plants to burial in coastal sand dunes[J]. Canadian Journal ofBotany,1998,76(5):713-738.
    [214] Fulbright T E, Wilson A, Redente E F. Green needlegrass seedling morphology in relation toplanting depth[J]. Journal of Range Management,1984:266-270.
    [215] Maun M A. Adaptations enhancing survival and establishment of seedlings on coastal dunesystems[J]. Vegetatio,111:59-70.
    [216] Welbaum G E, Tissaoui T, Bradford K J.Water relations of seed development andgermination in muskmelon (Cucum is melo L.)KI.Sensitivity of germination to waterpotential and abscisic acid during development[J].Plant Physiology,1990,92:1029-1037.
    [217]彭鸿嘉.六种牧草种子大小和播种深度对出苗的影响[J].草业科学,2001,21(6):30-35.
    [218]王刚,梁学功,冯波.沙漠植物的更新生态位:油嵩、柠条、花棒的种子萌发条件的研究[J].西北植物学报,1995,15(5):102-105.
    [219] Buhler D D. The influence of tillage systems on weed population dynamics andmanagement in corn and soybean in the Central USA[J]. Crop Science,1995,35:1247-1258.
    [220] Sykes M T, Wilson J B. Dark tolerance in plants of dunes[J]. Functional Ecology,4:799-805.
    [221]范天恩,高利伟,郭伊乐.羊草种子萌发条件的探讨[J].内蒙古草业,2005,17(4):60-62.
    [222]易津.羊草种子的休眠生理及提高发芽率的研究[J].1994,6:1-6.
    [223]易津,李青丰,田瑞华.赖草属牧草种子休眠与植物激素调控[J].草地学报,1997,5(2):93-100.
    [224]陈孝泉,李艳芹,贾丰生,等.羊草植物的研究[J].草业科学,1989,(6)2:7-12.
    [225] Liu G S, Qi D M. Study of immature embryos of several species of Leymus via in vitroculture[J]. Acta Prataculturae Sinica,2004,10(2):70-73(in Chinese).
    [226]刘军,黄娟.羊草和苏丹草种子结构比较的研究[J].内蒙古师范大学学报(自然科学版)2003,32(4):394-396.
    [227]刘杰,刘公社,齐冬梅,等.聚乙二醇处理对羊草种子萌发及活性氧代谢的影响[J].草业学报,2002,11(1):59-64.
    [228] Yan H, Zhao W, Sheng Y M. Effects of alkali-stress on Aneurolepidium chinense andHelianthus annuus[J]. Chinese Journal of Applied Ecology,2005,16:1497-1501.
    [229] Ma H Y, Liang Z W, Wang Z W, et a1. Lemmas and endosperms significantly inhibitedgermination of Leymus chinensis(Trin.) Tzvel.(Poaceae)[J]. Journal of Arid Environments,2007,6:1-6.
    [230]马红媛.羊草种子的高度休眠机理与萌发特性的研究[D].[博士学位论文].长春:中国科学院东北地理与农业生态研究所,2008.
    [231] Msanga H P, Maghembe J A. Effect of hot water and chemical treatments on thegermination of Albizia Schimperana seed. For. Ecol.Manage.1986,17:137-146.
    [232] Teketay D. Germination of Acacia origena, A. pilispina and Pterolobium stellatuminresponse to different pre-sowing seed treatments, temperature and light. J.Arid Environ.1998,38:551-560.
    [233] Shao H B, Liang Z S, Shao M G, et a1.Impacts of PEG-6000pretreatment for barley(Hordeum vulgare L.) seeds on the effect of their mature embryo in vitro culture andprimary investigation on its physiological mechanism[J]. Colloids and surfaces B:Biointerfaces,2005,41:73-77.
    [234]金兰,罗桂花,丁莉,等.不同浓度GA3对独一味种子发芽率的影响[J].安徽农业科技,2009,37(9):3900-3912.
    [235]崔辉梅,樊新民,张永先.几种外源激素浸种对胡萝卜种子发芽的影响[J].中国种业,2006(11):31-32.
    [236] Simpson G M. Seed dormancy in grasses. Cambridge, Cambridge University Press.1990.
    [237] Takos L A. Seed dormancy in bay laurel (Laurusnobilis L.)[J]. New Forests,2001,21:105-114.
    [238] Sari A, Oguz B, Bilgie A. Breaking seed dormaney of laurel (Uurusnobilis L.)[J]. NewForests,31:403-408.
    [239] Hu X W, Wang Y R, Wu Y P. Effects of the pericarp on imbibition, seed germination, andseedling establishment in seeds of Hedysarum scoparium Fisch.et Mey[J]. Ecol Res,2009,24:559-564.
    [240] Bustamante R O, Walkowiak A, et al. Birdfrugivory and the fate of Cryptocarya alba(Lauraceae) in the Chilean matorral[J]. Rev Chil Hist Nat,1996,69:357-364.
    [241] Pujol J A, Calvo J F, Ramirez-Diaz L. Recovery of germination from different osmoticconditions by four halophytes from southeastern spain[J]. Annals of Botany,2000,85(2):279-286.
    [242] Tlig T, Gorai M, Neffati M. Germination responses of diplotaxis harra to temperature andsalinity[J]. Flora,2008,203(5):421-428.
    [243] Powell A A, Oliveira M de A, Mattews S. The role of imbibition damage in determing thevigor of white and coloured seed lots of dwarf French beans (Phaseolus vulgaris)[J].Journal of Experimental Botany,1986,37(5):716-722.
    [244] Khan M A, Gul B, Weber D J. Germination of dimorphic seeds of suaeda moquinii underhigh salinity stress[J]. Australian Journal of Botany,2001,49(2):185-192.
    [245]田雨.种子逆境发芽及提高种质抗逆性方法的研究[D].[博士学位论文].长春:东北师范大学,2011.
    [246]马红媛,梁正伟.不同pH值土壤及其浸提液对羊草种子萌发和幼苗生长的影响[J].植物学通报,2007,24(2):181-188.
    [247]张兆军.羊草幼穗分化及子株与翌年成穗关系研究[D].[博士学位论文].长春:东北师范大学,2011.
    [248] Liu G S and Qi D M. Research progress on the biology of Leymus chinensis[J]. ActaPrataculturae Sinica,2004,13:6-11.
    [249] Yang Y F, Liu G C and Zhang B T. Ananalysis of age structure and the strategy for asexualpropagation of Aneurolepidium chinense (Trin.)[J]. Kitag population. Acta Botanical Sinica,1995,37:147-153.
    [250] Grime J P and Campbell B D. Growth rate, habitat productivity, and plant strategy aspredictors of stress response.In: Mooney, H.A., Winner, W.E., Pell, E.J., Chu, E.(Eds.),Response of plants to multiple stresses. Academic Press, Inc., San Diego, London, pp,1991,143-159.
    [251] Probert R J. The role of temperature in germination ecophysiology. In:Fenner, M.(Ed.),Seeds: The Ecology of Regeneration in Plant Communities[J]. CAB International,Wallingford,1992, pp,327-348.
    [252] Bewley J D, Black M. Physiology of Development and Germination,2nd ed. Seeds[M].Plenum Press, New York,1994.
    [253] Gul B, Weber D J. Effects of salinity, light and temperature on germination in Allenrolfeaoccidentalis[J]. Can.J. Bot,1999,77:240-246.
    [254]张红香.种子发芽生态学[D].[博士学位论文].长春:东北师范大学,2008.
    [255]郑光华,史忠礼,赵同芳,等.食用种子生理学[M].北京:农业出版社,1990.
    [256]黄振英,张新时, Gutterman Y,等.光照、温度和盐分对梭梭种子萌发的影响[J].植物生理学报,2001,27(3):275-280.
    [257]余玲.虎尾草种子萌发特性的研究[J].草业科学,1999,16(3):51-54.
    [258] B Guan, D Zhou, H. Zhang, et al. Germination responses of Medicago ruthenica seeds tosalinity, alkalinity, and temperature[J]. Journal of Arid Environments,2009,73(1):135-138.
    [259] A1-Khateeb S A. Effect of salinity and temperature on germination, growth and ion relationsof Panicum turgidum Forssk[J]. Bioresource Technology,2006,97:292-298.
    [260] Khan M A, Ungar I A. Alleviation of salinity stress and the response to temperature in twoseed morphs of Halopyrum mucronatum (Poaceae)[J]. Australian Journal of Botany,2001,49:777-778.
    [261] Khan M A, Ungar I A. Germination responses of the subtropical annual halophyteZygophyllum simplex[J]. Seed Science and Technology,1997,25:83-91.
    [262] Al-Yemeni M N, Basahy A Y. Breaking of seed dormancy in Ducrosia anethifolia (D.C.)Boiff[J]. Pakistan Journal of Botany,1999,31:247-252.
    [263] Delesalle V A, Blum S. Variation in germination and survival among families of Sagittarialatifolia in response to salinity and temperature[J]. International Journal of Plant Sciences,1994,155:187-195.
    [264] De Villiers A J, Van Rooyen M W, Theron G K. Van de Venter H A. Germination of threeNamaqualand pioneer species, as infuenced by salinity, temperature and light[J]. SeedScience and Technology,1994,22:427-433.
    [265] Aiazzi M T, Carpane P D, Rienzo J A, et al. Effects of salinity and temperature on thegermination and early seedling growth of Atriplex cordobensis Gandoger et Stuckert(Chenopodiaceae)[J]. Seed Science and Technology,2002,30:329-338.
    [266]管博,周道玮,田雨,等.盐碱及变温条件对花苜蓿种子发芽的影响[J].中国草地学报,2010,32(1):58-63.
    [267] Kermode A R. Regulatory mechanisms involved in the transition from seed development togermination. CRC Crit. Rev[J]. Plant Sci,1990,9:155-195.
    [268] Qaderi m, M and Cavers P B. Variation in germination response within Scotch thistle,Onopordumac anthium L., populations matured under greenhouse and field conditions.[J]Ecoscience,2000,7:57-65.
    [269] Jensen M and Eriksen E N. Development of primary dormancy in seeds of Prunusavium (L.)during maturation[J]. Seed Sci. Technol,2001,29:307-320.
    [270] Khan M A and Ungar I A. Alleviation of seed dormancy in the desert for Zygophyllumsimplex L. from Pakistan[J]. Annals of Botany,1996,80:395-400.
    [271] Khan M A and Ungar I A. Seed germination and dormancy of Polygonum aviculare L. asinfluenced by salinity, temperature, and gibberellic acid[J]. Seed Sci. Technol,1998,26:107-117.
    [272] Song J, Feng G and Zhang F S. Salinity and temperature effects on germination for threesalt-resistant euhalophytes, Halostachys caspica, Kalidium foliatum and Halocnemumstrobilaceum[J]. Plant and Soil,2006,279:201-207.
    [273]黄立华,马红媛,梁正伟.不同盐分对羊草种子萌发与根芽生长的影响[J].农业环境科学学报,2008,27(5):1974-1979.
    [274]杜利霞,董宽虎,夏方山等.盐胁迫对新麦草种子萌发特性与生理特性的影响[J].草地学报,2009,17(6):789-794.
    [275]杨春武,李长有,尹红娟等.小冰麦对盐胁迫和碱胁迫的生理响应[J].作物学报,2007,33(8):1255-1261.
    [276]杨春武,李长有,张美丽等.盐、碱胁迫下小冰麦体内的pH及离子平衡[J].应用生态学报,2008,19(5):1000-1005.
    [277] Gao Zhanwu, Zhu Hui, Gao Jicai, et al. Germination response of Alfalfa (Medicago sativa L)seeds to various salt-alkaline mixed stress[J]. African Journal of Agricultural Research,2011,6(16):3793-3803.
    [278] Yonglin Peng, Zhanwu Gao, Ying Gao, et al. Eco-physiological characteristics of Alfalfaseedlings in response to various mixed salt-alkaline stresses[J]. Journal of integrative plantbiology,2008,50(1):29-39.
    [279]郭立泉,王红宇,麻莹等.星星草响应盐碱胁迫的调节与离子平衡机制[J].东北师大学报,2010,42(2):120-125.
    [280]郭立泉,陈建欣,崔景军等.盐碱胁迫下星星草有机酸代谢调节的比较研究[J].东北师大学报,2009,41(4):123-128.
    [281]麻莹,曲冰冰,郭立泉等.盐碱混合胁迫下抗碱盐生植物碱地肤的生长极其茎叶中溶质积累的特点[J].草业学报,2007,16(4):25-33.
    [282]石德成,盛艳敏,赵可夫.复杂盐碱条件对向日葵胁迫作用主导因素的实验确定[J].作物学报,2002,28(1):461-467.
    [283] Flowers T J. Salinisation and borticultural production[J]. Scientia Horticulturae,1999,78:1-4.
    [284] Kawanabe S, Zhu T C. Degeneration and conservation of Aneurolepidium chinensegrassland in Northern China.[J]. Jpn. Grassland Sci.,1991,37:91-99.
    [285] L uchli A, Lüttge U. Salinity in the soil environment. In: Tanji, KK (ed) Salinity:Environment-Plants-Molecules, pp. Kluwer Academic Publ., Boston,2002,21-23.
    [286] Tang C, Turner N C. The infuence of alkalinity and water stress on the stomatalconductance, photosynthetic rate and growth of Lupinus angustifolius L. and Lupinuspilosus Murr[J]. Aust J Exp Agric,1999,39:457-464.
    [287]於丙军,刘友良.大豆耐盐研究进展[J].大豆科学,2000,19(2):154-159.
    [288] Sosebee R E, Wan C. Plant ecophysiology: a case study of honey mesquite[J]. Symposiumon Shrub Ecophysiology and Biotechnology. Logan, Utah, pp.1987,10-117.
    [289] Gutterman Y. Seed germination in desert plants. Berlin: Springer-Verlag. halophytes insaline conditions[J]. Am. J. Bot,1993,84,279-283.
    [290] Keiffer C H, Ungar I A. The effect of extended exposure to hypersaline conditions on thegermination of five inland halophyte species[J]. American Journal of Botany.1997,84:104-111.
    [291] Johnson D W. Stress productivity in alfalfa: Selection under saline and nonsalineenvironmental conditions[J]. Ph.D. Thesis Univ.of Arizona, Tucson (Diss. Abst.46-48).1991.
    [292] Grime J. Plant strategies, vegetation processes and ecosystem properties,2nd edn [M].Chichester, UK,2001.
    [293] Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Review of PlantPhysiology,1980,31:149-190.
    [294] Lal R K. Effect of salinity applied at different stages of growth on seed yield and itsconstituents in field peas (Pisum sativum L.var.arvensis)[J]. Indian J.Agron,1985,30:296-299.
    [295] Nuttall G, Armstrong R D, Connor D J. Evaluating physicochemical constraints ofCalcarosols on wheat yield in the Victorian southern Mallee[J]. Aust J Agric Res,2003,4:487-497.
    [296] Hartung W, Leport L, Ratcliffe R G, et al. Abscisic acid concentration, root pH and anatomydo not explain growth differences of chickpea (Cicer arietinum L.) and lupin (Lupinusangustifolius L.) on acid and alkaline soils [J]. Plant Soil,2002,240:191-199.
    [297] Zhu G L, Deng X W and Zuo W N. Determination of free proline in plants[J]. Plant PhysiolCommun1,1983,35-37.
    [298] Jamil M and E S Rha. The effect of salinity (NaCl) on the germination and seedling of sugarbeet (Beta vulgaris L) and cabbage (Brassica oleracea L)[J]. Korean J.Plant Res,2004,7:226-232.
    [299] Parida A K, Das A B. Salt tolerance and salinity effects on plants: A review[J].Ecotoxicology and Environmental Safety,2005,60:324-349.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700