用户名: 密码: 验证码:
稻米硬度黏度自动测量系统及其评价分析的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活水平的提高,对稻米品质的要求愈来愈高。稻米品质中最重要的食味品质标准中,多数指标的检测尚处于采用人工感官评定或常规的理化检测方法的阶段,因方法的主观性强、准确性差、耗时长,严重制约了稻米品质的改良。稻米食味品质的表述、测量及相关技术是衡量、评价稻米品质的前提,在系统分析食味品质人工感官评定的基础上,围绕米饭口感这一关键指标,借助于机械工程学科的力学相关测量和分析技术,建立米饭硬度、黏度等质构特性新的表述和测量方法,力求研究出一种简单、快捷、准确的品质量化测定新方法和仪器,这对于完善我国稻米品质评价标准化和规范化具有重要的现实意义和应用价值。据此,本文开展了基于材料特性的稻米硬度黏度自动测量系统的研究,通过研明米饭质构特性的测量机理,建立适合米饭质构特性检测的测试技术与方法,实现对米饭硬度等质构特性新的量化表征方法,并对品种、施肥水平、栽插方式稻米硬度黏度的实例评价以及稻米内部微组织结构观察,验证自动测量系统的准确性与适用性。主要研究结果如下:
     1.在阐明稻米有机固体物材料力学特性基础上,运用材料(金属、有机物)力学性能测量原理与方法,建立了能满足米饭粒硬度、黏度测量精度要求高、反应灵敏的米饭硬度、黏度自动测量系统,其中硬件系统为双悬臂梁应力-应变测量系统、自动驱动装置、数据采集卡、电源系统和箱体结构;软件系统为运行过程控制模块、数据分析模块、数据处理模块、数据管理模块和人机界面,并进行了硬、软件系统设计优化集成。通过该自动测量系统,实现了对米饭粒进行直接加载和卸载的硬度、黏度的自动测量。
     2.通过对米饭粒力变形曲线即对米饭粒直接加载和卸载过程的曲线特征量分析,找出了能有效反映稻米主要质构参数硬度、黏度的加载和卸载曲线斜率建立了选取被测米饭粒“力-位移”加载、卸载曲线的平均斜率大小作为衡量米饭粒硬度、黏度大小的量化表征方法;提出了加载、卸载曲线平均斜率标准化的计算方法,使米饭粒硬度、黏度的大小用0-10之间的实数值来进行表达。自动测量系统能够分辨不同品种稻米的硬度、黏度差异,能够分辨同一品种稻米的硬度、黏度随米饭放置时间变化的状态。通过与日本食味计的对比试验验证了该方法在检测稻米品质方面的正确性和适用性。
     3.通过不同品种、施肥水平、栽培方式下稻米硬度、黏度的测量与评价,进一步验证自动测量系统的应用可靠性。
     ①51个供试水稻品种硬度值变动在7.07-7.75之间;黏度值变动在7.7-8.17之间。按硬度值聚类51个品种划分为4类,第一类硬度值在7.07-7.28之间,含镇稻210等9个品种,第二类硬度值在7.29-7.44之间,含镇稻158等18个品种,第三类硬度值在7.44-7.56之间,含武粳13等18个品种,第四类硬度值在7.59-7.75之间,含常粳09-8等6个品种。按黏度值聚类51个品种划分为4类,第一类黏度值在7.70-7.79之间,含武28181等7个品种,第二类黏度值在7.82-7.91之间,含常优2等14个品种,第三类黏度值在7.93-8.0之间,含镇稻158等19个品种,第四类黏度值在8.02-8.17之间,包括镇稻158等11个品种。按硬度、黏度值综合聚类51个品种也划分为4类,第一类含镇稻210等4个品种;第二类含T712等14个品种;第三类含泰粳394等27个品种;第四类含常粳09-8等6个品种。四种类型品种的硬度值和黏度值均呈同步递增趋势。
     ②不同施氮水平下,不同品种对硬度、黏度值响应均呈抛物线关系,施氮水平达到17.5Kg/666.7m2时,硬度值最高。
     ③栽插方式对稻米的硬度、黏度有影响,硬度值分别是旱直播>手插>水直播>机插>抛秧>机条播>免耕抛秧,旱直播方式下稻米硬度最高,免耕抛秧方式下稻米硬度最低。黏度值分别是手插>旱直播>水直播>机插>免耕抛秧>机条播>抛秧,手插方式下稻米黏度最高,抛秧方式下稻米黏度最低。
     4.运用材料金相组织分析方法,采用光学显微镜(放大400倍)观察各品种在不同施氮水平下的稻米组织晶粒的大小、分布与连接状态等内部组织结构。晶粒较小,晶粒排列较规整的稻米品种其硬度高、黏度大,晶粒较大且排列不规整的稻米品种硬度低、黏度小。从材料金相组织上证明了自动测量系统在原理与方法上的正确性,其测量所得到的硬度与黏度值能够反映稻米食味品质的内在物质组织基础特征。
     稻米硬度黏度的自动测量与量化表征,更直观、真实地反映了米饭的软硬与粘黏的特性,克服了如日本食味计等现有测试仪器以稻米各成分的光学特性,如蛋白质、直链淀粉等的透过光或反射光后再参考相关经验公式来间接确定米饭质构特性的测量不足,同时也符合现有稻米硬度黏度测量的表达方式和习惯,为稻米食味品质的评价提供了一种简便、准确、可靠的手段与方法。
With the rapid development of economy and elevation of living standard in China, high quality rice is being required by more and more domestic consumers. However, most of the indicators or indexes in current standards regarding taste quality, a key criterion to rice quality as whole, were assessed and evaluated organoleptically or were based on conventional physical and chemical measurements, which limited the improvement of rice quality due to subjectivity, low accuracy and time-consuming of existing measurements. The expression, measurement and relevant techniques are preconditions in evaluating rice quality. Therefore, focused on taste quality, establishment of new methodology for the expression and measurement of hardness, viscosity and textural property of cooked rice and development of new method and apparatus for simple, rapid and accurate measurement of rice quality, based on the understanding of rice quality properties and by means of principles and analytical techniques in mechanics, are of great importance in improving the China's standardization of rice quality. In this study, the measurement mechanisms for textural properties of cooked rice were investigated based on the smallness of rice grains in size, displacement and force. The methodology and relevant measuring techniques which fit the textural properties of cooked rice were established, and the quantitative expression of rice textual properties (e.g. hardness) was actualized. Furthermore, the accuracy and applicability of the auto measurement system were validated through the instance evaluation of factors affecting rice taste properties including rice varieties, fertilizer application level and transplanting methods, and observation of inner microstructure of crystal particles in cooked rice. Main results obtained in the study showed as following:
     1. An auto measurement system which can meet the requirements of high precision and sensitivity in hardness and viscosity assessment for cooked rice was developed in this study, based on textural properties and material characteristics of cooked rice and principles and methods for measuring mechanical properties of the materials including organic solids and metals. The hardware of the system included subsystem of double cantilever for stress-strain measurement, auto driving device, data card, power unit and tank body, while the software contained running process control module, data analysis module, data processing module, data management module and man-machine interface. The hardware and software were well designed, optimized and integrated. The system can directly load/unload rice grains and automatically measure hardness and viscosity of cooked rice.
     2. Based on analyzing the characteristic parameters in deforming force distribution curve, the slope values in force-displacement loading/unloading curve, which well reflected rice texture parameters, were chosen to quantitatively express the hardness and viscosity of cooked rice. We also standardized the mean values of the slopes in loading/unloading curves and used real number0-10to represent the hardness and viscosity of cooked rice. The system can identify the difference of hardness and viscosity between rice varieties and the change of hardness and viscosity with storage time of cooked rice. The accuracy and applicability of the system was verified by comparing with the rice grain taster analyzer, Japan.
     3. Through measuring samples from different varieties, fertilizer application levels and cultivation methods, The accuracy and applicability of the system was fourthly validated:
     1) The degree of hardness and viscosity of51rice varieties tested using the system ranged from7.07to7.75and7.70to8.17, respectively. Based on hardness,51varieties were clustered into4types:first type included9varieties (e.g. Zhendao210), its hardness varied between7.07-7.28; second type included16varieties (e.g. Zhendao158), its hardness varied between7.29-7.44; third type included18varieties (e.g. Wujing13), its hardness varied between7.44-7.56; fourth type included6varieties (e.g. Changjing09-8) its hardness varied between7.59-7.75. Based on hardness,51varieties were clustered into4types:first type included7varieties (e.g. Wu28181), its viscosity varied between7.70-7.79; second type included14varieties (e.g. Changyou2), its viscosity varied between7.82-7.91; third type included19varieties (e.g. Zhendao158), its viscosity varied between7.93-8.0; fourth type included11varieties (e.g. Zhendao158), its viscosity varied between8.02-8.17. Based on both hardness and viscosity,51varieties were also clustered into4types, in which hardness increased in pace with viscosity; and4varieties (e.g. Zhendao210),14varieties (e.g. T721),27varieties (e.g. Taijing394) and6varieties (e.g. Changjing09-8) were included in four types (1-4). respectively.
     2) The response of hardness and viscosity of different varieties to N rate fitted quadratic equation, and the maximum hardness and viscosity appeared when17.5kgN/666.7m2was applied.
     3) Hardness and viscosity of cooked rice responded to transplanting method. The order for hardness was:drought direct seeding> hand transplanting> wet direct seeding> machine transplanting> seedling scattering> machine drilling> seedling scattering with no tillage. The order for viscosity was:hand transplanting> drought direct seeding> wet direct seeding> machine transplanting> seedling scattering with no tillage seedling> machine drilling> seedling scattering.
     4. By means of metallographic analysis we used electronic microscope (X400) to observe the inner structural properties including size, distribution and linkage between crystal particles for the samples from rice varieties under different N application rates. The results showed that hardness and viscosity were high when crystal particles were small in size and tight in arrangement, which provided further evidence for validating the accuracy of the system. Hardness and viscosity measured by the system could reflect the inner organization and structural property of cooked nce.
     In conclusion, the expression and automatic measuring system developed in this study can visually reflect hardness and viscosity of cooked rice. The system also overcomes the shortages in current instruments (e.g. rice grain taster analyzer, Japan) based on optic principles which can be affected by protein and amylose in cooked rice. Meanwhile, the system fits the expressions and habits in hardness and viscosity measurements and provided a simple, accurate and reliable approach for the evaluation of rice taste quality.
引文
[1]Fageria N K. Plant tissue test for determination of optimum concentration and uptake of nitrogen at different growth stages in low land rice[J]. Communication in Soil Science and Plant Analysis,2003,34:259-270
    [2]Fageria N K. Yield physiology of rice[J], Journal of Plant Nutrition, 2007,30:843-879
    [3]Lu J, Ookawa T, Hirasawa T. The effects of irrigation regimes on the water use, dry matter production and physiological responses of paddy rice[J]. Plant and Soil, 2000,223:207-216
    [4]Wopereis M C S, Kropff M J, Maligaya A R, Tuong T P. Drought-stress responses of two lowland rice cultivars to soil water status [J]. Field Crops Research,1996, 46:21-39
    [5]稻谷[S].国家质量技术监督局.GB1350-1999.
    [6]优质稻谷[S].国家质量技术监督局.GB/T17891-1999.
    [7]凌启鸿,张洪程,丁艳锋,张益彬Development of rice high-yielding techniques-precise and quantitative cultivation.中国稻米,2005,(1):3-7
    [8]食用稻米品种品质[S].中华人民共和国农业部.NY/T593-2002.
    [9]蔡洪法.我国水稻生产现状与发展展望[J].中国稻米,2000,6:5-8.
    [10]尚艳芬.稻米品质评价系统的研究与开发[D].中国农业大学硕十学位论文,2004.
    [11]优质食用稻米[S].中国农牧渔业部NY 20-86.
    [12]徐庆国.稻米品质及其评价指标[J].湖南农业,1995年第2期:15-16.
    [13]郑苹立,李清华,林玲娜.浅谈稻米的食味品质及其影响因素[J].福建稻麦科技,2006,24(3):41-43.
    [14]稻米直链淀粉含量的测定[S].ISO 6647:1987.
    [15]谷物及淀粉糊化特性测定法[S].国家技术监督局.GB/T 14490-1993.
    [16]刘建学,吴守一,方如明.近红外光谱法快速检测大米蛋白质含量[J].农业机械学报,2001,5(32):68-70.
    [17]岩崎哲也.稻米品质评价方法[J].农林水产技术研究,1991,14(4):51-59.
    [18]朱智伟,唐绍清,陈希春,等.稻米食味品质的鉴定方法[C].中国水稻研究所年报.杭州:中国水稻研究所,1992:99.
    [19]戴金平,陈桂英.稻米品质及其评定[J].农业装备技术.2002,5:26-27.
    [20]中华人民共和国国家标准稻米蒸煮试验品质评定[S].GB/T 15682-1995.
    [21]李俊辉,朱智伟,谢梨虹.我国稻米食味品质的研究现状与发展趋势[J].中国稻米,2008,2:8-12.
    [22]舒庆尧,吴殿呈,夏英武,等.稻米淀粉RVA谱特性与食用品质的关系[J].中国农业科学,1998,3(3):25-29.
    [23]胡培松,翟虎渠,唐绍清,等.利用RVA快速鉴定稻米蒸煮及食味品质的研究[J].作物学报,2004,30(6):519-524.
    [24]张巧杰,王一鸣,凌云.稻米品质检测技术研究[J].仪器仪表学报,2006,27(6):564-569.
    [25]侯彩云,Seiichi Oshita, Yasuhisa Seo,等.三维图像处理系统在稻米品质检测中的应用研究[J].农业工程学报,2001,17(3):93-95.
    [26]黄丽苏,姚跃华,匡迎春,等.神经网络方法在综合评价籼稻品质中的应用[J].作物研究。2005,19(3):182-188.
    [27]池晓雯.稻米品质评价标准的变化与比较[J].福建农业科技,2007,1:89-90.
    [28]张小明,王仪春,鲍根良,等.稻米食味评价的进展[J].种子,2002,1:52-53.
    [29]马雷.泰国大米标准研究与借鉴[J].黑龙江粮食,2005,5:14-16.
    [30]马雷.解析泰国大米成功之道[J].新农村论坛,2008,1:5-8.
    [31]王友华,马雷.美国稻米分级标准与检测技术研究[J].粮食与饲料工业,2007,4:5-8.
    [32]符文英,邢诒旺.稻米品质评价方法研究现状及其展望[J].海南大学学报自然科学版.1996,9,14(3):269-271.
    [33]迟明梅.大米食用品质的研究进展[J].粮食工程.2005(1):63-66.
    [34]Procter B. E. Instrement Evaluation and Initial test[J]. Food Technology, 1955,9:417-441.
    [35]Szczeniak AS. Objective Measurements of Food Texture[J]. Food Science,1963, 28:420-441.
    [36]楚炎沛.物性仪在食品品质评价中的应用研究[J].粮食与饲料工业,2003,7:40-42.
    [37]肖昕,谢新华,陈奕,等.应用近红外投射光谱法测定水稻种子直链淀粉含量的初步研究[J].中国农业科学,2004,37(11):1709-1712.
    [38]吴建国,石春海,张小明,等.用近红外反射光谱法分析稻米三种必须氨基酸含量的研究[J].作物学报,29(5):688-692.
    [39]舒庆尧,吴殿星,夏英武,等.用近红外反射光谱技术测定精米粉样品表面直链淀粉含量的研究[J].中国水稻科学,1999,13(3):189-192.
    [40]孙成效,段彬伍,谢黎虹,等.利用近红外投射光谱技术同步测定稻米的多项品质指标处报[J].中国水稻科学,2006,20(4):451-454.
    [41]朱智伟,程式华.稻米品质的研究进展[J].世界农业.1999,3:19-21.
    [42]高远,周骥平,姜楠等.米饭硬度自动测试系统设计,农业机械学报,2010,41(2):143-147
    [1]屠康,姜松,朱文学主编.食品物性学[M].东南大学出版社,2006.
    [2]钱敏,孙宝元,张军.整体式三维压电测力平台的研制[J].大连理工大学学报,2000,40(5):570-572.
    [3]姜德生,黄晓华,王立新.一种新型的磁弹性静力测量系统[J].仪器仪表学报,2000,21(4):335-338.
    [4]稻米直链淀粉含量的测定[S].IS06647:1987.
    [5]王勇,王昌龙,戴尔晗编.现代测试技术[M].西安电子科技大学出版社.2006,11.
    [6]闫迎利.压电效应及其应用[J].安阳师范学院学报,2001,2.
    [7]黄胶英,袁海文,安晨亮,等.一种电容非介入式压力测量方法研究[J].仪器仪表学报,2009,8,Vol.30 No.8:1773-1777.
    [8]耿皓,李建华.应力应变电测技术中影响测量误差的原因分析[J].物流科技,2005,117(28): 98-100.
    [9]李亦军.光纤力传感器及灵敏度的实验研究[J].中北大学学报,2005,26(6):455-457.
    [10]孙光颖.现代全息技术回顾与展望[J].物理与工程,2002,12(4):34-27.
    [11]计欣华,许方宇,陈金龙,秦玉闻.数字全息计量技术及其在微小位移测量中的应用[J].实验力学,2004,19(4):443-447.
    [12]何启浩.激光散斑二次曝光干涉法测量微小位移和变形[J].西南民族大学学报(自然科学报),2003,29(3):334-337.
    [13]王志刚,石菲,韩彦民.线阵传感器在弹性元件冲击位移测量中的应用[J].中国工程机 械学报,2009,9,Vol.7 No.3:336-338.
    [14]杜梅芳.液柱式压力计的使用和误差[J].锅炉制造,1999,5(2):57-58.
    [15]杨泽敏,王维金.米质分析中应注意的几个问题[J].中国稻米,2001,4:37.
    [16]Y Lan, O. R. Kunze. Fissure Resistance of Rice Varieties. Applied Engineering in Agriculture[J].1996, Vol.12(3):365-368.
    [17]Y Lan, O. R. Kunze. Fissure Characteristics Related to Moisture Adsorption Stresses in Rice. Transactions of the ASAE[J].1996, Vol.39(6):2168-2174.
    [18]战旭梅,郑铁松,陶锦鸿.质构仪在大米品质评价中的应用研究[J].食品科学,2007,28(9):62-65.
    [19]郭兴凤,慕运动.蒸煮大米质构特性测定方法分析[J].中国粮油学报,2006,4(21):9-11.
    [20]Sedat Karabay. Design criteria for electro-mechanical transducers and arrangement for measurement of strains due to metal cutting forces acting on dynamometers [J]. Materials and Design.2006 (26):496-506.
    [21]S.Bulut. Strain measurement under the minimal controller synthesis algorithm and an extensometer design [J]JOURNAL OF MATERIALS PROCESSING TECHNOLOCY.2009 (209):194-201.
    [22]Luis Ricardo Castro, Pascal vieville and Paul Lipinski. Correction of dynamic effects on force mesurements made with piezoelectric dynamometers [J]. International Journal of Machine Tools & Manufacture.2006 (46):1707-1715.
    [23]高远,周骥平,姜楠等.米饭硬度和黏度测量方法及技术的分析[J].扬州大学学报(农业与生命科学版),2010,31(1):91-94.
    [24]Stefan Niehe. The new knowledge of the measurement of tiny strain through compensate balance [J].Wagen, Dosieren+Mischen,2004,4:50-53.
    [25]李洪津,邹来智,史延龄.电阻应变效应与电阻应变式传感器[J].现代物理知识,2006,6.
    [26]薛栋,王学军.测力计量测试技术的新发展[J].内蒙古科技与经济,2002,1.
    [27]王海涛,林玉池,付鲁华,等.微小力测量系统的实验研究[J].传感器与微系统,2009,11.
    [28]王永红.电阻应变片粘贴位置对测量结果的影响[J].琉磷设计,1997,1.
    [29]康鲁杰,杨继红.电阻应变片的选用[J].衡器,2005,8.
    [30]Chao Chi-mei. Investigation on Methods of Gage Distribution For Strain-gage Machine-Tool Dynamometers [J]. Journal of Nanjing Institute of Engineering,1980,3.
    [31]谢锋,黄克强.AD7715模/数转换器在分布式无纸记录仪中的应用[J].电子技术应用,1999,1:61-63.
    [32]赵雪松.数据分析系统的应用研究[J].中国铁路,2005,6.
    [33]宋正河.机械系统人机界面优化设计方法的研究[D].中国农业大学,2000.
    [34]田原Delphi 7.0程序设计[M].清华大学出版社,2005.
    [1]中华人民共和国国家标准,稻米蒸煮试验品质评定[S].GB/T 15682—1995.
    [2]张小明,王仪春等.稻米食味评价的进展[J].种子,2002,1:52-53.
    [3]郭兴凤,慕运动.蒸煮大米质构特性测定方法分析[J].中国粮油学报,2006,4(21):9-11.
    [4]Y Lan,O. R. Kunze. Fissure Resistance of Rice Varieties. Applied Engineering in Agriculture[J].1996, Vol.12(3):365-368.
    [5]Y Lan, O. R. Kunze. Fissure Characteristics Related to Moisture Adsorption Stresses in Rice. Transactions of the ASAE[J].1996, Vol.39(6):2168-2174.
    [1]胡孔峰,杨泽敏,雷振山.中国稻米品质研究的现状与展望[J].中国农学通报,2006,22(1):130-135
    [2]符文英,邢诒旺.稻米品质评价方法研究现状及其展望[J].海南大学学报(自然科学版).1996,9,14(3):269-271.
    [3]马文菊.影响稻米品质的因素及对策[J].农业科技与装备,2009,(04):8-10
    [4]张巧凤,吉健安,张亚东.粳稻食味仪测定值与食味品尝综合值的相关性分析[J].江苏农业学报,2007,23(3):161-165
    [5]舒庆尧,吴殿呈,夏英武,等.稻米淀粉RVA谱特性与食用品质的关系[J].中国农业科学,1998,3(3):25-29.
    [6]严文潮,鲍根良,叶定池,等.米饭质地特征及其与食味品质的关系[J].浙江农业学报,2002,(04)
    [7]郭兴凤,慕运动.蒸煮大米质构特性测定方法分析[J].《中国粮油学报》,2006,4(21):9-11.
    [8]战旭梅,郑铁松,陶锦鸿.质构仪在大米品质评价中的应用研究[J].食品科学,2007,(09):62-65.
    [9]Y Lan, O. R. Kunze. Fissure Resistance of Rice Varieties. Applied Engineering in Agriculture[J].1996, Vol.12(3):365-368.
    [10]Y Lan, O. R. Kunze. Fissure Characteristics Related to Moisture Adsorption Stresses in Rice. Transactions of the ASAE[J].1996, Vol.39(6):2168-2174.
    [11]胡培松,翟虎渠,唐绍清,等.利用RVA快速鉴定稻米蒸煮及食味品质的研究[J].作物学报,2004,30(6):519-524.
    [12]程学勋,许永亮,瞿明勇,等.热处理对大米黏性的影响[J].食品科技,2007,(2):59-62,66.
    [13]高远,周骥平,戴其根,姜楠.稻米品质特性测量方法及技术的思考与对策[J].中国粮油学报,2009,24(12):158-161.
    [14]高远,周骥平,姜楠,等.米饭硬度自动测量系统设计[J].农业机械学报,2010,41(2):151-155.
    [15]GB/T 15682—2008粮油检验稻谷、大米蒸煮食用品质感官评价方法[S].
    [1]Kim K H et al. Varietal and environmental variation of gel consistency of rice flour [J]. Korean J. Crop Sci,1993,38(1):38-45
    [2]Choi M G et al. Cultural practices for improving grain quality of rice in southern plain area [J]. Crop Sci,1990,35 (6):487-491
    [3]Cheong J L. Effects of slow-release fertilizer application on rice grain quality at different culture methods [J]. Korean J. Crop Sci,1996,41 (3):286-294
    [4]Kim Y S et al. Study on the improvement of rice quality 1.Effect of chemical composition in brown rice[J]. Korean Soc. Soil Sci:Fert,1992,25 (4):357-363
    [5]Hong Y P et al. Influence of fertilizer levels and cultivated regions on changes of chemical components in rice grains[J]. RDAJ.Agril Sci,1994,36 (1):38-51
    [6]Hong K P et al. Influences of growing location, culture practices and application of organic manure on grain yield and quality in rice[J]. RDAJ. Agri Sci,1993,35 (2):41-46
    [7]GB/T 15682—2008粮油检验稻谷、大米蒸煮食用品质感官评价方法[S]
    [8]高远,周骥平,姜楠,高龙琴,周建华,戴其根等.米饭硬度自动测量系统设计.农业机械学报,2010,Vol.41(2),151-155
    [9]高远,周骥平,魏孝斌,姜楠,戴其根.米饭黏性的自动测量与量化表征.农业工程学报,2010,26(12):358-362
    [1]王章忠主编,机械工程材料(第2版),北京:机械工业出版社,2007.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700