用户名: 密码: 验证码:
汽车发动机尾气余热温差发电装置热电转换技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内燃机作为汽车的传统动力源,热效率始终偏低,其中由尾气带走的热量高达40%左右,温差发电是一项新兴的尾气余热能量回收利用技术。
     本文围绕汽车发动机尾气余热温差发电装置开展相关研究工作,在温差发电装置热端仿真及温度场研究、热电性能仿真、热应力分析、模态分析及结构优化方面有以下创新点:
     (1)研发了一种汽车发动机尾气余热温差发电装置。对该温差发电装置热端气箱进行流固共轭换热数值仿真,并提出一种评价平板式温差发电装置表面温度均匀性的指标--温度均匀性系数。利用此评价指标,评价热端气箱温度场的均匀性,作为温差发电模块拓扑结构设计的理论依据。解决了由于温差发电装置结构设计与温差发电模块拓扑结构设计之间不匹配,带来的温差发电效率不高的问题。
     (2)以仿真软件GT-POWER和Matlab为平台,建立温差发电装置热端气箱一维等效模型及其与发动机的集成模型、冷端水箱一维等效模型及其与发动机冷却系统的集成模型、发电性能计算模型及其与整车的集成模型的基础,并通过仿真分析较好地解决了由于冷端气箱接入对发动机动力性、经济性带来的影响。
     (3)建立温差发电装置热端试验平台,设计并进行了热端试验,结合试验数据对热端气箱表面温度均匀性系数和平均温度进行验证,仿真与试验结果一致,表明了热端气箱数值仿真的正确性。
     (4)采用有限元软件系统分析了温差发电装置整体、热端气箱和冷端水箱的热应力及模态情况。针对在温差发电装置中出现的变形、振动、噪声过大等问题,利用计算仿真结果,进行结构改进。一定程度上解决了装置在工作过程中的变形、振动、噪声过大等问题。保证了模块与装置之间良好的接触,提高了温差发电转换效率。
Combustion engine as the car the traditional sources of power, thermal efficiency is always low, up to about40%of the heat taken away by the exhaust thermal energy is a potential exhaust heat energy recovery and utilization technologies.
     This paper focuses on the automotive engine exhaust waste heat thermoelectric power generation devices to carry out related work, the thermoelectric performance thermoelectric power generation device simulation of the hot end and the temperature field simulation, thermal stress analysis, model analysis and structural optimization of the formation of the following results:
     (1)A thermoelectric power generation is development. On the basis of numerical simulation of fluid-solid conjugate heat transfer on the hot side gas tank of the thermoelectric power generation device, an evaluation of flat-plate thermal energy device surface temperature uniformity index-temperature uniformity coefficient is proposed. With this evaluation target, the uniformity of the gas tank on the hot end temperature field can provide a theoretical basis for topological structure of the thermoelectric modular. The unmatch of the thermoelectric power generation and topological structure of the thermoelectric modular can be solved, the efficiency of the thermoelectric power generation is improved too.
     (2)With the simulation software of GT-Power and Matlab, in the establishment of an integrated model of the one-dimensional equivalent model of the gas tank of the hot side of thermoelectric power generation device and the engine, the model of one-dimensional equivalent of the cold-side water tank and the engine cooling system and an integrated model, computational model of the power generation performance and vehicle on the basis of the integrated model. And the influence on dynamics and economics of the engine that brought by the introduction of the cold-side water tank is well solved.
     (3)Finite element software systems analysis of thermal stress and the mode of thermoelectric power generation device as a whole, the hot end of the air box and cold side tanks. Aiming at the large deformation, vibration and noise, the structure improvement is done with the result of the simulation. In some extent, the problem of the deformation, vibration and noise is solved. And with the good contact of the modular of the generation, the efficiency of the thermoelectric power generation is improved.
     (4)Establishment of the hot end of the test platform of the thermoelectric power generation device, and the hot end of the trial design, combined with experimental data for verification, simulation and test results on the uniformity coefficient and the average temperature of the surface temperature of the hot end of the gas tank, indicating that the numerical simulation of the hot gas box correctness.
引文
[1]http://news.xinhuanet.com/zhengfu/2004-11/25/content_2260885.html
    [2]http://finance.sina.com.cn/roll/20041202/00481195367.html
    [3]http://news.sciencenet.cn/sbhtmlnews/2010/12/239328.html
    [4]赵刚,李富或,朱建良.汽车尾气余热发电的原理与实现[J].信息技术,2005,10:107-108.
    [5]J.Yang.Potential Applications of Thermoelectric Waste Heat Recovery in the Automotive Industry[J].Clemson University,U.S.A:IEEE,155-160.
    [6]靳鹏.汽车尾气热电发电技术研究及应用仿真:[博士学位论文].吉林:吉林工业大学,2011
    [7]董敬,庄志,常思勤.汽车拖拉机发动机[M]北京:机械工业出版社,2000.
    [8]Rinehart G H. Design characteristics and fabrication of radioisotope heat sources for space missions.
    [9]BULUSU A, WALKER D G.. Review of electronic transport models for thermoelectric materials[J]. Superlattices and Microstructures,2008,44(7)
    [10]Hongxia Xi,Lingai Luo,Gilles Fraisse.Development and applications of solar-based thermoelectric technologies[J].Renewable and Sustainable Energy Reviews,2007
    [11]Stevens J.W.Heat transfer and thermoelectric design considerations for a ground-source
    [12]Wolf P W. Temperature Differencere Sonroe[M]. New York:Oxford University Press,1978.
    [13]J. LaGrandeur, D. Crane, S. Hung, B. Mazar, and A. Eder Automotive Waste Heat Conversion to Electric Power using Skutterudite, TAGS, PbTe and BiTe
    [14]L.L.Xi, J.Yang, C.Flu, Z.G.Mei etc. Systemetic Study of the Mutiple-Element Filling in Caged Skutterudite CoSb3, Chem Mater,2010.22,604-611.
    [15]B.C.Sales, D.Mandrus, P.K.Williams. Filled Skutterudite Antimonides:A New Class of Thermoelectric Materials'. Science,1996,272,1325-1328
    [16]BULUSU A, WALKER D G.. Review of electronic transport models for thermoelectric materials[J]. Superlattices and Microstructures,2008,44(7)
    [17]DUGHISH Z H. Lead telluride as a thermoelectric material for thermoelectric power generation[J]. Physica B:Condensed Matter.2002
    [18]Kuei fang Hsu, Sim Loo, et al. [J]. Science,2004,303:818.
    [19]VENKATASUBRAMANIAN R,SIVOLA E. Thin-film thermoelectric devices with high room-temperature figures of meirt[J]. Nature,2001
    [20]Lyeo H K, Khajetoorians A A, Li S, et al. Profiling thethermoelectric power of semiconductor junctions with nanometerresolution[J]. Science,2004,303:816-818.
    [21]J. Yang, "Designing Advanced Thermoelectric Materials for Automotive Applications," DOE/EPRI High Efficiency Thermoelectrics Workshop, San Diego, CA, February 16-20, 2004.
    [22]H.kleinke, New bulk Materials for Thermoelectric Power Generation:Clathrates and Complex Antimonides, Chem Mater,2010.22,604-611.
    [23]Hsu K F, Loo S, Guo F, et al. Cubic AgPbmSbTem+2:Bulk thermoelectric materials with high figure of merit. Science,2004,303:818-821
    [24]Wang H, Li J F, Nan C W, et al. High-performance Ag0.8Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering. Appl Phys Lett, 2006,88:092104-092106
    [25]J. LaGrandeur, D. Crane,S A numerical model for thermoelectric generator with the parallel-plate heat exchanger Journal of Power Sources 172 (2007) 428-434
    [26]Bell, L. E., High Power Density Thermoelecctric Systems,23rd international Confernce on the Thermoelectrics, Adelaide, AU.2004.
    [27]Snyer, G. J. Thermoelectric Power Generation:Efficiency and Compatibility, in Thermoelectrics Handbook Macro To Nano, Rowe, D. M., Edition CRC Press(Boca Raton, FL,2006)
    [28]Bell, L. E., Alternate Thermoelectric Thermodyynamic Cycles with Improved Power Generation Efficiencies,23rd international Confernce on the Thermoelectrics, Herault, France.2003.
    [29]Jianlin Yu, Analysis of optimum configuration of two-stage thermoelectric modules, Cryogenics 47(2007)
    [30]ROWE D M, MIN G. Evaluation of thermoelectric modules for power generation[J].Journal of Power Sources,1998,73(2)
    [31]HEIKES-URE.Thermoelectricity:Science and Engineering.London Press,1995. Chen J,Lin B,Wang H,et al.Optimal design of a multicouple thermoelectric generator[J]. Semicond.Sci Technol,2000
    [32]thermoelectric generator[C].In:Proceedings of the 18th International Conference on Thermoelectric.Baltimore,USA,Int.Thermoelectric.Soc,1999
    [33]Xing Niu Experimental study on low-temperature waste heat thermoelectric generator, Journal of Power Sources,188(2009)
    [34]Bunyamin Ciylan, Design of a thermoelectric module test system using a novel test method, International Journal of Thermal Sciences,46(2007)
    [35]A.Rodrfguez,J.G. Vian, Study of thermoelectric systems applied to electric power generation, Energy Conversion and Management 50(2009)
    [36]赵健云,朱东生等.温差发电技术的研究进展及现状[J].电源技术,2010,34(3).
    [37]张征等,热电转换技术在内燃机节能中的研究现状[J],节能技术,2004(2)
    [38]K.Ikoma,M.Munekiyo,K.Furuya.Thermoelectric Module and Generator for Gasoline Engine Vehicles.[J],17th International Conference on Thermoelectrics.1998
    [39]Kushch A S,Bass J C,Ghamaty S and Elsner N B.Thermoelectric Development at Hi-Z Technology.Proceedings of ICT[C],2001:422-430
    [40]Bass, J.C., R.J. CaMPan., N.B. Elsner.Thermoelectric generator for Diesel Trucks[C].Proceedings of the 10th ternational Conference on Thermoelectrics, Cardiff, Wales,1991.
    [41]Bass, J.C, Elsner, N. B.,Leavitt, A.. Performance of the 1 kW thermoelectric generator for diesel engines[C].13th International Conference on Thermoelectrics, New York,1995.
    [42]Mahav A Karri,Eric F Thancher,Brian T Helenbrook M S C.Thermoelectrical Energy Recovery from the Exhaust of a Light Truck[C].Newport,Rhode Island:2003
    [43]Jihui Yang.Develop Thermoelectric Technology for Automotive Waste Heat Recovery.DOE Vehicle Technologies Program Annual Merit Review 09
    [44]J. LaGrandeur, D. Crane, S. Hung, B. Mazar and A. Eder. Automotive Waste Heat Conversion to Electric Power using Skutterudite, TAGS, PbTe and BiTe[C].Thermalelectrics,2006.ICT'06.25t International Conference.2006-6-10
    [45]Jihui Yang.Develop Thermoelectric Technology for Automotive Waste Heat Recovery[C]. DEER Conf., Dearborn,2009.
    [46]Soonseo Park, Jungho Yoo, Sungkyu Cho. Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles [C]. DEER Conf., Dearborn,2009.
    [47]张添立.近年来国内热电材料研究的进展[J].上无六厂资料,1982.
    [48]钱伯章,热电转换材料及应用进展,化工新型材料,2009(6):26-27.
    [49]卫群,刘丹敏,张忻.方钴矿热电材料的研究进展[J].稀有金属,2006,30(4):517-521
    [50]武桂玲,郁济敏.温差发电器热电材料的研究进展[J].电源技术,2009,33(8):740-741
    [51]潘玉灼等,结构参数与不可逆性对热电发电器性能的影响[J],泉州师范学院学报(自然科学版),2006(6)
    [52]林比宏等,太阳能驱动半导体温差发电机性能参数的优化设计[J],太阳能学报,2006(10)
    [53]蔡永华,最大功率和效率条件下的热电器件性能优化[J],武汉理工大学学报,2009(4)
    [54]褚泽,废热半导体温差发电技术的研究与开发[D],重庆,重庆大学,2008
    [55]胥大川.热电转换模块的设计与测试[D].哈尔冰:哈尔滨工业大学,2000
    [56]况学成等,热电材料的研究现状及发展趋势[J],佛山陶瓷,2008(6)
    [57]贾磊等,LNG冷能利用与低温半导体发电研究[D].[博士学位论文].安徽.中国科学技术大学,2006
    [58]董桂田等.汽车发动机排气废热的温差发电[J].北京节能,1997,04:7-9.
    [59]刘红武,张征.新型发动机排气温差发电器结构探索[J].节能技术,2006,24(140):507-508.
    [60]于广,黄维军,张征等.车用内置式温差发电器换热性能的数值模拟[J].节能技术,2008,26(5):436-442.
    [61]张晓丹.圆筒式汽车尾气温差发电系统研究.[硕士学位论文].广州.华南理工大学.2011
    [62]蒋新强.汽车尾气半导体温差发电系统研究.[硕士学位论文].广州.华南理工大学.2010
    [63]张征,陈特銮.热电转换技术在内燃机节能中的研究现状[J].节能技术,2004(3).
    [64]郭珣.汽车排气废热温差发电系统与发动机消声器一体化设计研究[D].武汉理工大学硕士学位论文[D],2011.
    [65]凌凯.基于汽车尾气废热温差发电的42V动力系统建模与仿真.武汉理工大学硕士学位论文[D],2011.
    [66]宋瑞银.冷热源微小型热电电源的研究:[博士学位论文]:浙江大学,2005
    [67]范韬.基于汽车尾气温差发电和太阳能发电的新型车载电源系统:[硕士学位论文].武汉:武汉理工大学,2010.
    [68]李涛.基于热电效应的热回收应用技术研究和设备开发.:[博士学位论文].湖南大学,2010
    [69]D.M.Rowe.CRC Handbook of Thermoelectrics[M].CRC Press,2006
    [70]莫乃榕.工程流体力学[M].武汉,华中科技大学出版社。
    [71]Slack G A. CRC handbook of thermoelectric.CRC Press,London,1995
    [72]Caillat, T. et al., Development of High Efficiency Segmented Thermoelectric Unicouples, 20th international Confernce on the Thermoelectrics, Beijing, China.2001
    [73]崔洪江,孙培廷,李明海.内燃机车冷却系统虚拟样机建模与仿真研究[J].内燃机车. 2010,434(4):1-5
    [74]Maneewan S, Khedari J, Zeghmati B, et al. Investigation on generated power of thermoelectric roof solar collector[J]. Renewable Energy,2004,29:743-752.
    [75]Rong Yuan Jou. Numerical Modeling and Design of Thermoelectric Cooling Systems. Applied Mechanics and Materials, v 110-116, p 2639-2646,2012, Mechanical and Aerospace Engineering
    [76]邓亚东,范韬,郭殉等.汽车尾气温差发电装置及热电模块的布置研究[J].武汉理工大学学报(信息与管理工程版).2010,32(2):265-267.
    [77]王福军.计算流体动力学分析[M].北京:清华大学出版社.2004,9.
    [78]GT-Power User's Manual.2010.
    [79]沈颖刚,王宇琳,郑伟等.内燃机燃烧过程数值模拟技术发展概况[J].拖拉机与农用运输车,2004(01):6-9.
    [80]董芳.内燃机燃烧过程数值模拟[D].大连:大连理工大学.2004,6.
    [81]解茂昭.内燃机计算燃烧学[M].大连:大连理工大学出版社.1999,8.
    [82]刘永长.内燃机工作过程模拟[M].武汉:华中理工大学出版社.1996.
    [83]刘洪权,宋英,孙秋,王福平.热电转换器件的研究与应用[J].哈尔冰工业大学学报,2008,40(9):1432-1434.
    [84]毛顺杰,栾伟玲,黄琥,涂善东,郭景坤.氧化物热电材料的研究现状与应用[J].硅酸盐通报,2005,3:59-62.
    [85]王福军.计算流体力学分析[M].北京:清华大学出版社,2004.
    [86]李万平.计算流体力学[M].武汉:华中科技大学出版社,2004.
    [87]陶文铨.数值传热学[M].北京:高等教育出版社,2006.
    [88]修荣荣,徐明海,黄善波,陶文铨.网格单元形状对数值计算的影响[J].工程热物理学报,
    [89]李进良,李承曦,胡仁喜,等.精通FLUENT6.3流场分析[M].北京:化学工业出版社,2009.
    [90]Min-Ho Kim.Three-Dimensional Numerical Study on the Pulsating Flow inside Automotive Muffler with Complicated Flow Path.SAE Paper 2001-01-0944,2001.
    [91]明平剑,姜任秋,朱明刚,雷国东,张文平.基于PC集群并行CFD算法实现[J].哈尔冰工程大学学报.2007,28(2):155-160.
    [92]郭学敏.乘用车排气系统冷端内流场仿真机消声器再生噪声预测[D].武汉:武汉理工大学学位论文,2011.
    [93].QC/T 631-2009汽车排气消声器总成技术条件和试验方法.
    [94]韩林山,李向阳,严大考.浅析灵敏度分析的几种数学方法[J].中国水运,2008,08(4):177-178.
    [95]http://news.sohu.com/20080726/n258395545.shtml
    [96]张小燕.应用GT-Power进行发动机进气系统噪声仿真[C].上海:CDAJ—China中国用户年会,2007.
    [97]Doulas T.Crane, Gregory S.Jackson. Optimization of cross flow heat exchangers for thermoelectric waste heat recovery [J]. Energy Conversion and Managmement,2004,45:1565-1582.
    [98]张杰.发动机冷却系统设计及散热量的计算[J].装备制造技术.2004(2):21-25.
    [99]杨世铭,陶文铨.传热学[M].北京:高等教育出版社.2006,8.
    [100]董敬,庄志,常思勤.汽车拖拉机发动机[M]北京:机械工业出版社,2000.
    [101]王勖成.有限单元法[M].北京清华大学出版社,2003.
    [102]汪成明.轿车白车身模态分析及其优化[D].合肥:合肥工业大学,2010.
    [103]刘扬,刘巨保等.有限元分析及应用[M].北京:中国电力出版社,2008.
    [104]Ali Behocine, Mostefa Bouchetara. Thremal analysis of a solid brake disk[J].Applied thermal engine.2012(32),59-67.
    [105]李庆龄ANSYS中网格划分方法研究[J].上海机电学院学报2006.10.9(5)
    [106]于秋红.热工基础[M].北京:北京出版社,2009.
    [107]刘志恩.汽油机缸盖不稳定传热三维有限元分析[D].华中科技大学,2003.
    [108]于开平,周传月,谭惠丰,等Hypermesh从入门到精通[M].北京:科学出版社,2005:82-140.
    [109]小飒工作室编.最经典的ANSYS及Workbench教程[M].北京:电子工业出版社,2004:479-525.
    [110]刘涛,杨凤鹏主编.精通ANSYS [M]北京清华大学学研大厦:清华出版社,2002,344-368.
    [111]顾培英,邓昌等.结构模态分析及其损伤诊断[M].南京:东南大学出版社,2008.
    [112]傅志方,华宏星.模态分析理论与应用[M].上海交通大学出版社,2000.
    [113]石亦平,周玉蓉ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.6.
    [114]李松波.车辆排气系统振动建模与动力学特性研究[D].上海:上海交通大学,2008.
    [115]李学修.轻卡车身模态分析及其结构优化[D].上海:上海交通大学,2007.
    [116]张学亮.齿轮箱模态分析和结构优化方法研究[D].太原:太原理工大学,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700