用户名: 密码: 验证码:
南京市工业和商业区域可吸入颗粒物的污染特征及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在南京市大厂地区和山西路两个采样点,用大流量采样器及PM_(10)切割器,逐月采集一年内大气环境中的可吸入颗粒物(PM_(10))样品。采用扫描电镜(SEM)和X射线能谱分析(EDX)等现代测试手段研究大气颗粒物的微观特征(形态、矿物成分、元素组成)。同时,研究南京市区不同功能分区、不同季节PM_(10)的污染变化规律。选择EPA指定的优先控制的16种PAHs作为待测物质,采用高效液相色谱技术,分析PM_(10)中PAHs的污染水平和浓度特征以及季节变化规律,并主要针对烹调源、交通源、焦化源、燃煤源等几种典型污染源排放的PM_(10)中的PAHs进行定性、定量分析。通过实验找出并比较各个污染源PAHs的组成及分布特征,建立源成分谱,在此基础上,运用CMB受体模型对PM_(10)上PAHs的来源进行解析。在“静电一颗粒层过滤复合技术”的基础上,设计形成了一种用于PM_(10)脱除的新型“静电—带电颗粒层过滤复合除尘技术”,通过理论分析阐明了其除尘机理和主要影响因素,并在自制带电颗粒的基础上,研究了PM_(10)脱除的最佳工艺条件。
     (1)研究了南京大厂、山西路地区可吸入颗粒物物理特性及时空动态变化规律。
     南京市两典型地区大气颗粒物非常复杂,大厂地区(典型工业区)多以规则的形态出现,块状、柱状、针状、层状、球状集合体为最常见,其成分以碳酸盐、硫酸盐、铝硅酸盐为主。山西路地区(典型商业区)多以不规则形态出现,常见烟尘集合体、生物质、不规则矿物等。从PM_(10)的月变化规律来看,南京市整年的PM10浓度均超过1996年《环境空气质量标准》规定的国家二级标准0.15mg·m~(-3),四个季度的PM10的浓度大小顺序为:春季>冬季>秋季>夏季,与当地的气候有一定的关系。从PM_(10)的空间变化来看,大厂地区(工业区)的PM_(10)浓度明显高于山西路(商业区)。PM_(10)污染比较严重,全年均超过了1996年颁布的《环境空气质量标准》中规定的PM_(10)的二级标准浓度,山西路地区有部分时间达到二级标准。
     (2)南京大厂、山西路地区可吸入颗粒物中金属元素的组成特征及来源分析。
     采用全谱直读等离子体发射光谱仪、流动注射-氢化物发生-原子吸收法、离子印迹壳聚糖/凹土有机-无机杂化材料分离富集-火焰原子吸收光谱法测定样品中15种金属元素的含量。应用富集因子法对金属元素的来源进行解析,在大厂地区PM10样品中Cr、Ni、Cu、Zn、Pb、Cd、As元素富集程度大,主要来源于人为源。山西路地区PM10样品中Ni、Cu、Zn、Pb、Cd、As元素富集程度大,主要来源于人为源。汽车尾气标记性元素Pb在山西路地区比大厂地区富集程度高,说明山西路地区受汽车尾气影响较大;Zn在大厂地区的富集程度较高,因Zn主要来自于金属冶炼,与大厂地区处于工业区有关。
     (3)南京大厂、山西路地区可吸入颗粒物中PAHs的时空动态变化规律研究。
     南京市大厂地区春、夏、秋、冬的PAHs平均浓度分别为107.256ng·m-3、21.890ng·m-3、111.839ng·m-3和88.605ng·m~(-3),山西路地区分别为76.276ng·m-3、52.904ng·m-342.561ng·m-3和75.815ng·m~(-3),大厂地区四季度PAHs平均浓度明显高于山西路地区,分别是山西路地区的1.406、2.304、2.628、1.169倍。大厂地区PHAs总量受季节影响不大,山西路地区浓度与季节呈一定的相关性,即春季>冬季>夏季>秋季,两地区PHAs中蒽、荧蒽、苯并[b]荧葸、苯并[g,h,i]苝含量相对都较高,表明燃煤和交通是南京市的主要污染源,大厂区燃煤污染更为明显。两地区PAHs的浓度变化与PM10的浓度变化没有相关性,各自的浓度变化也没有规律性。
     (4)南京大厂、山西路地区可吸入颗粒物源解析研究。
     建立大厂和山西路地区化学质量平衡(CMB)受体源解析模型,并对模型进行求解,从而确定大厂和山西路地区各污染源的贡献值。各污染源对大厂地区PAHs的贡献率分别为:燃煤源12.48%,交通源25.61%,焦化源52.16%,烹调源9.75%。这表明大厂地区PAHs的主要污染源是焦化源、其次是交通源,两者占总量的77.79%。各污染源对山西路PAHs的贡献率为:燃煤源9.65%,交通源25.55%,焦化源52.83%,烹调源11.97%;这表明山西路PAHs的主要污染源是交通源和焦化源,两者占总量的78.38%。
     (5)静电—带电颗粒层过滤复合除尘技术对PM1o的控制。
     采用“静电—带电颗粒层过滤复合除尘技术”,使静电除尘器除尘后荷电的PM10进入带电颗粒层过滤器,通过颗粒层过滤的方式去除。壳聚糖/凹土为带电颗粒较理想的制备材料,壳聚糖/凹土改性的最优条件是:壳聚糖溶胶与凹土的比例(质量比)为1.5:1,反应温度为50℃,反应时间为3.5h。在该最优条件下,壳聚糖在凹土上的负载率(%)为40.26%,改性操作的工艺稳定性良好。通过XRD、FTIR和热分析证实壳聚糖在凹土表面已成功负载,经测定壳聚糖/凹土的Zeta电位为:+46.28mV,带正电。带电颗粒层过滤器对PM1o脱除的最佳工艺条件是:过滤时间为70min,过滤风速为0.42m·s-1,过滤层厚度为30mm,过滤颗粒粒径为0.756mm、颗粒均一性为1.32,PM10浓度为600μg·m~(-3)。工艺稳定性良好,易于工业化放大使用。
Dachang and Shanxi Road region were selected as inspected spots in Nanjing. Samples of inhalable particles(PM10) in ambient air were gathered month by month for one year, using big flux sampling equipment and PM10incision equipment. Scanning Electron Microscope and X-ray energy dispersive spectrometer were used to analyze the morphology and chemical composition of inhalable particles. At the same time, the PM10pollution change laws of different functional partition, different season of Nanjing city was studied.16PAHs were selected as the EPA designated materials with priority control. The PAHs level of pollution, concentration characteristics and seasonal change law was analyzed by using high performance liquid chromatography. The PAHs in the PM10of several typical pollution sources (coal combustion, coke plant, motor vehicle and dining hall) were analysed qualitatively and quantitatively. The composition and distribution of PAHs of different pollution sources were compared to each other, and, the source components spectrum were collected. Then, The CMB receptor model was used to analyse the sources of PAHs in the PM10. Baesd on the "electrostatic-granular layer filtration composite technology", a new type of "electrostatic-charged particle layer filtration compound dust removal technology" has been designed in this research for removing PM10. Theoretical analysis illustrated the dust removal mechanism and the main influence factors. Homemade charged particles were used to study the best removing process conditions of the PM10.
     (1) Study on the PM10physical characteristics and space-time dynamic change rule of Dachang area and Shanxi Road in Nanjing
     Atmospheric particulates in two typical areas of Nanjing are very complex, Dachang area (a typical industrial zone) shows a more inerratic pattern, such as massive, the columnar, needle, layer, globular aggregation are commonly inspected, with carbonate, sulfate, aluminum silicate as ingredients primarily. But, Shanxi Road (a typical business district) shows a irregular pattern, such as smoke, biomass, common collection of irregular minerals, etc., PM10concentration in Nanjing is higher than the secondary standard in1996national environmental air quality standards. The order of the concentration of PM10of four different seasons is:spring> summer> autumn> winter, which is relative to the local climate. PM10concentration of Dachang is significantly higher than Shanxi Road from a region of view, and the PM10concentration in Shanxi Road is beyond the secondary standard sometimes. Overall, the PM10pollution is heavy, which exceeds the secondary standard in1996national environmental air quality standards.
     (2) The composition characteristics and source analysis of the metal elements in PM10in Nanjing
     15metal elements are determined by ICP-AES, Hydrogenation method and ions imprinted method. Analysis shows that enrichment factor of Cr、Ni、Cu、Zn、Pb、Cd、As of Dachang and Ni、Cu、Zn、Pb、Cd、As of Shanxi Road are greater than10, the results indicate that these elements mainly come from anthropogenie Pollution. PM10of Shanxi Road mainly come from vehicle exhausts, and Dachang was mainly sourced from industrial pollution.
     (3) The space-time dynamic change regulation research of PAHs in PM10in Nanjing
     The average PAHs concentration of Spring, Summer, Autumn, Winter in Dachang area is107.256ng·m-3、121.890ng·m-3、111.839ng·m-3and88.605ng·m-3, respectively, and in Shanxi Road is76.276ng·m-3、52.904ng·m-3、42.561ng·m-3and75.815ng·m-3, respectively. The average PAHs concentration of four seasons in Dachang was significantly higher than that of Shanxi Road, and the proportion is1.406,2.304,2.628,1.169times respectively. Seasonal condition had a slight influence on the total amount of PAHs in Dachang area, while the seasonal variation are found in the concentration of PAHs in Shanxi road. The highest concentration was observed in spring with the lowest level in Autumn, and the value in winter was higher than that in summer. The contents of Anthracene, Fluoranthene, Benzo [b] fluoranthene, and Benzo [g,h,i] perylene in the two locations are petty high, exhibiting that coal combustion and traffic were the predominant sources for the pollution of Nanjin city, and the pollution from coal combustion was more severe in Dachang area.
     (4) Source assignment of PM10in Dachang area and Shanxi Road region
     Chemical Mass Balance (CMB) receptor models is established to simulate the pollution of Dachang area and Shanxi Road region, so as to determine the contribution of the pollution sources. The PAHs contribution rates of coal combustion, motor vehicle, coke-source and dining hall were obtained, with12.48%,25.61%,52.16%and9.75%in Dachang and9.65%,25.55%,52.83%and11.97%in Shanxi Road, respectively. This suggests that the main sources of PAHs are coke-source and traffic source in both areas.
     (5). Control of PM10with electrostatic-charged particle layer filtration compound dust removal technology
     According to the "Electrostatic-charged particle layer filtration compound dust removal technology", passing through the electrostatic precipitator, the PM10is charged. Then the charged PM10was removed by the charged particle layer filter. Chitosan/attapulgite is an ideal charged particle material. The optimal condition for chitosan/attapulgite composition is that mix chitosan sol and attapulgite at1.5:1mass ration, and react3.5h at50℃. In the optimal conditions, the load rate(%) of chitosan in attapulgite is40.26%, with good modification stability. XRD, FT-IR and thermal analysis confirmed that the chitosan is successful loaded on the attapulgite surface. Chitosan/attapulgite Zeta potential is+46.28mV, and carrys positive electricity. The best removing process condition of charged particle filter of PM10is filtering time is70min, filter wind speed is0.42m·s-1, filter layer thickness is30mm, filtering particle diameter is0.756mm, particle uniformity is1.32, concentration of PM10is600μg·m-3. This process is very steady and good for industrialization amplification.
引文
[1]唐孝炎.大气环境化学[M].北京:高等教育出版社,1990
    [2]于淑秋,林学椿,徐详德.北京市区大气污染的时空特征[J].应用气象学报,2002,1:92-99
    [3]崔九思,王钦源,王汉平.大气污染监测方法(第2版)[M].北京:化学工业出版社,1997
    [4]魏复盛,胡伟,藤恩江,等.空气污染与儿童呼吸系统患病率的相关分析[J].中国环境科学,2000,20(3):220-224
    [5]US EPA Office of Air and Radiation. Office of air quality planning and standards fact sheet-EPA's recommended final ozone and particulate matters standards[S], 1997
    [6]梁元凤,刘从客.沈阳市环境空气中可吸入颗粒物污染现状分析[J].环境保护科学,2003,2(4):6-7
    [7]武辉,房靖华,钱志强,等.太原市大气中PM1o的监测与分布[J].城市环境与城市生态,2002,15(6):49-51
    [8]潘建国,曹军骥,麦潮安.珠海空气中可吸入颗粒物(PM1o)的时空变化特征[J].环境科学研究,2003,5:6-1
    [9]黄鹂鸣,王格慧,王荟,等.南京市空气中颗粒物PM10、PM2.5污染水平[J].中国环境科学,2002,,22(4):334-337
    [10]王荟,王格慧,高士祥,等.南京市大气颗粒物春季污染的特征[J].中国环境科学,2003,23(1):55-59
    [11]中华人民共和国国家标准.环境空气质量标准[S].GB3095-1996
    [12]文晓华,何平,李成柱,等.南充市空气中可吸入颗粒物污染水平分析[J].四川环境,2004,23(2):72-74
    [13]国家环保部.2011年全国环境质量状况公告.2012
    [14]南京市环境保护局.2011年南京市环境质量状况公告.2012
    [15]刘文青.南京市总悬浮颗粒物(TSP)及地面尘来源解析[J].气象科学,2001,21(4):88-94
    [16]Animesh K, Phadke K M, Tajne D S, et al. Increase in Inhalable Particulates Concentration by Commercial and Industrial Activities in the Ambient Air of a Select Indian Metropolis[J]. Environmental Science & Technology,2001,35:487-492
    [17]Papageorgopoulou A, Manoli E, Touloumi E, Samara C, et al. Polycyclic Aromatic Hydrocarbons in the Ambient Air of Greek Towns in Relation to Other Atmospheric Pollutants[J]. Chemosphere,1999,39(13):2183-2199
    [18]武辉,房靖华,钱志强.太原市大气中PM10的监测与分布[J].城市环境与城市生态,2002,15(3):49-51
    [19]梁元凤,刘从容.沈阳市环境空气中可吸入颗粒物污染现状分析[J].环境保护科学,2003,29(116):6-7
    [20]Ye B M, Ji X L, Yang H Z, et al. Concentration and chemical composition of PM2.5 in Shanghai for a 1-year period[J]. Atmospheric Environment,2003,37(4):499-510
    [21]Yao X H, Chan C K, Fang M, et al. The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China[J]. Atmospheric Environment,2002,36(26):4223-4234
    [22]Wang G H, Wang H, Yu Y J, et al. Chemical characterization of water-soluble components of PM10 and PM2.5 atmospheric aerosols in five locations of Nanjing, China[J]. Atmospheric Environment,2003,37(21):2893-2902
    [23]Wang G H, Huang L M, Gao S X,et al. Characterization of water-soluble species of PM10 and PM2.5 aerosols in urban area in Nanjing, China[J]. Atmospheric Environment,2002, 36(8):1299-1307
    [24]Yao X H,, Lau A P S, Fang M, et al. Size distributions and formation of ionic species in atmospheric particulate pollutants in Beijing, China:2-dicarboxylic acids[J]. Atmospheric Environment,2003,37(21):3001-3007
    [25]Guo Z G, Feng J L, Fang M, et al. The elemental and organic characteristics of PM2.5 in Asian dust episodes in Qingdao, China,2002[J]. Atmospheric Environment,2004,38(6): 909-919
    [26]Hu M, He L Y, Zhang Y H, et al. Seasonal variation of ionic species in fine particles at Qingdao, China[J]. Atmospheric Environment,2002,36(38):5853-5859
    [27]Yang H, Yu J Z, Ho S S H, et al. The chemical composition of inorganic and carbonaceous materials in PM2.5 in Nanjing, China[J]. Atmospheric Environment,2005, 39(20):3735-3749
    [28]曾凡刚.大气环境监测[M].北京:化学工业出版社,2003
    [29]王明星.大气化学[M].北京:高等教育出版社,1999
    [30]Rachel A, Gerald J K. Assessment of PM10 concentrations from domestic biomass fuel combustion in two rural bolivian highland villages[J]. Environment Science and Technology,1999,33(15):2505-2509
    [31]Marko J V, Juhani R, Aadu M, et al. Concentration and estimated soot content of PM1, PM2.5, and PM10 in a sub-arctic urban atmosphere[J]. Environmental Science and Technology,'2000,34(10):1919-1925
    [32]Ho K F, S C Lee, Chan Chak K. Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong[J]. Atmospheric Environment,2003,37(2):31-39
    [33]Feng J L, Chan C K, Fang M, et al. Characteristics of organic matter in PM2.5 in Shanghai[J]. Chemosphere,2006,64(4):1393-1400
    [34]Markus S, Risto H, Sanna S, et al. Chemical composition and mass closure of particulate matter at six urban sites in Europe[J]. Atmospheric Environment,2006,40(3):212-223
    [35]Koulouri E, Saarikoski S, Theodosi C, et al. Chemical composition and sources of fine and coarse aerosol particles in the Eastern Mediterranean [J]. Atmospheric Environment, 2008,42(7):6542-6551
    [36]Giovanni Lonati, Michele Giugliano. Size distribution of atmospheric particulate matter at traffic exposed sites in the urban area of Milan (Italy)[J]. Atmospheric Environment, 2006,40(6):264-267
    [37]Dongarra G, Manno E, Varrica D, et al. Mass levels, crustal component and trace elements in PM10 in Palerno, Italy [J]. Atmospheric Environment,2007,41(36): 7977-7986
    [38]Gao Y, Nelson E D, Field M P, et al. Characterization of atmospheric trace elements on PM2.5 particulate matter over the New York-New Jersey harbor estuary [J]. Atmospheric Environment,2002,36(6):1077-1086
    [39]Thurston G D, Spengler J D. A quantitative assessment of source contributions to inhalable partieulate matter Pollution in metropolitan Boston[J]. Atmospheric Environment,1985,19(1):9-25
    [40]Almeida S M, Pio C A, Freitas M C, et al. Source apportionment of atmospheric urban aerosol based on weekdays/weekend variability:evaluation of road re-suspended dust contribution [J]. Atmospheric Environment,2006,40(11):2058-2067
    [41]Manfred N, Michael G, Friedrich H, et al. Acute effects of particulatematteron respiratory diseases, symptoms and functions:Epidemiological results of the Austrian Project on Health Effects of Particulate Matter[J]. Atmospheric Environment,2004,38(6): 3971-3981.
    [42]Samet J M, Dominici F, Curriero F C, et al. Fine particulate air pollution and mortality in 20 US cities (1987-1994)[J]. New Eng J Med,2000,343(7):1742-1749.
    [43]Horak F J, Studnicka M, Gartner C, et al. Particulate matter and lung function growth in children:a 3-year follow-up study in Austrian school children.Eur Respir[J].2002,19(5): 838-845.
    [44]Tracey J W, Jennifer D P, Kenneth C S. Fine particulate matter(PM2.5)air pollution and selected causes of postneonatal infantmortality in california[J]. Environ Health Perspect, 2006,114(5):786-790.
    [45]Pope C A, Burnett R T. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution[J]. JAMA,2002,287(9):1132-1141.
    [46]赵厚银,邵龙义,王延斌,等.北京市冬季室内空气PM1o微观形貌及粒度分布[J].中国环境科学,2004,24(4):505-508
    [47]陈圆,王毅力,王玉涛,等.大学校区环境实验室内外空气中PM1o的形貌与元素组成进行研究[J].环境科学学报,2008,28(4):065-076
    [48]李凤菊,邵龙义,杨书申.郑州大气PM1o的形貌特征及生物活性研究[J].环境科学,2008,29(9):2654-2658
    [49]时宗波,邵龙义,李红,等.北京市西北城区取暖期环境大气中PM1o的物理化学特征[J].环境科学,2002,23(1):30-34
    [50]Winchester J W, Bi M T. Fine and coarse aerosol composition in an urban setting:A case-study in Beijing, China[J]. Atmospheric Environment,1984,18(7):1399-1409
    [51]Dod R L, Giauque R D, Novakov T, et al. Sulfate and carbonaceous aerosols in Beiiing, China[J]. Atmospheric Environment,1986,20(11):2271-2275
    [52]Zhang Z Q, Friedlander S K. A comparative study of chemical databases for fine particle Chinese aerosols[J]. Environmental Science and Technology,2000,34(22):4687-4694
    [53]Wei F, Teng E, Wu G, et al. Ambient concentrations and elemental compositions of PM10 and PM2.5 in four Chinese cities[J]. Environmental Science and Technology,1999,33(23): 4188-4193
    [54]He K B, Yang F M, Ma Y L, et al. The characteristics of PM2.5 in Beijing, China[J]. Atmospheric Environment,2001,35(29):4959-4970
    [55]Guo Z G, Sheng L F, Feng J L, et al. Seasonal variation of solvent extractable organic compounds in the aerosols in Qingdao, China[J]. Atmospheric Environment,2003, 37(13):1825-1834
    [56]Ta W Q, Wang T, Xiao H L, et al. Gaseous and particulate air pollution in the Lanzhou Valley, China[J]. The Science of the Total Environment,2004,320(2-3):163-176
    [57]Bi X H, Sheng G Y, Peng P A, et al. Size distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in urban and rural atmospheres of Guangzhou, China[J]. Atmospheric Environment,2005,39(3):477-487
    [58]Ho K F, Lee S C, Chan C K, et al. Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong[J]. Atmospheric Environment,2003,37(1):31-39
    [59]Lam K S, Cheng Z L, Kot S C, et al. Chemical characteristics of aerosols at coastal station in Hong Kong. Ⅱ. Environmental behavior of trace elements during the April 1995 to April 1996[J]. Journal of Environmental Sciences-China,2004,16(2):212-221
    [60]Yu J Z, Tung J W T, Wu A W M, et al. Abundance and seasonal characteristics of elemental and organic carbon in Hong Kong PM10[J]. Atmospheric Environment,2004, 38(10):1511-1521
    [61]Louie P K, Chow J C, Chen L W, et al. PM2.5 chemical composition in Hong Kong: urban and regional variations[J]. The Science of the Total Environment,2005,338(3): 267-281
    [62]Louie P K, Watson J G, Chow J C, et al. Seasonal characteristics and regional transport of PM2.5 in Hong Kong[J]. Atmospheric Environment,2005,39(9):1695-1710
    [63]Pathak R K, Louie P K K, Chan C K. Characteristics of aerosol acidity in Hong Kong[J]. Atmospheric Environment,2004,38(19):2965-2974
    [64]Man C K, Shih M Y. Identification of sources of PM10 aerosols in Hong Kong by wind trajectory analysis[J]. Journal of Aerosol Science,2001,32(10):1213-1223
    [65]Zimmermann F, Ebert M, Worringenet A, et al. Environmental scanning electron microscopy (SEM) as a new technique to determine the ice nucleation capability of individual atmospheric aerosol particles [J].Atmospheric Environment,2007,41: 8219-8227
    [66]汪安璞,杨淑兰,沙因.北京大气气溶胶单个颗粒的化学表征[J].环境化学,1996,27(6):488-495’
    [67]杨书申,邵龙义,王志石.澳门夏季大气颗粒物单颗粒微观形貌分析[J].环境科学,2009,30(5):1514-1519
    [68]Okada K, Qin Y, Kai K. Elemental composition and mixing properties of atmospheric mineral particles collected in Hohhot, China[J]. Atmospheric Research,2005,73(8): 45-67
    [69]刘咸德,董树屏,李玉武.用扫描电镜分析表征大气气溶胶单颗粒[J].环境化学,2003,22(3):223-226
    [70]时宗波,邵龙义,贺桃娥.利用场发射扫描电镜对北京市大气可吸入颗粒物的研究[J].北京工业职业技术学院学报,2003,43(2):31-34
    [71]Van G R, Xhoffer C. Microanalysis of Individual Environmental Particles [J]. Journal of Analytical Atomic Spec.,1994,23(7):81-88
    [72]Artaxo P, Marta L C. Nuclear microprobe analysis and source apportionment of individual armospheric aerosol particles[J]. Nuclear Instruments and Methods in Physics Research,1'993, B75:521-525
    [73]仇志军,郭盘林,王基庆.基于质子探针研究的大气气溶胶单颗粒源解析[J].环境科学,2001,22(2):51-54
    [74]Liu X D, Van E P, Adams F, et al. Biomass Burning in Southern Africa:Individual Particle Characterization of Atmospheric Aerosols and Savanna Fire Samples[J]. Atmospheric Chemistry, Envir.,2000, (36):135-155
    [75]于春海,周强.大气单颗粒物中多环芳烃的二次离子质谱研究[J].洁净煤技术,2000,6(4):41-42
    [76]Li X, Yue W, Iidaet A, et.al. A study of the origin of individual PM2.5 particles in Shanghai air withsynchrotron X-ray fluorescence microprobe[J].Nuclear Instruments and Methods in Physics Research B,2007,260(3):336-342
    [77]Sun T X, Liu Z G, Ding X L. Characterization of apolycapillary focusing X-ray lens for application in spatially resolved EXAFS[J].Chem. Phys. Lett,2007,439:412-414
    [78]Nakano K, Tanaka K, Ding X, et.al. Development of a new total reflection X-ray fluorescence instrument using polycapillary X-ray lens[J].Spectrochimica Acta Part B, 2006,61:1105-1109
    [79]穆珍珍,赵景波,徐娜,等.西安市雁塔区冬季可吸入颗粒物时空变化研究[J].环境科学学报,2011,31(7):1509-1516
    [80]世界卫生组织.空气质量准则[S].2005
    [81]中华人民共和国国家标准.火电厂大气污染物排放标准[S].GB13233-2003
    [82]汪玉林,曹咏军.湿法除尘技术在三氯氢硅生产中的应用[J].化学工业与工程,2012,29(5):76-79
    [83]满银,照毅,刘忠.除尘技术[M].北京:化学工业出版社,2006
    [84]刘江红,潘洋.除尘技术研究进展[J].辽宁化工,2010,39(5):511-513
    [85]韩晶晶,王丽萍,李杰.燃煤电厂烟气高效除尘技术的选择及应用[J].环境科学与管理,2011,36(1):86-89
    [86]郜时旺,许世森.常温高压下移动颗粒层除尘试验研究[J].燃料化学学报,2001,29(6):532-535
    [87]郜时旺,危师让.移动颗粒层除尘系统动力特性研究[J].中国电机工程学报,2002,22(5):24-27
    [88]Hsiau.Shu-San, Smid. Jin, Tsai. Fu-Hau. Velocities in moving granular bed filters[J]. Filtration & Separation,2001,114(15):205-212
    [89]陈敏,袁竹林,许世森.用直接数值模拟对移动颗粒层除尘的研究[J].能源研究与利用,2002,2:16-19
    [90]袁竹林,许世森.颗粒层过滤除尘和分级过滤特性的数值模拟及实验对比[J].中国 电机工程学报,2002,22(4):9-15
    [91]罗慧,周开壹,孙学军.静电除尘装置(ESP)在我国公路隧道中应用的可行性[J].公路工程,2012,37(1):91-94
    [92]白希尧,储金宇,白敏药,等.电除尘器及其电离荷电机制的研究新进展[J].电力环境保护,2007,23(5):39-42
    [93]Bai Mindi, Qiu Xiumei, Liu Dong, et al. The minimization of non-equilibrium plasma source at high pressure [J]. Chinese Science Bulletin,2008,53(21):3425-3428
    [94]凡凤仙,袁竹林,赵兵,等.驻波声场中细微颗粒凝并的数值模拟[J].燃烧科学与技术,2008,14(3):253-258
    [95]温绍国,翁志学,朱江辉,等PBA/PMMA乳胶微球凝聚过程研究[J].高分子材料科学与工程,1999,15(6):98-100
    [96]孟韵,张军营,钟秦.煤燃烧复杂体系中痕量元素迁移转化的热力学[J].环境科学,2005,26(3):16-20
    [97]李林,董勇,崔琳,等.荷电水雾脱除超细颗粒物的研究进展[J].化工进展,2010,29(6):1143-1147
    [98]冯涛,魏家红.电凝并装置收集亚微米粉尘的实验研究[J].黄河水利职业技术学院学报,2011,23(3):49-51
    [99]谭言毅,罗意.高梯度磁分离的过滤性能计算[J].四川环境,1997,16(2):1-8
    [100]蓝惠霞,陈中豪,颜幼平.高梯度磁分离技术用于工业烟气除尘的研究[J].冶金能源,2004,23(1):55-59
    [101]纪万里,叶龙,冯海燕.一种新型静电强化旋风除尘器的研究[J].环境工程,2000,18(6):31-34
    [102]Liu L B, Liu Y, Lin J M, et al. Development of analytical methods for Polycyclic aromatic hydroearbons (PAHs) inairborne particulaies:areView [J]. J.Environ.Sei. (China),2007,19(1):1-11
    [103]Srogi K. Monitoring of environmental exposure to Polycyclic aromatic hydrocarbons: areview[J]. Environ.Chem.Lett.,2007,5:169-195
    [104]Leo M L N. Chromatographic Analysis of the Environment, Third Edition [M]. U.S.:CRC Press,2006
    [105]USEPA. Technical Support Doeumeni:Control of Emissions of HaZardous Air Pollutants from Motor Vehicles and motor Vehicle Fuels [J]. EPA420-R-00-023 Assessment and Standards Division Office of Trans Portation and Air Quality,2000,56: 942-945
    [106]Dimashki M, Lim L H, Harrison R M, et al. Temperature dependence and relative reactivity of atmospheric polycyclic aromatic hydrocarbons [J]. Environmental Science and Technology,2001,35:2264-2267
    [107]刘维立,朱先磊,朱妍妍.大气中多环芳烃的来源及采样方式的研究[J].城市环境与城市生态,1999,12(5):58-60
    [108]Vasilakos C H, Levi N, Maggos T H, et al. Gas-particle concentration and characterization of sources of PAHs in the atmosphere of a suburban area in Athens, Greece[J]. Journal of Hazardous materials,2007,140(1-2):45-51
    [109]Esen F, Cindoruk S S, Tasdemir Y. Ambient concentrations and gas/particle partitioning of polycyclic aromatic hydrocarbons in an urban site in Turkey [J]. Environmental Forensics,2006,7(4):303-312
    [110]Wilcke W, Amelung W, Martius C, et al. Biological sources of polycyclic aromatic hydrocarbons (PAHs) in the Amazonian Rain Forest[J]. Journal of Plant Nutrition and Soil Science,2000,16(3):27-30
    [111]左谦.环渤海西部地区表土中的PAHs污染[D].北京大学博士论文,2007,56-63
    [112]Miton L L. Analytical chemistry of Polycyclic Aromatioc [J]. Compound. INC. 1981,26:17-40
    [113]Chen Y J, Sheng G. Y, Bi X H, et al. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China[J]. Environmental Science and Technology,2005,39(6):1861-1867
    [114]Onah N T, Albina D O, Ping L, et al. Emission of particulate matter and polycyclic aromatichy drocarbons from select cookstove-fuel systems in Asia[J]. Biomass and Bioenergy,2005,28(8):579-590
    [115]窦晗,常彪,魏志成.国内民用燃煤烟气中多环芳烃排放因子研究[J].环境科学学报,2007,27(11):1783-1788
    [116]Buehler S S, Hites R A. The Great Lakes' Integrated ATMOSPHERIC DEPOSITION Network[J]. Environmental Science and Technology,2002,36(7): 354-359
    [117]Kim B M, Ronald C H. Application of SAFER model to the Los Angeles PM10 data[J]. Atmospheric Environment,2000,34:1747-1759
    [118]Miguel A H, Kirchstetter T W, Harley R A. On-road emissions of particulate polycyclic aromatic hydrocarbons and black carbon from gasoline and diesel vehicles[J]. Environ Sci Technol.1998,32:450-455
    [119]Allen J O, Dookeran N M, Smith K A, et al. Measurement of polycyclic aromatic hydrocarbons associated with size segregated atmospheric aerosols in Massachusetts [J]. Environmental Science and Technology,1996,30(6):1023-1031
    [120]Lan Q, Mumford J L, Shen M, et al. Oxidative damage-relatedgenes AKR1C3 and OGG1 modulate risks for lung cancer due to exposure to PAH-rich coal combustion emissions[J]. Carcinogenesis,2004,25(3):2177-2181
    [121]Perera F, Tang D L, Whyatt R, et al. DNA Damage from polycyclic aromatic hydrocarbons measured by Benzo[a]pyrene-DNA adducts in mothers and newborns from Northern Manhattan, The World Trade Center Area, Poland, and China[R]. Cancer Epidemiology, Biomarkers and Prevention,2005,4(9):709-715
    [122]Perera F P, Tang D, Rauh V, et al. Relationship between polycyclic aromatic hydrocarbon-DNA adducts, environmental tobacco smoke and child development in the World Trade Center cohort[J]. Environ Health Perspect,2007,115(10):1497-1502
    [123]侯海燕,王丹.多环芳烃对胎儿和出生结局的影响[J].国际妇产科学杂志,2008,35(3):171-174
    [124]於立军,李耀群,眭蔚.多环芳烃的Shpol'skii低温荧光光谱分析[J].光谱学与光谱分析,2002,22(5):819-821
    [125]田靖,钟岩,杨洪彪GC/MS内标法测定土壤中多环芳烃的质量控制[J].干旱环境监测,2011,25(4):230-237
    [126]成玉,盛国英,傅家谟.大气气溶胶中多环芳烃的定量分析[J].环境化学,1996,15(4):306-365
    [127]李核,李攻科,陈洪伟.微波辅助萃取气相色谱-质谱法测定大气可吸入颗粒物中痕量多环芳烃[J].分析化学,2002,30(9):1058-1062
    [128]尹怡,郑光明,朱新平,等.分散固相萃取/气相色谱-质谱联用快速测定鱼、虾中的16种多环芳烃[J].分析测试学报,2011,30(10):1107-1112
    [129]李杏茹,郭雪清,刘欣然.2007年春节期间北京大气颗粒物中多环芳烃的污染特征[J].环境科学,2008,29(8):2099-2104
    [130]崔蓉,郭新彪.北京市大气颗粒物中多环芳烃及碳元素分析[J].中国公共卫生,2009,25(4):431-432
    [131]GB 13198-91.水质六种特定多环芳烃的测定(高效液相色谙法)
    [132]荣楠,王靖飞,康全影,等.固相萃取-高效液相色谱法测定城市水中痕量多环芳烃的研究[J].安徽农业科学,2012,40(1):451-453
    [133]黄翠玲,徐文菁,赵国栋.北京市大气颗粒物中多环芳烃的组成[J].环境科学,2001,22(4):15-20
    [134]李娟,赵永刚,周春宏.微波萃取高效液相色谱法测定环境空气总悬浮颗粒物中16种多环芳烃[J].环境监测管理技术,2004,16(6):24-26
    [135]高少鹏,刘大锰,安祥华.高效液相色谱法测定某钢铁厂地区大气颗粒物PM2.5中16种多环芳烃[J].环境科学,2006,27(6):1052-1055
    [136]Ferandez P, Vilanova R M, Martinez C, et al. The historieal record of atmospheric Polycyclic Pollution over Europe registered in the sedimentary PAH from remote mountain lakes[J]. Environmental Science and Technology,2004,34(10):1906-1913
    [137]Bozlaker A, Muezzinoglu A, Odabasi M. Atmospheric concentrations, dry deposition and air-soil exchange of polycyclic aromatic hydrocarbons (PAHs) in an industrial region in Turkey[J]. Journal of Hazardous materials,2008,153(3):1093-1102
    [138]Ravindra K, Wauters E, Grieken R V. Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses[J]. Science of The Total Environment,2008,396(2-3):100-110
    [139]Vasilakos Ch, Levi N, Maggos Th, et al. Gas-particle concentration and characterization of sources of PAHs in the atmosphere of a suburban area in Athens, Greece[J]. Journal of Hazardous Materials,2007,140(1-2):45-51
    [140]Vardar N, Tasdemir Y, Odabasi M, et al. Characterization of atmospheric concentrations and partitioning of PAHs in the Chicago atmosphere[J]. Science of the Total Environment,2004,327(1-3):163-174
    [141]Tham Y W F, Takeda K, Sakugawa H. Polycyclic aromatic hydrocarbons (PAHs) associated with atmospheric particles in Higashi Hiroshima, Japan:Influence of meteorological conditions and seasonal variations [J]. Atmospheric Research,2008, 88(3-4):224-233
    [142]Ho K F, Ho S S H, Lee S C, et al. Emissions of gas- and particle-phase polycyclic aromatic hydrocarbons (PAHs) in the Shing Mun Tunnel, Hong Kong[J]. Atmospheric Environment,2009,43(40):6343-6351
    [143]郭清彬,程学丰,侯辉,等.大气PM10中多环芳烃的污染特征[J].环境化学,2010,29(2):189-194
    [144]马万里,李一凡,孙德智,等.哈尔滨市大气中多环芳烃的初步研究[J].中国环境科学,2010,30(2):145-149
    [145]李文慧,张承中,马万里,等.西安采暖季大气中多环芳烃的污染特征及来源解析[J].环境科学,2010,31(7):1432-1437
    [146]祝利中,沈学优,刘勇健.城市居民区空气中多环芳烃污染特征和来源分析[J].环境科学,2001,22(1):86-89
    [147]程培青,闫怀忠,冯银厂,等.济南市大气颗粒物主要排放源多环芳烃成分谱研究[J].中国环境监测,2004,20(5):7-10
    [148]孙韧,朱坦,白志鹏.大气颗粒物上多环芳烃的识别和源解析的进展[J].城市环境与城市生态,1997,10(3):27-31
    [149]汤国才.气溶胶中多环芳烃的污染源识别方法[J].环境科学研究,1993,6(3):37-41
    [150]Leuven R S E W, Nienhuis P H, Kesseleer J M, et al. Annual emissions of pollutants from mine stone applications in drainage basins of Dutch rivers[J]. Hydrobiologia,1999, 4:315-323
    [151]Chow J C, Watson J G. Review of PM2.5 and PM10 apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model [J]. Energy & Fuels,2002,16:222-260
    [152]Chan Y C. Source Apportionment of visibility degradation problems Brisbane (Australia) using multiple linear regression techniques [J]. Atmospheric Environment, 1999,33(19):3237-3250
    [153]齐文启,陈光,孙宗光,等.大气颗粒物监测分析及今后研究课题[J].中国环境监测,2003,19(1):50-62
    [154]陈慧,黄要红,陈任翔,等.GC-MS法测定焦化厂气溶胶中多环芳烃[J].理化检验—化学分册,2003,39(5):259-262
    [155]Oda J, Nomura S, Yasuhara A, et al. Mobile sources of atmospheric polycyclic aromatic hydrocarbons in a roadway tunnel[J]. Atmospheric Environment,2001,35: 4819-4827
    [156]BeruBe K A, Jones T P, Williamson B J,et al. Physicochemical characterization of diesel exhaust particles:Factors for assessing biological activity[J]. Atmospheric Environment,1999,33:1599-1614
    [157]陈晓英.典型污染源排放颗粒物中多环芳烃的组成特征研究[D].南京:南京理工大学硕士学位论文,2005
    [158]吕森林,邵龙义,吴明红,等.北京城区可吸入颗粒物(PM10)的矿物学研究[J].中国环境科学,2005,25(2):129-132
    [159]时宗波,邵友义,贺桃娥,等.利用场发射扫描电镜对北京大气可吸入颗粒物的研究[J].北京工业职业技术学院学报,2003,2(2):31-34
    [160]Dentener F. J, Carmichael J, Zhang Y, et al. Role of mineral aerosol as a reactive surface in the global troposphere[J].. Journal of Geophysical Resesrch,1996,101(17): 22869-22875
    [161]Mori I, Nishikawa M, Iwasaka Y. Chemical reaction during thecoagulation of ammonium sulphate and mineral particles in theatmo sphere [J]. Science of the Total Environment,1998,224:87-91
    [162]吕森林,邵龙义.北京市可吸入颗粒物(PM1o)中单颗粒的矿物组成特征[J].岩石矿物学杂志,2003,22(4):421-424
    [163]陈秋雯.硝酸-氢氟酸微波消解体系测定厂界空气中的铅[J].三峡环境与生态,2010,(6):13-14
    [164]吴史康,汪鹏飞.分子印迹学—从基础到应用[M].北京:科学出版社,2006
    [165]李娟娟,马金涛,楚秀娟,等.应用地积累指数法和富集因子法对铜矿区土壤重金属污染的安全评价[J].中国安全科学学报,2006,16(12):135-139
    [166]中国环境监测总站.中国土壤元素背景值[M].北京:中国环境科学出版社,1990
    [167]Larsen R K, Baker J E. Source apportionment of polycyclic aromatic hydrocarbons in the urban atmosphere:A comparison of three methods[J]. Environ Sci Technol,2003, 37(9):1873-1881
    [168]MacRae J D, Hall K J. Comparison of methods used to determine the availability of polycyclic aromatic hydrocarbons in marine sediment[J]. Environ Sci Technol,1998, 32(23):3809-3815
    [169]丁素君.南京市环境空气中典型半挥发性有机污染物监测研究[D].南京:南京理工大学硕士论文,2003
    [170]朱明华.仪器分析(第3版)[M].北京:高等教育出版社,2000
    [171]张德云,孙成均,王涛.高效液相色谱法测定室内空气中13种多环芳烃[J].华西医大学报,2,002,33(1):140-143
    [172]于彦彬,谭培功,刘赞,等.高效液相色谱三元梯度分离法测定大气中11种醛酮类化合物的研究[J].分析测试学报,2000,19(3):43-46
    [173]周家斌,王铁冠,黄云碧,等.北京部分地区大气PM10中多环芳烃的季节性变化[J].中国环境科学,2005,25(1):115-119
    [174]王淑兰,柴发合,张远航,等.大气颗粒物中多环芳烃的污染特征及来源识别[J].环境科学研究,2005,18(2):19-22
    [175]Guo Z G, Sheng L F, Feng J L, et al. Seasonal variation of solvent extractable organic compounds in the aerosols in Qingdao[J]. Atmospheric Environment,2003, 37(13):1825-1834
    [176]Sawicki E. Analysis for airborne particulate hydrons, their relative proportion affected by different types of pollution[J]. Nat. Cancer Inst. Monograph.,1962,9(6): 201-208
    [177]唐孝炎(主编),李金龙,粟欣,等.《大气环境化学》[M].北京:高等教育出版社,1991
    [178]Li C K, Kamens R M. The use of poly cyclic aromatic hydrocarbons as source signatures in receptor modeling[J]. Atmospheric Environment,1993,27A(4):523-532
    [179]王玉佳.荷电与静电增强对颗粒层过滤的影响研究[D].吉林:东北师范大学硕士论文,2005
    [180]许世森.静电场对移动颗粒层过滤高温除尘效率促进作用的探讨[J].中国电机工程学报,2000,20(1):60-64
    [181]岑可法.气固分离理论与技术[M].杭州:浙江大学出版社,2003
    [182]向晓东.现代除尘理论与技术M].北京:冶金工业出版社,2002
    [183]林肇信.大气污染控制工程[M].北京:高等教育出版社,1991
    [184]唐惠庆,郭占成,姚雨,等.煤中混入氧化锌高温焦炉煤气脱硫行为的研究[J].燃料化学学报,2002,30(3):209-214
    [185]胡满银.除尘技术[M].北京:化学工业出版社,2006
    [186]涂虬,向晓东.静电增强颗粒层除尘器除尘效率的理论与实验研究[J].武汉工程职业技术学院学报,2001,12(4):1-6
    [187]IwasakiT.J.Am. Some notes on sand filtration[J]. Wat.WorkS Assoc,1937,29: 1591-1602
    [188]颜学升,张敏,王助良,等.新型颗粒层过滤性能的宏观数学模型[J].环境工程学报,2009,3(12):2287-2290
    [189]王香爱,陈养民,王淑荣,等.壳聚糖的研究进展及应用[J].应用化工,2007,36(11):1134-1137
    [190]朱正华,朱良均,陆旋.壳聚糖的制备及其应用[J].科技通报,2003,19(6):521-524
    [191]周杰,刘宁,李云.凹凸棒石粘土的显微结构特征[J].硅酸盐通报,1999,20(6):50-54
    [192]李隽.凹凸棒土的有机表面改性[J].广东化工,2011,38(5):133-134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700