用户名: 密码: 验证码:
固废拆解地区农田土壤多氯联苯污染调查与生物修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子电器固体废弃物的粗放拆解导致我国东南部分地区土壤等环境受到重金属、持久性有机物的严重污染。采用生物修复技术对有机污染土壤进行治理是当前研究的热点,但是目前国内外生物修复技术的野外应用研究还很缺乏。本论文选取东南沿海某典型固废拆解地区为研究对象,在土壤污染调查与风险评价基础上,对主要污染物多氯联苯(Polychlorinated biphenyls, PCBs)进行自然消减和生物修复研究,并选取实际PCBs污染农田(4800m2)进行野外中试生物修复实验。取得的主要研究结果与结论如下:
     (1)针对典型固废拆解区域农田土壤进行了重金属和有机物污染调查和评价。拆解密集的A、B两镇农田土壤均受到重金属、有机物的严重污染,主要污染物为Cd、Cu、PAHs和PCBs等,其中PCBs浓度分别为27.1-415.1μg/kg和13.3-242.2μg/kg。小型拆解作坊由于采用露天粗放拆解方式,比大型拆解工厂对周边农田土壤污染贡献更大。土壤中重金属Cu、Pb与有机物PAHs、PCBs含量之间相关性显著,表明这些污染物可能具有相似的来源。
     (2)筛选典型农田进行详细调查和风险评价,确定了农田土壤修复目标值,建立了土壤污染空间推估方法,为PCBs污染土壤的分区修复提供依据。筛选获得固废拆解地区6处典型农田进行详细重金属和有机物污染调查与评价。对其中重度PCBs污染农田地块(4800m2)进行健康风险评价,结果表明该地块作为农用地具有较高的健康风险,必须采取修复措施。采用健康风险评价方法反推得到该地块PCBs污染修复目标值为90.0pg/kg。建立了以CFBP类神经网络为分析手段的土壤污染空间推估方法,并利用该体系对拟修复农田进行了污染空间模拟,结果优于常用地统计Kriging模拟方法。
     (3)野外调查结果表明,当地水田中PCBs残留量显著低于旱地,且水田中高氯代PCBs残留比例较低。不同水分处理土壤中PCBs消减规律研究表明,相对于落干或淹水处理,干湿交替处理条件下土壤中PCBs的去除效果最好,且高氯代PCBs组分可被降解。以上研究结果表明水田土壤厌氧-好氧环境对PCBs自然消减具有促进作用。
     (4)针对较高浓度PCBs污染土壤进行了实验室和野外生物堆制修复研究。以实际PCBs污染土壤(2.9-3.1mg/kg)为对象进行17-24天的堆制处理,结果表明不控温自然堆制较控温处理好,添加大豆卵磷脂等可使土壤中PCBs去除率达到20%。以添加PCBs污染土壤(224.4-310.8mg/kg)分别进行自然堆制和强制通风堆制实验,添加大豆卵磷脂、蚯蚓或PCBs降解菌等,堆制97天后土壤中PCBs去除率最高可分别达到57.1%和73.5%,其中低氯代PCBs组分的去除效果较高氯代组分更好。厌氧堆制后土壤中PCBs总浓度未显著降低,但高氯代组分转化为低氯代组分。基于实验室堆制研究,提出厌氧-好氧堆制工艺并设计制造了DANO滚筒堆制修复设备(处理能力15m3/台)。对实际污染农田实施了野外DANO堆制修复,结果表明,初始平均浓度为187μg/kg的污染土壤修复90天后PCBs下降16.1%。
     (5)针对中低浓度PCBs污染土壤开展了实验室和野外植物修复研究。温室盆栽实验结果表明,黑麦草结合β-环糊精进行植物修复对受PCBs长期污染的农田土壤是一种有效的修复手段:初始浓度为4.52mg/kg的污染土壤,修复4个月PCBs去除率可达38%。β-环糊精的加入提高了土壤中PCBs的生物可利用性和土壤中微生物活性,从而加速了土壤中PCBs的微生物降解。植物体内的PCBs总量约是总PCBs去除量的0.08%,表明土壤中PCBs的主要去除途径不是植物吸收而是根际微生物降解。对实际污染农田进行了植物修复中试研究,初始浓度为102的污染土壤修复110天后,PCBs下降7.9%。
The crude and unregulated recycling activities of electronic and electric waste have resulted in severe and complex contamination of the surrounding environment by toxic chemicals such as heavy metals as well as persistent organic compounds. Bioremediation is an emerging effective and environmentally friendly mean of remediation for the organic compounds polluted soil. However, most of current bioremediation research works in China were conducted in laboratory. There are few bioremediation cases for the real contaminated soil. Taking a typical e-waste recycling area in Southeast China as an example, we had finished a systematic investigation of heavy metals and organic pollution in agricultural soil. Furthermore, some laboratory studies were carried out to investigate the feasibility of different bioremediation technologies for polychlorinated biphenyls (PCBs). A field study in a PCBs contaminated farmland (4800m2) was also conducted. The main results were summarized as follows.
     A systematic investigation of heavy metals and organic pollution in agricultural soil was conducted. The results indicated that the e-waste recycling activity had caused critical soil pollution for Town A and B in e-waste recycling area. Cd, Cu, PAHs and PCBs were the main contaminants. The concentration of PCBs was27.1-415.1μg/kg and13.3-242.2μg/kg in soil of Town A and B, respectively. Comparison among the different sampling areas indicated that the soil was highly contaminated in the agricultural area near e-waste recycling workshops. There was significant correlation among Cu, Pb, PAHs, and PCBs, indicating that these contaminants might have a common source.
     Soil investigation and risk assessment was conducted in typical farmlands in e-waste rccyling area. Furthermore, the remediation target concentration was discussed and the spatial distribution estimation method was established. Six typical polluted farmlands were selected for further heavy metals and organic pollution investigation. Through the health risk assessment, the typical PCBs polluted farmland (4800m2) was observed that had a high level of health risk and was suggested to be remediated immediately. The remediation target concentration was suggested to be90μg/kg for agricultural soil. The spatial distribution estimation of soil pollution data was conducted by the back-propagation neural network analysis. The estimated result was more reasonable than the result estimated by the traditional Kriging analysis.
     After the investigation and analysis of the field samples in the e-waste recycling area, we found that the residues of PCBs in paddy soil were significantly lower than those from dry land. Then the natural attenuation of PCB congener31or congener mixtures was studied in aged contaminated soil or spiked soil with alternative wet-dry, flooded or dry condition, respectively. It was found that PCBs degradation was more enhanced in the alternative wet-dry treatments as compared to other two treatments. Highly chlorinated PCBs could also be degraded in the alternative wet-dry conditions. The results suggested that the typical anaerobic-aerobic environment in the farmland could enhance the natural attenuation of PCBs.
     Several composting studies were investigated for the higher concentration of PCBs. With the addition of auxiliary components such as soybean phosphatide, composting without temperature control could remove approximately20percent of PCBs from the real contaminated soil (2.9-3.1mg/kg) within17-24days. After adding earthworms or microorganisms, the removal efficiency increased to about57.1percent after97days of composting for the spiked PCBs soil (224.4-310.8mg/kg). The removal efficiency was increased to nearly70percent when taking some intensive measures such as forced draft ventilation, the addition of soybean phosphatide, earthworms and microorganisms. However, the removal of highly chlorinated PCBs was limited. The concentration of PCBs in the soil was not significantly affected during the anaerobic composting process while the percentage of highly chlorinated PCBs decreased and lower chlorinated congeners increased. On the basis of laboratory-based composting experiments, an anaerobic-aerobic composting technique was presented and a DANO drum composting equipment was designed. Finally, a field composting study was conducted. Results showed that PCBs was removed by16.1percent during the90days of composting treatment, the initial concentration was187μg/kg.
     For the lower concentration of PCBs, a phytoremediation study was conducted both in greenhouse and field. Greenhouse pot experiment results showed that the combination phytoremedaiton using ryegrass and β-cyclodextrin was an effective means for the PCBs-contaminated agricultural soils. After120days of plant growth, the highest PCB removal percentage (about38%) was observed in the ryegrass planted soil, the initial concentration of which was4.52mg/kg. Addition ofβ-cyclodextrin increased the PCBs bioavailability as well as the biological activities, which might lead to the enhanced degradation of PCBs. Plant uptake contributed about0.08percent of PCBs loss, suggesting that plant uptake was not the main pathway for the PCBs removal in the soil. Furthermore, the phytoremediation efficiency of PCBs was studied in field for110days. Results showed that PCBs could be removed by7.9percent.
引文
A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines, Canadian Council of Ministers of the Environment,2006
    Abramowicz DA (1990) Aerobic and anaerobic biodegradation of PCBs:A Review, Crit. Rev. Biotech 10:241-25
    Abramowicz DA, Brennan MJ, Van Dort HM, Gallagher EL (1993) Factors Influencing the Rate of Polychlorinated Biphenyl Dechlorination in Hudson River Sediments, Environ. Sci. Technol.27:1125-1131
    Abramowitz DA (1990) Aerobic and anaerobic biodegradation of PCBs:a review, Crit. Rev. Biotechnol 10:241-251
    Ahmed M, Focht DD (1973) Degradation of polychlorinated biphenyls by two species of Achromobacter, an. J. Microb 19:47-52
    Akmal M, Wang HZ, Wu JJ, Xu JM, Xu DF (2005) Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution, J. Environ. Sci 17:802-807
    Allard A-S, Remberger M, Neilson AH (2000) The negative impact of aging on the loss of PAH components in a creosote-contaminated soil, Int. Biodeter. Biodegr 46:43-49
    Antizar-Ladislao B, Beck AJ, Spanova K, Lopez-Real J, Russell NJ (2007) The influence of different temperature programmes on the bioremediation of polycyclic aromatic hydrocarbons (PAHs) in a coal-tar contaminated soil by in-vessel composting, J. Hazard. Mater 144:340-347
    Antizar-Ladislao B, Lopez-Real J, Beck AJ (2005) Laboratory studies of the remediation of polycyclic aromatic hydrocarbon contaminated soil by in-vessel composting, Waste Manage 25:281-289
    Antizar-Ladislao B, Lopez-Real J, Beck AJ (2006) Degradation of polycyclic aromatic hydrocarbons (PAHs) in an aged coal-tar contaminated soil under in-vessel composting conditions, Environ. Pollut 141:459-468
    Antizar-Ladislao B, Lopez-Real JM, Beck AJ (2004) Bioremediation of polycyclic aromatic hydrocarbon (PAH)-contaminated waste using composting approaches, Critical. Rev. Environ. Sci. Technol 34:249-289
    Antizar-Ladislao B, Spanova K, Beck AJ, Russell NJ (2008) Microbial community structure changes during bioremediation of PAHs in an aged coal-tar contaminated soil by in-vessel composting, Int. Biodeterior. Biodegrad 61: 357-364
    Asai K, Takagi K, Shimokawa M (2002) Phytoaccumulation of coplanar PCBs by Arabidopsis thaliana, Environ. Pollut 120:509-511
    Atagana H (2004) Co-composting of PAH-contaminated soil with poultry manure, Lett. Appl. Microbiol,39:163-168
    Badr T, Hanna K, de Brauer C (2004) Enhanced solubilization and removal of naphthalene and phenanthrene by cyclodextrins from two contaminated soils, J. Hazard. Mater 112:215-223
    Bakonyi G, Nagy P (2000) Temperature-and moisture-induced changes in the structure of the nematode fauna of a semiarid grassland patterns and mechanisms, Global Change Biol 6:697-707
    Barker CS, Mirkov P (1997) Enhanced natural biodegradation of diesel contaminants at Mile End Railyards site Environmental Geotechinics,1st Aust ralia/New Zealand Conference on Environmental Geotechnics Australia: Bouazza A, Kodikara J, Parker R,517-522
    Bi XH, Chu SG, Meng QY, Xu XB (2002) Movement and retention of polychlorinated biphenyls in a paddy field of WenTai area in China, Agric. Ecos. Environ 89: 241-252
    Blake L, Goulding KWT (2002) Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK, Plant Soil 240:235-251
    Block D (1998) Degrading PCBs through composting, BioCycle,39:12
    Borjia J, Taleon DM, Auresenia J, Gallardo S (2005) Polychlorinated biphenyls and their biodegradation, Process Biochem 40:1999-2013
    Boruvka L, Vacek O, Jehlicka J (2005) Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils, Geoderma 128:289-300
    Boyle AW, Silvin CJ, Hasset J P, Nakas JP, Tanenbaum SW (1992) Bacterial PCB degradation, Biodegradation 3:285-298
    Boyle J (2004) A comparison of two methods for estimating the organic matter content of sediments, J. Paleolim 31:125-127
    Bruns-Nagel D, Dryzyzga O, Steinbach K (1998) Anaerobic/aerobic composting of 2,4,6-trinitrotoluene contaminated soil in a reactor system, Environ. Sci. Technol 32:1676-1679
    Burken JQ Schnoor JL (1996) Phytoremediation, plant uptake of atrazine and role of root exudates, J. Environ. Eng 122:958-963
    Cai QY, Mo CH, Wu QT, Katsoyiannis A, Zeng QY (2008) The status of soil contamination by semivolatile organic chemicals (SVOCs) in China:A review, Sci. Total Environ 389:209-224
    Cal Y (1995) Soil classification by neural network, Adv. Eng. Softw,22(2):95-98
    Campanella BF, Bock C, Schroeder P (2002) Phytoremediation to increase the degradation of PCBs and PCDD/Fs. Potential and limitation, Environ. Sci. Pollut. Res 9:73-85
    Carlon C (2007) Derivation methods of soil screening values in Europe-A review and evaluation of national procedures towards harmonisation [R] EU:Ispra, European Commission, Directorate General, Joint Research Centre
    Chang LW, Meier JR, Smith MK (1997) Application of Plant and Earthworm Bioassays to Evaluate Remediation of a Lead-Contaminated Soil, Archive Environ. Contam. Toxicol,32:166-171
    Cheema AC, Khan MI, Tang XJ, Zhang CK, Shen CF, Malik Z, Yang JJ, Shen KL, Chen XC, Chen YX (2009) Enhancement of Phenanthrene and Pyrene Degradation in Rhizosphere of Tall Fescue (Festuca arundinacea), J. Hazard. Mater 166:1226-1231
    Chekol T, Vough LR, Chaney RL (2004) Phytoremediation of polychlorinated biphenyl-contaminated soils:the rhizosphere effect, Environ. Int 30:799-804
    Chen YX, Tang XJ, Cheema AC, Liu WL, Shen CF (2010)β-cyclodextrin enhanced phytoremediation of aged PCBs-contaminated soil from e-waste recycling area. J. Environ. Monitor 12:1482-1489
    Choi JH, Park SS, Jaffe PR (2006) The effect of emergent macrophytes on the dynamics of sulfur species and trace metals in wetland sediments, Environ. Pollut 140:286-293
    Chroma L, Moeder M, Kucerova P, Macek T (2003) Plant enzymes in metabolism of polychlorinated biphenyls, Fresen. Environ. Bulletin 12 (3):291-295
    Chu SG, Cai ML, Xu XB (1999) Soil-plant transfer of polychlorinated biphenyls in paddy fields, Sci. Total Environ 234:119-126
    Chu SG, Yang C, Xu XB, Liu XX (1995) Polychlorinated biphenyl congener residues in sediment and soil from a polluted area, China Environ. Sci 15:199-203
    Chuah HT (1993) Retrieval of soil moisture content from radar backscatter coefficients, International Geoscience and Remote Sensing Symposium (IGARSS),1:338-340
    Cousins IT, Mclachlan MS, Jones KC (1998) Lack of an aging effect on the soil-air partitioning of poly chlorinated biphenyls, Environ. Sci. Technol 32:2734-40
    Cunningham SD, Anderson TA, Schwab P, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants, Adv. Agron 56:55-114
    Cuypers C, Grotenhuis T, Nierop KGJ, Franco EM, de Jager A, Rulkens W (2002) Amorphous and condensed organic matter domains:the effect of persulfate oxidation on the composition of soil/sediment organic matter, Chemosphere 48: 919-931
    Chavez FP, Gordillo F, Jerez CA (2006) Adaptive responses and cellular behavior of biphenyl-degrading bacteria toward poly chlorinated biphenyls, Biotechnol. Adv 24:309-320
    Di Toro S, Zanaroli G, Fava F (2006) Intensification of the aerobic bioremediation of an actual site soil historically contaminated by polychlorinated biphenyls (PCBs) through bioaugmentation with a non-acclimated, complex source of microorganisms, Microb. Cell Fact 5:11-19
    Donnelly PK, Fletcher JS (1995) PCB metabolism by ectomycorrhizal fungi, Bull. Environ. Contam. Toxicol 54:507-513
    Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA, Strand SE, Gordon MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P4502E1, Proc. Natl. Acad. Sci.USA,97(12):6287-6291
    Doyle RC, Isbister JD, Anspach GL, Kitchens JF (1986) Composting explosives/ organics contaminated soils. Final technical report, U.S. Army Toxic and Hazardous Materials Agency, US Government accession #AD-A169:1-198
    Davila B, Whitford KW, Saylor ES (1993) Technology Alternatives for the Remediation of PCB-Contaminated Soil and Sediment, US Environmental Protection Agency, EPA/540/S-93/506
    EPA 542-R-05-002, April 2005. Use of Field-Scale Phytotechnology for Chlorinated Solvents, Metals, Explosives and Propellants, and Pesticides, Status report. http://www.clu-in.org
    EPA/600/R-03/037, September,2002. Application, Performance, and Costs of Biotreatment Technologies for Contaminated Soils, Contract No.68-C-00-185, Task Order No.13
    Escalante-Espionsa E, Gallegos-Martinez ME, Favela-Torres E, Gutierrez-Rjoas M (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus Laxus Lam. Inoculated with a microbial consortium in a model system, Chemosphere 59:405-413
    Euliss K, Ho CH, Schwab AP, Rock S, Banks MK (2008) Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone, Biores. Technol 99:1961-1971
    Evans BS, Dudley CA, Klasson KT (1996) Sequential anaerobic-aerobic biodegradation of PCBs in soil slurry microcosms, Appl. Biochem. Biotech 57/ 58:885-894
    Fabietti G, Biasioli M, Barberis R, Ajmone-Marsan F (2009) Soil contamination by organic and inorganic pollutants at the regional scale:the case of Piedmont, Italy, J. Soil Sediment 10 (2):290-300
    Fava F, Ciccotosto VF (2002a) Effects of randomly methylated-β-cyclodextrins (RAMEB) on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in three pristine soils spiked with a transformer oil, Appl. Microbiol. Biotechnol 58:393-399
    Fava F, Gioia DD, Marchetti L (1998) Cyclodextrin effects on the exsitu bioremediation of the chronically polychlorobiphenyl-contaminated soil, Biotechnol. Bioeng 58:345-355
    Fava F, Gioia DD, Marchetti L, Fenyvesi E, Szejtli J (2002b) Randomly methylated-cyclodextrins (RAMEB) enhance the aerobic biodegradation of polychlorinated biphenyl in aged-contaminated soils, J. Incl. Phenom. Macro 44: 417-421
    Fava F, Grassi F (1996) Cyclodextrins enhance the aerobic degradation and dechlorination of low-chlorinated biphenyls, Biotechnol.Techn 10:291-296
    Fish KM, Principe JM (1994) Biotransformations of Aroclor 1242 in Hudson River test tube Microcosm, Appl. Environ. Microbiol 60:4289-4296
    Funk SB, Roberts DJ, Crawford DL, Crawford RL (1993) Initial phase optimization for bioremediation of munition compound-contaminated soils, Appl. Environ. Microbiol 59:2171-2177
    Gan DR, Berthouex PM (1994) Disappearance and crop uptake of PCBs from sludge-amended farmland, Water Environ. Res 66:54-69
    Ghosh U, Weber AS, Jensen JN, Smith JR (2000) Relationship between PCB desorption equilibrium, kinetics, and availability during land biotreatment, Environ. Sci. Technol 34:2542-2548
    Greg Fuhs (2003) Bioremediation could be an option for PCBs. Water Environ. Technol,15 (2):25
    Guideline on the Investigation Levels for Soil and Groundwater, The National Environment Protection Council (NEPC) of the Australian Government,1999
    Gupta Q Tao J (1992) Bioremediation of gasoline contaminated soil using poultry litter, Environ. Health 31:2395-2407
    Hatzinger PB, Alexander M (1995) Effect of ageing of chemicals in soil on their biodegradability and extractability, Environ. Sci. Technol,1995 (29):537-545
    He Y, Xu JM, Ma ZH, Wang HZ, Wu YP (2007) Profiling of PLFA:Implications for nonlinear spatial gradient of PCP degradation in the vicinity of Lolium perenne L. roots, Soil Biol. Biochem 39:1121-1129
    Heywood E, Wright J, Wienburg CL, Black HIJ, Long SM, Osborn D, Spurgeon DJ (2006) Factors influencing the national distribution of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in British soils, Environ. Sci. Technol 40:7629-7635
    Hofman, J, Dusek, L, Klanova, J. Monitoring microbial biomass and respiration in different soils from the Czech Republic-a summary of results. Environment International,2004,30:19-30
    Hogan JA, Toffoli GR, Miller FC, Hunter JV, Finstein MS (1989) Composting physical model demonstration mass balance of hydrocarbons and PCBs. In:Int Conf physical, chemical and biological detoxification of hazardous waste, pgs 742-757, Technomic Publishing Co, Lancaster, PA
    Huang SS, Liao QL, Hua M, Wu XM, Bi KS, Yan CY, Chen B, Zhang XY (2007) Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China, Chemosphere 67:2148-2155
    Jencova V, Strnad H, Chodora Z, Ulbrich P, Hickey WJ, Paces V (2004) Chlorocatechol catabolic enzymes from Achromobacter xylosoxidans A8, Int. Biodeterior. Biodegradation 54:175-181
    Jim A (2008) Microbial transformation and degradation of polychlorinated biphenyls, Environ. Pollut 155:1-12
    Josephine B, Donna M T, Joseph A (2005) Polychlorinated biphenyls and their biodegradation, Biochemistry 40:1999-2013
    Kastanek F, Demnerova K, Pazlarova J, Burkhard J, Maleterova Y (1999) Biodegradation of polychlorinated biphenyls and volatile chlorinated hydrocarbons in contaminated soils and groundwater in field condition, Int. Biodeterior. Biodegrad 44:39-47
    Kelsey JW, Alexander M (1997) Declining bioavailability and inappropriate estimation of risk of persistent conpounds, Environ. Toxicol. Chem 16 (3): 582-585
    Kimura, M (1988) Physiology of rice plants and their rhizosphere microorganisms, Proceedings of First International symposium, Thailand,57-171
    Kubatova A, Erbanova P, Eichlerova I, Homolka L, Nerud F, Sasek V (2001) PCB congener selective biodegradation by the white rot fungus Pleurotus ostreatus in contaminated soil, Chemosphere 43:207-215
    Kucerova P, Mackova M, Polachova L (1999) Correlation of PCB transformation by plant tissue cultrues with their morphology and peroxidase activity changes, Collect. Czech. Chem. Commun 64 (3):1497-1509
    Kucerova P, Wiesche CIN, Wolter M (2001) The ability of different plant species to remove polycyclic aromatic hydrocarbons and polychlorinated biphenyls from incubation media, Biotech. Lett 23 (16):1355-1359
    Laine MM, Jurgensen KS (1997) Effective and safe composting of chloropheno contaminated soil in pilot scale, Environ. Sci. Technol 31:371-378
    Lazzari L, Sperni L, Salizzato M, Pavoni B (1999) Gas chromatographic determination of organic micropollutants in samples of sewage sludge and compost:behaviour of PCB and PAH during composting, Chemosphere,38 (8): 1925-1935
    Lemmon CR, Pylypiw Jr HM (1992) Degradation of diazanon, chlorpyrifos, isofenphos and pendimethalin in grass and compost, Bull. Environ. Contam. Toxicol 48:409-415
    Limura Y, Ikeda S, Sonoki T (2002) Expression of a gene for Mn-peroxidase from Co-riolus versicolor in transgenic tobacco generates potential tools for phytoremediation, Appl. Microbiol. Biotechnol,59 (2):46-51
    Liu YY, Chen GZ (2006) Research advances in phytoremediation of polychiorinated biphenyls (PCBs), J. Appl. Ecol 17 (2):325-329
    Lu YH, Conrad R (2005) In situ stable isotope probing of methanogenic archaea in the rice rhizosphere, Science 309:1088-1090
    Luo WS, D'Angelo EM, Coyne M (2007) Plant secondary metabolites and surfactant (hydroxypropyl-β-cyclodextrin) effects on polychlorinated biphenyl biotransformation and microbial community structure in soils, Soil Biol. Biochem 39:735-743
    Luthy RG, Aiken GR, Bruseau ML (1997) Sequestration of Hydrophobic Organic Contaminants by Geosorbents, Environ. Sci. Technol 31:3341-3347
    Ma LQ, Rao GN (1997) Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils, J. Environ. Qual 26:259-264
    Macdonald A (1993) Peformance standards for in situ bioremediation, Environ. Sci. technol 27:1974-1979
    Macek T, Rezek J, Vrchotova B, Uhlik O (2007) Phytoremediation. Listy Cukrov. a Rep 123 (9-10):312-314
    Mackova M, Macek T, Kucerova T, Burkhard P, Pazlarova J, Demnerova K (1997) Degradation of polychlorinated biphenyls by hair root culture of Solanum nigrum, Biotechnol Lett 19:787-90
    Mackova M, Macek T, Ocenaskova J (1997) Biodegradation of Polychlorinated Biphenyls by Plant Cells, Int. Biodet. Biodeg 39 (4):317-325
    Mackova M, Vrchotova B, Francova K (2007) Biotransformation of PCBs by plants and bacteria e consequences of plant-microbe interactions, Eur. J. Soil. Biol 43: 233-241
    Master ER, Lai VWM, Kuipers B, Cullen WR, Mohn WW (2002) Sequential anaerobic-aerobic treatment of soil contaminated with weathered Aroclor 1260, Environmental Science and Technology,36:100-103
    Mata-Sandoval J, Karns J, Torrent A (2002) Influence of rhamnolipids and Triton X-100 on the desorption of pesticides from soils, Environ. Sci. Technol 36: 4669-4675
    Mattin EM, Valle D (2004) Cyclodetrins and their uses:a review, Process Biochem 39:1033-1046
    Meade T, D'Angelo EM (2005) [14C]Pentachlorophenol mineralization in the rice rhizosphere with established oxidized and reduced soil layers, Chemosphere,61: 48-55
    Mehamannavaz R, Prasher SO, Ahmad D (2002) Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobi ummeliloti, Proc. Biochem 37:955-963
    Meier JR, Chang LW, Jacobs S, Meckes MC, Simth MK (1997) Use of plant and earhworm bioassays to evaluate remediation polychlorinated biphenyls, Environ. Toxicol. Chem 16 (5):928-938
    Meijer SN, Ockenden WA, Sweetman A, Breivik K, Grimalt JO, Jones KC (2003) Global distribution and budget of PCBs and HCB in background surface soils: implications or sources and environmental processes, Environ. Sci. Technol 37: 667-672
    Michel Jr FC, Reddy CA, Forney LJ (1995) Microbial degradation and humification of the lawn care pesticide 2,4-dichlorophenoxyacetic acid during composting of yard trimmings, Appl. Environ. Microbiol 61:2566-2571
    Michel. FC, Quensen J, Reddu CA (2001) Bioremediation of a PCB-Contaminated Soil Via Composting, Compost Sci. Util 9 (4):274-284
    Milne BJ, Baheri HR, Hill GA (1998) Composting of a heavy oil refinery sludge, Environ. Prog 17:24-27
    Mohamed T, Juan AO, Inmaculada GR (2002) Production of xyloglucanolytic enzymes by Trichoderma viride, Paecilomyces farinosus, Wardomyces inflatus, and Pleurotus ostreatus, Mycologia 94:404-410
    Molnar M, Fenyvesi E, Gruiz K, Leitgib L, Balogh G, Muranyi A, Szejtli J (2002) Effects of RAMEB on Bioremediation of Different Soils Contaminated with Hydrocarbons, J. Incl. Phenom. Macro. Chem 44:447-452
    Molnar M, Leitgib L, Fenyvesi E, Szaniszlo N, Szejtli J, Fava F (2005) Enhanced biodegradation of transformer oil in soils with cyclodextrin-from the laboratory to the field, Biodegradation 16:159-168
    Nadal M, Schuhmacher M, Domingo JL (2004) Levels of PAHs in soil and vegetation samples from Tarragona County, Spain, Environ. Pollut 132:1-11
    Nemeth-Konda L, Fiileky G, Morovjan G, Csokan P (2002) Sorption behavior of acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon on Hungarian agricultural soil, Chemosphere 48:545-552
    Newman LA, Doty SL (1998) Phytoremediation of organic contaminants:a review of phytoremediation research at the University of Washington. J. Soil Contam 7 (4): 531-542
    Ni HG, Zeng EY (2009) Law enforcement and global collaboration are the keys to containing e-waste tsunami in China, Environ. Sci. Technol 43:3991-3994
    OECD (1994) Test 207:earthworm, acute toxicity tests. OECD Guidelines for testing of chemicals. Paris, France
    Pavlikova D, Macek T, Mackova M (2007) Monitoring native vegetation on a dumpsite of PCB-contaminated soil, Int. J. Phytorem 9 (1-3):71-78
    Pier MD, Zeeb BA, Reimer KJ (2002) Patterns of contamination among vascular plants exposed to local sources of polychlorinated biphenyls in the Canadian arctic and subarctic, Sci. Tot. Environ 297:215-227
    Providenti MA, Lee H, Trevors JT (1993) Selected factors limiting the microbial degradation of recalcitrant compounds, J. Ind. Microbiol 12:379-395
    Qiao M, Chen YY, Zhang QH, Huang SB, Ma M, Wang CX, Wang ZJ (2006) Identification of Ah receptor agonists in sediment of Meiliang Bay, Taihu Lake, China, Environ. Sci. Technol 40:1415-1419
    Quensen JF, Tiedje JM, Boyd SA. Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments, Science,1988,242: 752-754
    Ranjithan S, Eheart JW (1993) Neural network-based screening for groundwater reclamation under uncertainty, Water Resour. Res,29(3):563-574
    Reddy KR, Patrick WH, Lindau CW (1989) Nitrification denitrification at the plant root-sediment interface in wetlands, Limnol. Oceanogr 34:1004-1013
    Reid BJ, Jones KC, Semple KT (2000) Bioavailability of persistent organic pollutants in soils and sediments a perspective on mechanisms, consequences and assessment, Environ. Pollut 108:103-112
    Ren NQ, Que MX, Li YF, Liu YF, Wan XN, Xu DD, Sverko E, Ma J (2007) Polychlorinated biphenyls in Chinese surface soils, Environ. Sci. Techno 141: 3871-3876
    Rezek J, Macek T, Mackova M (2004) The effect of vegetation on decrease of PAH and PCB content in long-term contaminated soil, Europ. Symp. Environ. Biotech 10(2):833-837
    Rogers LL, Dowla FU (1994) Optimization of groundwater remediation using artificial neural network with solute transfer modeling, Water Resour. Res,30 (2): 457-481
    Ruiz-Aguilar GML, Fernandez-Sanchez JM, Rodriguez-Vazquez R, Poggi Varaldo H (2002) Degradation by white rot fungi of high concentrations of PCB extratcted from a contaminated soil, Adv. Environ. Res 6:559-568
    Ryslava E, Krejcik Z, Macek T (2003) Study of PCB degradation in real contaminated soil, Fresen. Environ. Bull 12 (3):296-301
    Sanchez-Camazano M, Rodriaguez-Cruz S, Sanchez-martian MJ (2003) Evaluation of component characteristics of soil-surfactant-herbicide system that affect enhanced desorption of linuron and atrazine preadsorbed by soils, Environ. Sci. Technol 37:2758-2766
    Saterbak A, Toy RJ, Wong DCL (1999) Ecotoxicological and analytical assessment of hydrocarbon-contaminated soils and application to ecological risk assessment, Environ. Toxicol. Chem 18 (7):1591-1607
    Semple KT, Reid BJ, Fermor TR (2001) Impact of composting strategies on the treatment of soils contaminated with organic pollutants, Environ. Pollut 112: 269-283
    Shannon MJR, Bothmel R, Chunn CD (1994) Evaluating polychlorinated biphenyl biorememdiation process:From laboratory testing to pilot demonstrations [A]. In: Hinchee R E, leeson A, semprini L, et al. bioremediation of chlorinated and PAH compounds [C]. boca Raton:lewis Publishers,354-358
    Sharon LD, Tanya QS, Angela MW (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P4502E1, Proc. Natl. Acad. Sci 12:6287-6291
    Shen CF, Chen YX, Huang SB, Wang ZJ, Yu CN, Qiao M, Xu M, Setty K, Zhang JY, Lin Q (2009a) Dioxin-like compounds in agricultural soils near e-waste recycling sites from Taizhou area, China:chemical and bioanalytical characterization, Environ. Int 35:50-55
    Shen CF, Huang SB, Wang ZJ, Qiao M, Tang XJ, Yu CN, Shi DZ, Zhu YF, Shi JY, Chen XC, Setty K, Chen YX (2008) Identification of Ah receptor agonists in soil of E-waste recycling sites fromTaizhou area in China, Environ. Sci. Technol 42: 49-55
    Shen CF, Tang XJ, Cheema AC, Zhang CK, Khan MI, Liang F, Chen XC, Zhu YF, Lin Q, Chen YX (2009b) Enhanced phytoremediation potential of polychlorinated biphenyl contaminated soil from e-waste recycling area in the presence of randomly methylated-β-cyclodextrins, J. Hazar. Mater 172: 1671-1676
    Shim H, Chauhan S, Ryoo D, Bowers K, Thomas SM, Canada KA, Burken JG, Wood TK (2000) Rhizosphere competitiveness of trichloroethylene-degrading poplar colonizing recombinant bacteria, Appl. Environ. Microbiol 66:4673-4678
    Singer AC, Jury W, Luepromchai E, Yahng CS, Crowley DE (2001) Contribution of earthworms to PCB bioremediation, Soil Biol. Biochem 33:765-776
    Singer AC, Smith D, Jury WA (2003) Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil, Environ. Toxicol. Chem 22 (9):1998-2004
    Smidt H, van Leest M, van der Oost J (2000) Transcriptional regulation of the cpr gene cluster in orthe-chlorophenol respiring Desulfitobacterum dehalogenans, J. Bacteriol 182:5683-5691
    Smith KE, Schwab AR, Banks MK (2007) Phytoremediation of polychlorinated biphenyl (PCB)-contaminated sediment:A greenhouse feasibility study, J. Environ. Qual 36 (1):239-244
    Snell JR (1982) Rate of biodegradation of toxic organic compounds while in contact with organics which are actively composting. NSF final report ISP 8113992, NTIS PB84-193150. National Technical Information Service, Springfield, VA
    Steer J, Harris J (2000) Shift in themicrobialcommunity in rhizosphere and nonrhizosphere soils during the growth of Agrostis stolonifera, Soil Biol. Biochem 32 (6):869-878
    Suresh B, Ravishankar GA (2004) Phytoremediation-A novel and promising approach for environmental clean-up, Crit. Rev. Biotechnol 24:97-124
    Sylvestre M, Macek T, Mackova M (2009) Transgenic plants to improve rhizoremediation of polychlorinated biphenyls (PCBs), Curr. Opin. Biotechnol, 20:1-6
    Shaw LJ, Burns RG (2003) Biodegradation of organic pollutants in the rhizosphere, Adv. Appl. Microbiol 53:1-60
    Tang XJ, Shen CF, Shi DZ, Cheema SA, Khan MI, Zhang CK, Chen YX (2010) Heavy metal and persistent organic compound contamination in soil from Wenling:An emerging e-waste recycling city in Taizhou area, China. J. Hazard. Mater 173:653-660
    Texas Natural Resource Conservation Commission (TNRCC) Risk-Based Corrective. Action for Leaking Storage Tank Sites. Leaking Storage Tank Program, January,1994
    Thibodeau J, Gauthier A, Beaudet R (2004) Purification, cloning, and sequencing of a 3,5-dichlorophenol reductive dehalogenase from Desulfitobacterium frappieri PCP-1, Appl. Environ. Microbiol 70:4532-4537
    TNRCC Risk-Based Corrective Action for Leaking Storage Tank Sites, January 1994
    Turrio-Baldassarri L, Abate V, Alivernini S, Battistelli CL, Carasi S, Casella M (2007) A study on PCB, PCDD/PCDF industrial contamination in a mixed urban-agricultural area significantly affecting the food chain and the human exposure, part I: soil and feed, Chemosphere 67:1822-1830
    USEPA (1991) Screening Level Equation for Ingestion of Noncarcinogenic Contaminants in Residential Soil. RAGS HHEM, Part B
    Van Dort MH, Bedard DL (1991) Reductive ortho-and metadechlorination of a polychlorinated biphenyl congener by anaerobic microorgarlisms, Appl. Environ. Microbiol,57 (5):1576-1578
    Volkering F, Breure AM, Rulkens WH (1998) Microbiological aspects of surfactant use for biological soil remediation, Biodegradation 8:401-417
    VROM (1994) Intervention values and target values:soil quality standards. Netherlands Ministry of Housing, Spatial Planning and Environment. The Hague, Netherlands:Department of Soil Protection
    Wang DG, Yang M, Jia HL, Zhou L, Li FY (2008) Levels, distributions and profiles of polychlorinated biphenyls in surface soils of Dalian, China, Chemosphere 73: 38-42
    Weaver MA, Zablotowicz RM, Locke MA (2004) Laboratory assessment of atrazine and fluometuron degradation in soils from a constructed wetland, Chemosphere 57:853-862
    Webber MD, Pietz RI, Granato TC, Svoboda ML (1990) Plant uptake of PCBs and other organic contaminants from sludge-treated coal refuse, J. Environ. Qual 23: 1019-1026
    White JC, Parrish ZD, Isleyen M, Gent MP, Iannucci-Berger W, Eitzer BD, Kelsey JW, Mattina MI (2006) Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species, Int. J. Phytorem 8 (2):63-79
    Whitfield Aslund ML, Zeeb BA, Rutter A, Reimer KJ (2007) In situ phytoextraction of polychlorinated biphenyl-(PCB) contaminated soil, Sci. Tot. Environ 374:1-12
    Wiegel J, Wu QZ (2000) Microbial reductive dehalogenation of polychlorinated biphenyls, FEMS Microbiology Ecology,32:1-15
    Wigand C, Stevenson JC, Cornwell JC (1997) Effects of different submersed macrophytes on sediment biogeochemistry, Aquatic Botany 56:233-244
    Wilcke W, Krauss M, Safronov Q Fokin AD, Kaupenjohann M (2006) Polychlorinated biphenyls (PCBs) in soils of the Moscow region:concentrations and small-scale distribution along an urban-rural transect, Environ. Pollut 141: 327-335
    Williams RT, Keehan KR (1993) Hazardous and industrial waste composting. In: Science and Engineering of Composting, H.A.Hoitink, H.M.Keener (eds.). Renaissance Publications, Worthington, OH,363-382
    Winchell LJ, Novak PJ (2008) Enhancing polychlorinated biphenyl dechlorination in fresh water sediment with biostimulation and bioaugmentation, Chemosphere 71: 176-182
    Wong JW, Fang M, Zhao Z, Xing B (2004) Effect of Surfactants on Solubilization and Degradation of Phenanthrene under Thermophilic Conditions, J. Environ. Qual 33:2015-2025
    Wong MH, Wu SC, Deng WJ, Yu XZ, Luo Q, Leung A, Wong CSC, Luksemburg WJ, Wong AS (2007) Export of toxic chemicals-a review of the case of uncontrolled electronic-waste recycling, Environ. Pollut 149:131-140
    Wong SC, Li XD, Zhang G (2002) Heavy metals in agricultural soils of the Pearl River Delta, South China, Environ. Pollut 119:33-44
    Xing Y, Lu YL, Dawson RW, Shi YJ, Zhang H, Wang TY, Liu WB, Ren HC (2005) A spatial temporal assessment of pollution from PCBs in China, Chemosphere,60: 731-739
    Yang XQ, Sun Y, Qian SJ (2004) Biodegradation of seven polychlorinated biphenyls by a new isolated aerobic bacterial (Rhodococcus sp. R04), J. Ind. Microbiol. Biotechnol 31:415-420
    Yin CQ, Jiang X, Yang XL, Bian YR, Wang F (2008) Polycyclic aromatic hydrocarbons in soils in the vicinity of Nanjing, China, Chemosphere 73: 389-394
    Yin Y, Impellitteri, CA, You SJ, Allen HE (2002) The importance of organic matter distribution and extract soil:solution ratio on the desorption of heavy metals from soils, Sci. Total Environ 287:107-119
    Yu XZ, Gao Y, Wu SC, Zhang HB, Cheung KC, Wong MH (2006) Distribution of polycyclic aromatic hydrocarbons in soils at Guiyu area of China, affected by recycling of electronic waste using primitive technologies, Chemosphere 65: 1500-1509
    Zeeb BA, Amphlett JS, Rutter A (2006) Potential for phytoremediation of polychlorinated biphenyl-(PCB-) contaminated soil, Int. J. Phytorem,8 (3): 199-221
    Zhang CS (2006b) Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland, Environ. Pollut 142: 501-511
    Zhang HB, Luo YM, Wong MH, Zhao QG, Zhang GL (2006a) Distributions and concentrations of PAHs in Hong Kong soils, Environ. Pollut 141:107-114
    Zhang HB, Luo YM, Wong MH, Zhao QG, Zhang GL (2007) Concentrations and possible sources of polychlorinated biphenyls in the soils of Hong Kong, Geoderma 138:244-251
    Zhang JM, Ming H (2009) Eco-toxicity and metal contamination of paddy soil in an e-wastes recycling area, J. Hazard. Mater 165:744-750
    Zhao GF, Xu Y, Han GG, Ling B (2006a) Biotransfer of persistent organic pollutants from a large site in China used for the disassembly of electronic and electrical waste, Environ. Geochem. Health 28:341-351
    Zhao GF, Xu Y, Li W, Han GG, Ling B (2007a) PCBs and OCPs in human milk and selected foods from Luqiao and Pingqiao in Zhejiang, China, Sci. Total Environ 378:281-292
    Zhao GF, Xu Y, Li W, Han GG, Ling B (2007b) Prenatal exposures to persistent organic pollutants as measured in cord blood and meconium from three localities of Zhejiang, China, Sci. Total Environ 377 (2-3):179-191
    Zhao X, Zheng M, Zhang B, Zhang Q, Liu W (2006b) Evidence for the transfer of polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans from soil into biota, Sci. Total Environ 368: 744-752
    Zhou QX (2004) Methodology of enacting standards for remediation of contaminated soils, J. Appl. Ecol 15 (2):316-320
    艾尼瓦尔,王栋,周集体.降解多氯联苯的微生物特性研究进展.上海环境科学,2000,19(11):519-522
    鲍士旦.土壤农化分析.北京:中国农业出版社,1981
    北京市典型工业企业土壤修复指导值.中国环境科学研究院土壤污染与控制研究室
    毕新慧,储少岗,徐晓白,多氯联苯在水稻田中的迁移行为.环境科学学报,2001,21(4):454-458
    曹雪莲,惠泉,刘均洪.转基因植物修复有机污染物的进展.环境保护科学,2008,34(3):71-74.
    陈峰.电子电器废弃物拆解地区农田重金属污染生态与健康风险评价.浙江大学硕士学位论文.杭州,2010
    陈华.石油污染场地土壤风险基准值与环境风险评价技术研究.清华大学硕士学位论文.北京,2005
    陈炼钢.土壤地下水污染治理健康风险分析系统研究.清华大学硕士学位论文.北京,2005
    陈瑞蕊,林先贵,尹睿,施亚琴.有机污染土壤中菌根的作用.生态学杂志,2005,24,176-180
    陈振翔,于鑫,夏明芳,戴朝霞,孙成.磷脂脂肪酸分析方法在微生物生态学中的应用.生态学杂志,2005,24(7):828-832
    陈颖敏,张力,赵毅,王洪鹰,赵英,闰蓓.堆肥发酵法降解多氯联苯的研究.电力环境保护,1991,7(2):18-21
    谌宏伟.污染场地健康风险评价-以北方某工厂为例.中国地质大学(北京)博士学位论文.北京,2006
    崔萌,李忠佩,车玉萍,代静玉.不同水分状况下红壤水稻土中有机物料分解及酶活性的变化.2008,36(22):9634-9636
    冯明谦,蒋培志.卧式发酵滚筒的设计与研究.环境卫生工程,2000(8):97-100
    高军.长江三角洲典型污染农田土壤多氯联苯分布、微生物效应和生物修复研究.浙江大学博士学位论文.杭州,2005
    高丽荣,郑明辉,李敬光等.土壤中多氯联苯成分分析标准物质的研制与定值.分析化学研究简报.2006,34(11):1579-1582
    郜红建,蒋新,常江,王代长,赵振华,卞永荣.根分泌物在污染土壤生物修复中的作用.生态学杂志,2004,23(4):135-139
    浩宇工程顾问有限公司,“土壤污染管制标准研修计划期末报告(定稿本)”,台湾环境保护署编印,EPA-97-GA13-03-A158
    郭淼,陶澍,杨宇,李本纲,曹军,王学军,刘文新,徐福留,吴永宁.天津地区人群对六六六的暴露分析.环境科学,2005,26(1):164-167
    国家统计局网站,http://www.stats.gov.cn/
    何怡蓉.关渡平原砷污染农地健康与生态风险评估.台湾大学硕士学位论文.台北,2008
    贺永华,沈东升,朱荫湄.根系分泌物及其根际效应.科技通报,2006,22(6): 761-766
    黄勇.杨忠芳,张连志,侯青叶,程新彬,赵秀芳.基于重金属的区域健康风险评价-以成都经济区为例.现代地质,2008,22(6):990-997
    姜林等.《场地环境评价指南》,北京市环境科学研究院,2004
    李葆生.城市生活垃圾DANO发酵滚筒工业中试.环境卫生工程,2004,5:51-54
    李庆逵.中国水稻土.科学出版社,1992.
    李霜,韩关根,徐盈等.南方某地妇女儿童血液中多氯联苯蓄积水平调查.中国卫生工程学,2005,4(5):278-280
    李霜,韩关根,徐盈等.南方某地产妇和婴儿体内多氯联苯蓄积水平的调查.中国工业医学杂志,2006,19(3):136-138
    林进财.以健康风险评估订定油污染场址之整治目标.国立中山大学硕士学位论文.高雄,2001
    刘磊.某市铬渣污染场地风险评价与修复技术筛选.浙江大学硕士学位论文.杭州,2010
    卢瑞山.类神经网路於环境资讯之鉴识,推估及预测之研究.台湾大学博士学位论文.台北,1999
    鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000
    马瑛,张甲耀,侯祖林.堆肥化生物修复技术处理有毒有害固体废弃物的模拟研究.环境科学,1997,18(4):65
    美国环保局综合风险信息系统(IRIS)数据库,http://risk.lsd.ornl.gov/index.shtm
    阙蓓德.受重金属污染土壤复育决策支援系统之雏形研究.台湾大学博士学位论文.台北,1997
    日本环境省网站,http://www.env.go.jp/
    沈超峰.电子电器废弃物拆解地区土壤污染的生态毒理学诊断研究.浙江大学博士学位论文.杭州,2008
    沈德中.污染环境的生物修复.北京:化学工业出版社,2002
    宋玉芳,宋雪英,张薇,周启星,孙铁珩.污染土壤生物修复中存在问题的探讨.环境科学,2004,25:129-133
    孙红斌,刘亚云.陈桂珠.微生物降解多氯联苯的研究进展.生态学杂志,2006,25:1564-1569
    孙艳,杨秀清,钱世钧.嗜吡啶红球菌多氯联苯降解基因克隆及表达.中国环境科学,2004,6:734-737
    滕应,徐莉,邹德勋,李振高,骆永明.多氯联苯复合污染土壤的微生物群落结构多样性变化.生态环境.2007,16(6):1688-1693
    滕应,骆永明,高军,李振高.多氯联苯污染土壤茵根真菌.紫花苜蓿.根瘤茵联合修复效应.环境科学,2008,29(10):2925-2930
    田旸,杨凤林,柳丽芬,张兴文.堆肥技术处理有机污染土壤的研究进展.环境污染治理技术与设备,2002,3:31-36
    王艮梅,刘洋.有机物料及表面活性剂对植物修复菲污染土壤的影响.环境科学与管理,2007,11:42-46
    王惠芬.典型污染区土壤-植物中PCBs污染特征及健康风险评价.浙江大学硕士学位论文.杭州,2008
    王志刚,徐晓燕.有机污染土壤植物修复机理的研究现状.环境科学与技术,2006,29(2):106-109
    魏复胜等.中国土壤元素背景值.北京:中国环境科学出版社,1990
    徐莉,滕应,张雪莲等.多氯联苯污染土壤的植物-微生物联合田间原位修复.中国环境科学,2008,28(7):646-650
    杨长明,杨林章,颜廷梅,欧阳竹.不同养分和水分管理模式对水稻土质量的影响及其综合评价.生态学报.2004,24(1):63-70
    杨秀清.Rhodococcus sp.R04多氯联苯降解基因及关键酶性质的研究.北京.中国科学院博士学位论文,2006
    杨娟,王昌全,李冰,李焕秀,何鑫.基于BP神经网络的城市边缘带土壤重金属污染预测-以成都平原土壤Cd为例.土壤学报,2007,44(3):430-435
    殷培杰,李培军.生态修复过程中的若干问题-以POPs污染土壤为例.生态学报,2007,27(2):784-792
    臧振远,赵毅,尉黎.北京市某废弃化工厂的人类健康风险评价.生态毒理学报,2008,3(1):50-53
    张聪恺.土壤中多氯联苯对蚯蚓的生物有效性评价方法研究.浙江大学硕士学位论文,杭州,2009
    张水铭.六六六在土壤中的持留与降解.土壤学报,1988,25:82-88
    张文娟,沈德中,张从.堆制处理过程中的多环芳烃降解.应用与环境生物学报,1999,5(6):605-609
    张瑜,吴以中,宗良纲,冯霞.POPs污染场地土壤健康风险评价,环境科学与技术,2008,7:35-140
    张瑜.POPs污染场地土壤健康风险评价与修复技术筛选研究.南京农业大学硕士学位论文.南京,2008
    赵洪阳.土壤地下水污染现场健康风险评价技术对比研究.清华大学硕士学位论文.北京,2008
    赵肖,周培疆.污水灌溉土壤中As暴露的健康风险研究.农业环境科学学报,2004,23(5):926-929
    浙江省土壤普查办公室.浙江土壤.杭州:浙江科学技术出版社,1994
    中国环境保护部.《全国土壤污染状况评价技术规定》(环发[2008]39号)
    中国科学院南京土壤研究所土壤物理研究室.土壤物理性质测定法.北京:科学出版社,1978
    中国营养学会网站,http://www.cnsoc.org/cn/
    中华人民共和国土壤环境质量标准,GB15618-1995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700