用户名: 密码: 验证码:
城市生活污泥的蚯蚓堆肥特性及其对植物生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市生活污泥的管理已成为一个世界性的难题。传统的污泥处置方法包括土地填埋、焚烧和农业利用等。近年来,许多国家包括我国颁布了一系列法规禁止土地填埋,原因是土地填埋浪费土地;填埋场容易产生渗滤液污染;污泥焚烧过程中消耗了大量能源并能导致空气污染。因此,污泥处置的最有效方法是土地利用。然而,污泥不加任何处置农用将对土壤及其微生物产生不利影响,进而影响植物的生长。所以污泥农用前有必要进行稳定化处理。蚯蚓在陆地生态系统中占有非常重要的地位,可以利用蚯蚓进行污泥的稳定化处理。利用蚯蚓处理污泥通常称为蚯蚓堆肥,蚯蚓堆肥是基于蚯蚓和其中微生物的共同作用,使污泥中的营养物质生成更利于植物吸收的形态。
     本文通过利用大平2号蚯蚓(即赤子爱胜蚓Eisenia faetida)处理污泥,研究蚯蚓对污泥理化性质、营养成分、酶活性、重金属及其形态的影响,同时进行淋溶试验,研究污泥和蚓粪施用土壤后其营养物质及重金属在不同土壤的垂直分布。利用盆栽试验,研究不同比例污泥蚓粪施用后植物酶、叶绿素等植物生理特性的变化,探讨污泥蚓粪对植物重金属积累的影响,揭示各种变化规律,分析其形成机理。研究蚓粪作为育苗基质对辣椒幼苗生长的影响。主要研究结果如下:
     蚯蚓处理使污泥的pH值、有机质、总氮和电导率等都有不同程度的降低。污泥经蚯蚓处理后,NH4+-N和N03--N的含量有一个消长的过程,N03--N的含量随处理时间的延长而上升,NH4+-N随处理时间的延长而下降,两者随后趋于稳定;污泥经蚯蚓处理后TP总体呈下降趋势,而速效P则总体呈上升趋势;速效钾含量的变化是先上升而后下降。
     污泥经蚯蚓处理后,相关酶的活性发生了较大的变化,污泥酸性和碱性磷酸酶活性先升高而后下降,中性磷酸酶的活性则持续下降;污泥脲酶的活性先升高后下降;蛋白酶和蔗糖酶的活性则持续下降。总体来说,所研究的四种酶随着时间的延长酶的活性有下降的趋势,其中污泥蛋白酶的活性下降最为显著,其他相对较小
     蚯蚓能吸收富集污泥中的重金属,其中对重金属Cd有较强的富集能力;蚯蚓对Cd的生物富集系数高于其他重金属。蚯蚓处理使污泥中重金属的量均出现不同程度的下降,重金属Cr、Zn、Pb、Cd、Cu、Ni分别减少28.0%、31.5%、32.8%、13.9%、23.9%和22.9%。目前的研究表明,蚯蚓能改变污泥中重金属的生物有效性。除了重金属Pb,其他重金属生物有效性最高的形态(交换态重金属)经蚯蚓处理后占整个重金属形态的比例显著下降,Cr存在较高的残渣态和氧化态比例,表明重金属Cr生物有效性较低。因此,蚯蚓堆肥是污泥重金属修复的一种可行方法。
     和对照相比,污泥经蚯蚓处理后,水溶性有机物的含量和小分子有机物的比例增加,小分子物质含量增加12%。红外光谱和荧光光谱的结果表明:污泥经蚯蚓处理后,水溶性有机物中羧基和多糖类物质增加,产生了更多的结构稳定的芳香族类物质,产生了少量的蛋白质类物质。同时发现,蚯蚓的处理使污泥水溶性有机物不饱和结构的多聚化或联合程度变小,水溶性有机物的结构变得更加简单,形成了更多的小分子有机物。试验结果说明DOM的存在能明显抑制土壤对重金属Pb的吸附;根据不同处理的1/n和k的大小关系,发现随着DOM浓度的升高,DOM抑制土壤吸附重金属的能力增强;另外,在DOM浓度相同的情况下,源自蚯蚓处理后污泥(蚓粪)的DOM更能抑制土壤对重金属Pb的吸附。
     污泥和蚓粪在淋溶作用下,不同的土壤硝态氮的含量均有不同程度的增加,其中蚓粪的淋溶作用增加的更为显著;酸性土最易导致N03--N的淋溶。污泥经过淋溶作用,所有的土壤从上至下均表现为NH4+-N含量下降;对于蚓粪来说,酸性土表现为从上至下NH4+-N含量下降,而中性土和碱性土中层NH4+-N含量稍高。总体来看,污泥施用的淋溶土层中NH4+-N的含量远远高于蚓粪处理,无论污泥还是蚓粪,NH4+-N的累积淋溶量从大到小均为:酸性土>中性土>碱性土。污泥施入土壤后NH4+-N的淋溶水平高于蚓粪施用。经过淋溶作用,所有处理土壤磷的含量升高,且所有土壤上层磷的含量均高于中层和下层。无论污泥还是蚓粪,磷的累积淋溶量从大到小均为:酸性土<中性土<碱性土。在雨水的淋溶作用下,土壤各层的Cd含量差别不大,且均高于淋溶前各自土壤Cd的含量。其他重金属Pb和Cr在土壤各层的分布没有规律,但淋溶后土壤重金属含量高于淋溶前。
     施用污泥和蚓粪,都能使植物体内叶绿素的总含量增加。相同比例下,蚓粪的施用使叶绿素的含量增加更为显著。污泥和蚓粪的施用随着比例的增加过氧化物酶的活性呈下降趋势,和对照相比,除了10%的污泥和10%的蚓粪处理过氧化物酶的活性稍有增加外,其他处理过氧化物酶的活性均有不同程度的下降。施用污泥和蚓粪后,生菜体内硝态氮的含量大幅度增加,蚓粪施入后,生菜体内硝态氮含量低于污泥处理中生菜硝态氮含量;生菜体内硝态氮的含量在20%的污泥或蚓粪处理均低于其他处理(10%和30%污泥蚓粪处理)。重金属在生菜体内的含量从大到小依次为:Zn>Cu>Pb>Ni>Cr>Cd;不同比例的污泥和蚓粪施用对生菜吸收积累重金属的影响是不相同的,污泥和蚓粪的施用将对植物的生物富集系数产生影响,污泥和蚓粪的比例为20%左右时能有效提高大多数重金属的生物富集系数。
     蚓粪复合基质各处理促进辣椒幼苗成长的效果不同程度优于对照市售基质。污泥蚓粪与蛭石按8:1的体积比混合后作为辣椒育苗基质,其对幼苗生长促进效果显著好于其他配比处理及对照市售基质。
Management of sewage sludge has become a worldwide problem. The traditional method of sludge disposal, including landfill, incineration and agricultural use and so on. Recently, many countries including China have developed a series of regulations to forbid the land filling practices due to land consumption and landfilling leachate pollution. Incineration can cause air pollution due to emissions and requires high energy. Therefore, the most effective way of sludge disposal is land use. However, land use without any disposal will adversely affect the soil and its microorganisms, thereby affecting plant growth. It is necessary for sewage sludge to undergo an additional stabilization treatment. Earthworms in terrestrial ecosystems plays a very important position to the stability of the sludge by the earthworm treatment. The use of earthworm in sludge management has been termed as vermistabilization. Vermicomposting is a decomposition process involving interactions between earthworms and microorganisms. During vermicomposting process, important plant nutrients are much more soluble and available to plants than those in the primary sewage sludge.
     In this paper, investigations were made to explore the effect on sludge physicochemical properties, nutrient content, enzyme activity, heavy metal and its forms after treatment by earthworms (ie, earthworm Eisenia faetida). while the leaching and pot experiments, of sludge and vermicompost applied after the soil nutrients and heavy metals in the soil of the vertical distribution of different proportions after applying sewage sludge vermicompost plant enzymes, chlorophyll and other plant physiological characteristics of the changes of sludge vermicompost on plant accumulation of heavy metals the impact of the changes revealed law of its formation mechanism. Effects of vermicompost substrate on capsicum seedlings was also studied. The main results are as follows:
     The parameters such as pH, organic carbon, Kjeldahl nitrogen and conductivity decreased after vermicomposting. The contents of NO3--N increased with the time after vermicomposting, while the contents of NH4+-N decreased, both then stabilized. On the whole, TP decreased after vermicomposting, while the available P increased. Potassium change was first increased and then decreased.
     The results showed that the activities of sludge enzyme had much change after treated by earthworms. The activities of acidic phosphatase and alkaline phosphatase increased in the early stage of vermicomposting whereas decreased in the late stage, while the activity of neutral phosphatase kept decrease in the whole stage. The other enzyme activities in sewage sludge had also changed after vermicomposting. The activities of urease increased in the early stage of vermicomposting process whereas decreased in the late stage, while the activity of protease and invertase kept decrease in the whole stage. As a whole, with time, the activities of these enzyme decreased as organic matter contents decreased. A significant decrease of the activity of protease was observed as compared to the other enzyme.
     The final result indicated the total concentration of heavy metals decreased after vermicomposting. It shows that Cd could be strongly accumulated by earthworm Eisenia faetida. Earthworms can accumulate heavy metals of sewage sludge. The bio-concentration factor of Cd in earthworm was higher than other heavy metals. The reduction in metal content (as compared to initial level) was in the order:32.8%(Pb)>31.5%(Zn)>28.0%(Cr)>23.9%(Cu)>22.9%(Ni)>13.9%(Cd). It is clear that heavy metal loss was caused by the presence of earthworms. The present study showed earthworms can change the bioavailability of heavy metals in sewage sludge. In most of the heavy metals except Pb, the most bioavailable fraction (exchangeable metal) have a significant decrease in the proportion of heavy metal fractions after vermicomposting. Hence, on the basis of present study, vermicomposting may be an appropriate technology for heavy metal remediation from municipal sewage sludge.
     It was found that the content and low molecular size fraction of DOM in sewage sludge increased after vermicomposting, and the fraction of relative low molecular weight in DOM increased by12%. The FT-IR and fluorescence spectra showed that after vermicomposting, the contents of carboxyl, polysaccharide and aromatic compounds in DOM increased. Furthermore, a few protein-like matter was found in DOM after vermicomposting. The changes in FT-IR and fluorescence spectra for DOM indicated that polycondensation and conjugation unsaturated structures decreased after vermicomposting, and simple organic molecular fraction increased.
     Under the leaching of sewage sludge, the content of nitrate in different soils were increased in varying degrees, the same as the casts. The application of casts increased more significantly than the application of sewage sludge. The leaching of NO3--N was most likely to result in acid soil. Sludge after leaching, the soil from top to bottom are all expressed as NH4+-N content decreased; for vermicompost, the acid soil from top to bottom performance of NH4+-N content decreased, while NH4+-N contents in middle of the neutral and alkaline were higher than in top and bottom. Overall, the leaching of sludge application in soil NH4+-N content was much higher than the vermicompost treatment, regardless of the sludge or vermicompost, NH4+-N leaching amounts of accumulation are descending:acid soil> neutral soil> alkaline soil. Sludge applied to soil after the leaching of NH4+-N was higher than that of vermicompost application. After leaching, all the phosphorus content of soil increased, and the content of phosphorus in the upper horizons in all the soil was greater than in middle and lower horizons. Whether sludge or cast, the cumulative leaching of phosphorus are descending:acid soil     Sewage sludge and vermicompost amended soil, can make the total chlorophyll increased. Under the same proportion, the application of vermicompost increased the chlorophyll content more significant. Peroxidase activity decreased with the proportion of sludge and vermicompost. Comparing the peroxidase activity in the control, it was increased slightly in10%of the sludge and10%vermicompost amended soil, while decreased in varying degrees in other proportion. Application of sewage sludge and vermicompost caused the nitrate content of lettuce increased significantly.The lettuce nitrate content in vermicompost treatment is lower than in sludge treatment. Nitrate content in the20%of the sludge or vermicompost treatments than other treatments. Content of heavy metal in lettuce was in the order:Zn> Cu> Pb> Ni> Cr> Cd. The heavy metal content can affect heavy metals uptake and accumulation of lettuce. The bio-concentration factors for heavy metals were different in the sludge or vermicompost treatments. The application of sludge and vermicompost about20%proportion would improve the BCF of most heavy metals.
     Vermicompost mixed with vermiculite (8:1, v:v) could be used as substrate in nursery bed to raise capsicum seedlings and its promotive effect on seedling growth was better than the commercial substrate which is usually made from chicken feces and peat.
引文
Aggelides S M, Londra P A. Effect of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil [J]. Bioresource Technology,2000,71:253-259.
    Aira M, Monroy F, Dominguez J, et al. How earthworm density affects microbial biomass and activity in pig manure [J]. European Journal of Soil Biology,2002,38:7-10.
    Arancon N Q, Edwards C A, Bierman P, et al. Influences of vermicomposts on field strawberries: Effects on growth andyields [J]. Bioresource Technology,2004,93, (2):145-153.
    Arancon N Q, Edwards C A, Yardim F. et al. Management of plant parasitic nematodes by use of vermicomposts [J]. Proceedings of Brighton Crop Protection Conference Pests and Diseases,2002, 2:705-710.
    Arancon N Q, Edwards C. A, Bierman P. Influences of vermicomposts on field strawberries:Part 2.Effects on soil microbiological and chemical properties [J]. Bioresource Technology,2006, 97:831-840.
    Atiyeh R M, Arancon N Q, Edeards C A, et al. The influence of earthworm processed pig manure on the growth and productivity of marigolds [J]. Bioresource Tecnology,2002,81:103-108.
    Atiyeh R M, Edwards C A, Subler S. Pig manure vermicompost as a component of a horticultural bedding plant medium:effects on physicochemical properties and plant growth [J]. Bioresource Tecnology,2001,78:11-19.
    Atiyeh R, Lee S, Edwards C A, et al. The influence of humic acids derived from earthworm-rocessed organic wastes on plant growth [J]. Bioresource Technology,2002,84:7-14.
    Ayusho M, Pascual J A, Garcia C, et al. Evaluation of urbanwastes for agricultural use [J]. Soil Science & Plant Nutrition,1996,42:105-111.
    Bachman G R, Metzger J D. Growth of bedding plants in commercial potting substrate amended with vermicompost [J]. Bioresource Technology,2008,99(8):3155-3161.
    Barrington S, Choiniere D, Trigui M. Effect of carbon source on compost nitrogen and carbon losses [J]. Bioresource Technology,2002,83(3):189-194.
    Benitez E, Romero M, GomezM, et al. Biosolid and biosolid ash as sources of heavy metals in plant-soil system[J]. Water, Air,& Soil Pollution,2001,132.
    Butt K. R. Utilization of solid paper mill sludge and spent brewery yeast as a feed for soil-dwelling earthworms [J]. Bioresource Technology,1993,44,105-107.
    Cantanazaro C J, Williams K A, Sauve R J. Slow release versus water soluble fertilization affects nutrient leaching and growth of potted chrysanthemum [J]. Journal of Plant Nutrition,1998, 21:1025-36.
    Chaoui H I, Zibilske L M, Ohno T. Effects of earthworm casts and compost on soil microbial activity and plant nutrient availability [J]. Soil Biology and Biochemistry,2003;35:295-302.
    Cogger C G, Bary A I, Fransen S C, et al. Seven years of biosolids versus inorganic nitrogen applications to tall fescue [J]. Journal of Environmental Quality,2001,30:2188-2194.
    Cox D A. Reducing nitrogen leaching-losses from containerized plant:the effectiveness of controlled release fertilizers [J]. Journal of Plant Nutrition,1993;16:533-45.
    Duvaud E, Mugnier E, Gazzo A, et al. Situation du recyclage agricole des boues d'e'puration urbaines en Europe et dans divers autres pays du monde. ADEME Editions, Paris, France.1999,134.
    Edwards C A, Bohlen P J. Biology and ecology of earthworm, third ed. Chapman and Hall, New York, London.1996.
    Edwards C A, Dominguez J, Neuhauser E F. Growth and reproduction of Perionyx excavatus (Perr.) (Megascolecidae) as factors in organic waste management [J]. Biology and Fertility of Soils,1998,27: 155-161.
    Edwards C A, Norman, Q A. Vermicomposts suppress plant pest and disease attacks[J]. Pro Quest Agriculture Journals,2004,45 (3):51-54.
    Edwards C A. Breakdown of animal, vegetable and industrial organic wastes by earthworms. In: Edwards, C.A., Neuhauser, E.F. (Eds.), Earthworms in Waste and Environmental Management. SPB Academic Publishing, The Hague,1988,21-31.
    Elvira C, Sampedro L, Benitez E, et al. Vermicomposting of sludge from paper mill and dairy industries with Eisenia andrei:a pilot scale study [J]. Bioresource Technology,1998,64:205-211.
    Fernandez-Luqueno F, Reyes-Varela V, Martinez-Suarez C, et al. Effect of different nitrogen sources on plant characteristics and yield of common bean (Phaseolus vulgaris L.) [J]. Bioresource Technology, 2010,101 (1):396-403.
    Fisher E, Molnar L. Environmental aspects of the chloragogenous tissue of earthworms [J]. Soil Biology and Biochemistry,1992,24:1723-1727.
    Gutierrez-Miceli F A, Garcia-Gomez R C, Rosales R R, et al. Formulation of a liquid fertilizer for sorghum (Sorghum bicolor (L.) Moench) using vermicompost leachate [J]. Bioresource Technology, 2008,99 (14):6174-6180.
    Hand P, Hayes W A, Frankland J C, et al. The vermicomposting of cow slurry. In:Earthworms in Waste and Environmental Management,1988,49-63.
    Harris R C, Knox K, Walker N. Strategies for the development of sustainable land fill design. In:IWM Proceeding,1990,26-29.
    Hartenstein R, Hartenstein F. Physico-chemical changes affected in activated sludge by the earthworm Eisenia foetida [J]. Journal of Environmental Quality,1981,10(3):377-382.
    Hartenstein R. The most important problem in sludge management as seen by a biologist[M] //Hartenstein R. Utilization ofSoilOrganisms in Sludge Management. Springfield, Virginia:Nat.l Tech. In.f Serv.,1978:2-8.
    Ismail S A. Organic waste management. In:Technology Appreciation Programme on Evaluation of Biotechnological Approaches to Waste Management held on 26th October 2000. Industrial Association-ship of IIT, Madras,2000,28-30.
    Kale R D. Earthworms:nature's gift for utilization of organic wastes. In:Edwards CA, editor. Earthworm ecology, soil and water conservation society. New York:Ankeny, Lowa St. Lucie press; 1998,355-73.
    Kaushik P, Garg V K. Dynamics of biological and chemical parameters during vermicomposting of solid textile mill sludge mixed with cow dung and agricultural residues[J]. Bioresource Technology,2004, 94:203-209.
    Kaushik P, Garg V K. Vermicomposting of mixed solid textile mill sludge and cow dung with the epigeic earthworm Eisenia fetida [J]. Bioresource Technology,2003,90:311-316.
    Kwon Y T, Lee C W, Yun J H. Development of vermicast from sludge and powdered oyster shell[J]. Journal of Cleaner Production,2009,17:708-711.
    Logsdson G. Worldwide progress in vermicomposting [J]. Biocycle,1994,35:63-65.
    Lorimor J, Fulhage C, Zhang R, et al. Manure management strategies/technologies', white paper on animal agriculture and the environment for national center for manure and animal waste management. Ames, IA:MWPS; 2001,52.
    McGrath S P, Chang A C, Page A L, et al. Land application of sewage sludge:scientific perspectives of heavy metal loading limits in Europe and the United States[J]. Environmental Reviews,1994, 2:108-118.
    Ndegwa P M, Thompson S A, Das K C. Effects of stocking density and feeding rate on vermicomposting of biosolids [J]. Bioresource Technology,2000,71:5-12.
    Ndegwa P M, Thompson S A. Integrating composting and vermicomposting the treatment and bioconversion of biosolids [J]. Bioresource Technology,2001,76:107-112.
    Neuhauser E F, Cukic Z V, Malecki M R, et al. Bioconcentration and biokinetics of heavy metals in the earthworm [J]. Environmental Pollutionl,1995,89:292-301.
    Neuhauser E F, Loehr R C, Malecki M R. The potential of earthworms for managing sewage sludge[M]. In:Edwards, C.A., Neuhauser, E.F. (Eds.), Earthworms in Waste and Environmental Management. SPB Academic Publishing, The Hague,1988,9-20.
    Nogales R, Cifuentes C, Benitez E. Vermicomposting of winery wastes:a laboratory study[J]. Journal of Environmental Science and Health, Part B,2005,40:659-673.
    Raymond C L, Martein J H, Neuhauser E F. Stabilization of liquid municipal sludge using earthworms. In:Earthworms in Waste and in Environment Management [M]. SPB Academic Publishing, The Netherlands,1988,95-110.
    Reed B E, Carriere P E, Matsumoto M R. Applying sludge on agricultural land [J], Biocycle,1991,37: 58-60.
    Reinecke A J, Viljoen S A., SaaymanR J. The suitability of Eudrilus eugeniae, Perionyx excavatus and Eisenia fetida (Oligochaeta) for vermicomposting in southern Africa in terms of their temperature requirements [J]. Soil Biology and Biochemistry,1992,24:1295-1307.
    Schnaak W, Kuchler Th, Kujawa M, et al. Organic contaminants in sewage sludge and their ecotoxicological significance in the agricultural utilization of sewage sludge[J]. Chemosphere,1997, 35:5-11.
    Selivanovskaya S Y, Latypova V Z, Kiyamova S N, et al. Use of microbial parameters to access treatment methods of municipal sewage sludge applied to grey forest soils of Tatarstan [J]. Agriculture, ecosystems & environment,2001,86:145-153.
    Singh R, Gupta R, Patil R T, et al. Sequential foliar application of vermicompost leachates improves marketable fruit yield and quality of strawberry (Fragaria×ananassa Duch.) [J]. Scientia Horticulturae,2010,124, (1):34-39.
    Snyman H G, De Jong J M, Aveling T A S. The stabilization of sewage sludge applied to agricultural land and the effects of maize seedlings [J]. Water Science and Technology,1998,38(2):87-95.
    Spinosa L, Vesilind P A. Sludge into Biosolids. Processing, Disposal and Utilization. Alliance House[M]. IWA Publishing, London, United Kingdom,2001,394.
    Suthar S. Vermicomposting potential of Perionyx sansibaricus (Perrier) in different waste materials [J]. Bioresource Technology,2007,97:2474-2477.
    USAEPA. Land application of sewage sludge -a guide for land appliers on the requirements of the federal standards for the use or disposal of sewage sludge,40CFR Part 503.EPA/831-B-93-002b. Office for Enforcemnent and Compliance Assurance.1994, Washington.DC
    USEPA. Biosolids Generation, Use, and Disposal in the United States.United States Environmental Protection Agency, Solid Waste and Emergency Response. EPA530-R-99-009, Washington, D.C., 1999,74.
    Van Voorneburg F, van Veen H. Treatment and disposal of municipal sludge in the Netherlands [J]. Water and Environment Journal,1993,116-121.
    White C S, Loftin S R, Aguilar R. Application of biosolid to degraded semiarid rangeland:nine-year responses[J]. Journal of Environmental Quality,1997,26:1663-1671.
    Wong J W C, Fang M, Su D C. Toxicity evaluation of sewage sludge in Hong Kong [J]. Environment International,2001,27:373-380.
    Zheng G D, Chen T B, Gao D, et al. Dynamic of lead speciation in sewage sludge composting [J]. Water Scienc and Technology,2004,50:75-82.
    毕振明,高忠爱等编.固体废物处理与处置[M].北京:中国环境科学出版社,1998.
    陈涛,王新,梁仁禄,等.污泥草地利用的初步研究[J].应用生态学报,2002,13(4):463-466
    陈同斌,高定,李新波.城市污泥堆肥对栽培基质保水能力和有效养分的影响[J].生态学报,2002,22(6):802-807
    陈祖建,汤良恕,利用低等动物处理农副产品废弃物的研究[J].农业环境保护,1993,12(6):276-277,257.
    郭眉兰.城市污泥和污泥与垃圾堆肥的农田施用对土壤性质的影响[J].农业环境保护,1994,13(5):204-209.
    杭世珺,陈吉宁.污泥处理处置的认识误区与控制对策[A].2004年国际污泥无害化处理先进技术[C].北京,2004:1-5.
    胡秀仁,方田,李国鼎,蚯蚓处理垃圾的试验研究[J].农村生态环境,1991(4):44-49.
    蒋成爱,黄国锋,吴启堂.城市污水污泥处理利用研究进展[J].农业环境与发展,1999,59(1):13-17.
    李宝贵,杜霞.城市污水污泥在森林与园林绿地的利用与展望[J].环境保护,2001,12:37-38.
    李贵宝,尹澄清,单保庆.我国森林与园林绿地污泥的利用及其展望[J].北京林业大学学报,2001,23(4):71-74.
    罗军勇,崔宽心.利用污泥制作园林绿化及农业用肥[J].西北园艺,2000,5:31-32.
    莫测辉,蔡全英,吴启堂等.城市污泥中有机污染物的研究进展[J].农业环境保护,200120(4):273-276.
    欧阳喜辉,崔晶,终庆.长期施用污泥对农田土壤和农作物影响的研究[J].农业环境保护,1994,13(6):271-274.
    乔显亮,骆永明,吴胜春.污泥的土地利用及其环境影响[J].土壤,2000(2):79-85.
    宋敬阳.城市污水污泥的农田施用[J].国外环境科学技术,1983,2:36-39.
    王静,卢宗文,田顺,等.国内外污泥研究现状及进展[J].市政技术,2006,24(3):140-142.
    王凯军,贾立敏.城市污水生物处理新技术开发与应用[M].2001,北京:化学工业出版社
    薛东森.美国污水污泥的研究和利用概况[J].国外农业环境保护,1991,1:31-33.
    杨珍基等.利用虹蝴处理城市有机废物及其肥效的研究[J].农业环境保护,1983,1:8-11.
    姚刚.德国的污泥利用和处置(Ⅱ)续[J].城市环境与城市生态,2000,13(2):24-26.
    尹军,陈雷,王鹤立.城市污水的资源化再生及热能回收利用[M].2003,北京:化学工业出版社.
    岳清泉,蚯蚓处理固体废弃物的试验报告.全国虹酬养殖与综合利用学术讨论会,陕西咸阳,1983,1-10.
    张自杰,周凡.活性污泥生物与反应动力学[M].北京:中国环境科学出版社,1989.
    中华人民共和国环境保护部.全国环境统计公报(2007年)[EB/OL].http://www.xhb.gov.cn/plan, 2008-9-24.
    周立祥,胡霭堂,戈乃扮,等.城市污泥土地利用研究[J].生态学报,1999,19(2):185-193.
    周立祥,胡霭堂,戈乃扮.城市生活污泥农田利用对土壤肥力形状的影响[J].土壤通报,1994,25(3):126-129.
    周立祥,胡霭堂,胡忠明.厌气消化脱水污泥化学组成及其环境化学性质[J].植物营养与肥料学报,1997,3(2):176-181.
    周立祥,沈其荣,陈同斌,等.重金属及养分元素在城市污泥主要组分中的分配及其化学形态[J].环境科学学报,2000,20(3):269-274.
    Ayusho M, Pascual J A, Garcia C, et al. Evaluation of urbanwastes for agricultural use [J]. Soil Science & Plant Nutrition,1996,42:105-111.
    Bansal S, Kapoor K K. Vermicomposting of crop residue and cattle dung with Eisenia foetida [J]. Bioresource Technology,2000,73:95-98.
    Blair J M, Parmelee R W, Lavelle P. Influences of earthworms on biogeochemistry. In:P.F. Hendrix, Eds, Earthworm Ecology and Biogeography in North America, Lewis, Boca Raton, FL,1995, 127-158.
    Burtelow A E, Bohlen P J, Groffman P M. Influence of exotic earthworm invasion on soil organic matter, microbial biomass and denitrification potential in forest soils of the northeastern United States [J]. Applied Soil Ecology,1998,9:197-202.
    Butenschoena O, Marhanb S, Langelc R, et al. Carbon and nitrogen mobilisation by earthworms of different functional groups as affected by soil sand content[J]. Pedobiologia,2009,52:263-272.
    Christienne N K, Erick C M F, Johannes L, et al. Inorganic and organic phosphorus pools in earthworm casts (Glossoscolecidae) and a Brazilian rain forest Oxisol [J]. Soil Biology & Biochemistry,2006, 38:553-560.
    Crona S, Laura K, John C, et al. The effects of earthworm functional group diversity on nitrogen dynamics in soils [J]. Soil Biology & Biochemistry,2006,38:2629-2636.
    Elvira C, Sampedro L, Benitez E, et al. Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei:a pilot scale study[J]. Bioresource Technology,1998,63:205-211.
    Haimi J. Huhta V. Effects of earthworms on decomposition processes in raw humus forest soil:A microcosm study [J]. Biology and Fertility of Soils,1990,10:178-183.
    James S W. Soil, organic matter, nitrogen, and phosphorus processing by native and introduced earthworm species in tallgrass prairie [J]. Ecology,1991,72:2101-2109
    Juan J J, Alex C, Thibaud D, Astrid O, et al. Phosphorus fractions and dynamics in surface earthworm casts under native and improved grasslands in a Colombian savanna Oxisol [J]. Soil Biology & Biochemistry,2003,35:715-727.
    Kaushik P, Garge V K. Vermicomposting of mixed solid textile mill sluge and cow dung with the epigeic earthworm Eisenia foetida [J]. Bioresource Technology,2003,90:311-316.
    Khwairakpam M, Bhargava R. Vermitechnology for sewage sludge recycling [J]. Journal of Hazardous Materials,2009,161:948-954.
    Le Bayon R C, Binet F. Earthworms change the distribution and availability of phosphorous in organic substrates [J]. Soil Biology and Biochemistry,2006,38:235-246.
    Lopez-Hernandez D, Lavelle P, Fardeau J C, et al. Phosphorous transformations in two P-sorption contrasting tropical soils during transit through Pontoscolex corethrurus (Glossoscolecidae: Oligochaeta) [J]. Soil Biology & Biochemistry,1993,25:789-792.
    Meena Khwairakpam, Renu Bhargava. Vermitechnology for sewage sludge recycling[J]. Journal of Hazardous Materials,2009,161:948-954.
    Mitchell. Production of Eisenia foetida and vermicompost fromfeedlot cattle manure[J]. Soil Biology & Biochemistry,1997,29:763-766.
    Ndegwa P M, Thompson S A, Das K C. Effects of stocking density and feeding rate on vermicomposting of biosolids [J]. Bioresource Technology,2000,71:5-12.
    Neuhauser E F, Cukic Z V, Malecki M R, et al. Bioconcentration and biokinetics of heavy metals in the earthworm [J]. Environmental Pollution,1995,89:292-301.
    Parkin T B, Berry E C. Microbial nitrogen transformations in earthworm burrows[J]. Soil Biology & Biochemistry,1999,31:1765-1771.
    Parkin T B, Berry E C. Microbial nitrogen transformations in earthworm burrows[J]. Soil Biology & Biochemistry,1999,31:1765-1771.
    Rhoades J D, Chanduvi F, Lesch S. Soil salinity assessment. FAO Irrigation and Drainage Papers,1999, 57:3-7.
    Scheu S. Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae) [J]. Biology and Fertility of Soils,1987,5:230-234.
    Sheehan C, Kirwan L, Connolly J, et al. The effects of earthworm functional group diversity on nitrogen dynamics in soils [J]. Soil Biology & Biochemistry,2006,38:2629-2636.
    Spinosa L, Vesilind P A. Sludge into biosolids, in:Processing, Disposal, Utilization [M]. IWA Publishing, London, UK.2001.
    Suthar S. Nutrient changes and biodynamics of epigeic earthworm Perionyx excavatus (Perrier) during recycling of some agriculture wastes [J]. Bioresource Technology,2007,98:1608-1614.
    Suthar S. Vermistabilization of municipal sewage sludge amended with sugarcane trash using epigeic Eisenia fetida (Oligochaeta) [J]. Journal of Hazardous Materials,2009,163:199-206.
    Whalen J K, Parmelee R W, Subler S. Quantification of nitrogen excretion rates for three lumbricid earthworms using 15N [J]. Biology and Fertility of Soils,2000,32:347-352.
    Zheng G D, Chen T B, Gao D, et al. Dynamic of lead speciation in sewage sludge composting [J]. Water Science and Technology,2004,50:75-82.
    孙宇瑞.土壤含水率和盐分对土壤电导率的影响[J].中国农业科学学报,2000,5(4):3941.
    Ayusho M, Pascual J A, Garcia C, et al. Evaluation of urbanwastes for agricultural use [J]. Soil Science & Plant Nutrition,1996,42:105-111.
    Bonmati M, Ceccanti B, Nanniperi P. Spatial variability of phosphatase, urease, protease, organic carbon and total nitrogen in soil[J]. Soil Biology and Biochemistry,1991,23(4):391-396.
    De La Paz J M, De Ln Horrn A M, Pruzzo L, et al. Soil quality:a new index based on microbiological and biochemical parameters [J].Biology and Fertility of Soils,2002,35:302-306.
    Edwards C A, Bohlen P J. Biology and ecology of earthworm, third ed. Chapman and Hall, New York, London.1996.
    Edwards C A, Dominguez J, Neuhauser E F. Growth and reproduction of Perionyx excavatus (Perr.) (Megascolecidae) as factors in organic waste management [J]. Biology and Fertility of Soils,1998, 27:155-161.
    Edwards C A. Breakdown of animal, vegetable and industrial organic wastes by earthworms. In: Edwards, C.A., Neuhauser, E.F. (Eds.), Earthworms in Waste and Environmental Management. SPB Academic Publishing, The Hague,1988,21-31.
    Ka Mimura Y, Hayano K. Properties of protease extracted from tea-field soil [J]. Biology and Fertility of Soils,2000,30:351-355.
    Le Bayon R.C, Binet F. Earthworms change the distribution and availability of phosphorous in organic substrates [J]. Soil Biology & Biochemistry,2006,38:235-246.
    Mishra S, Di H J, Cameron K C, et al. Gross nitrogen mineralisation rates in pastural soils and their relation-ships with organic nitrogen fractions, microbial biomass and protease activity under glasshouse conditions [J]. Biology and Fertility of Soils,2005,42:45-53.
    Parthasarathi K, Ranganathan L S. Longevity of microbial and enzyme activity and their influence on NPK content in pressmud vermicasts [J]. European Journal of Soil Biology,1999,35(3):107-113.
    Spinosa L, Vesilind P A.. Sludge into biosolids, in:Processing, Disposal, Utilization. IWA Publishing, London, UK.2001.
    Watanabe K, Hayano K. Seasonal variation of soil protease activities and their relation to proteolytic bacteria and bacillus spp in paddy field soil [J]. Soil Biology and Biochemistry,1995,27(2): 197-203.
    Zaman M, Di H J, Cameron K C, et al. Gross nitrogen mineralization and nitrification rates and their relationships to enzyme activities and the soil microbial biomass in soils treated with dairy shed effluent and ammonium fertilizer at different water potentials [J]. Biology and Fertility of Soils,1999, 29:178-186.
    蔡红,沈仁芳.改良茚三酮比色法测定土壤蛋白酶活性的研究[J].土壤学报,2005,42(2):306-313.
    曹承绵,李荣华,张志明,等.红壤的酶活性与土壤肥力[J].土壤通报,1986,17(7):15-19.
    关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:15-306.
    李永红,高玉葆.土壤中单嘧磺隆对谷子生长及土壤微生物若干生化功能的影响[J].农业环境科学学报,2004,23(4):633-637.
    张宝贵,李贵桐,孙钊,等.两种生态类型蚯蚓几种消化酶活性比较研究[J].生态学报,2001,21(6):978-981.
    中国科学院南京土壤研究所.土壤理化分析[M].上海科学技术出版社,1981:62-142.
    周礼恺.土壤酶学[M].北京:科学出版社,1987:129-274.
    Agnieszka K, Monika T, Anna R. Application of willows (Salix viminalis) and earthworms (Eisenia fetida) in sewage sludge treatment [J]. European Journal of Soil Biology,2007,43:S327-S331.
    Alonso E, Callejon M, Jimenez J C, Ternero M. Heavy metal extractable forms in sludge from wastewater treatment plants [J]. Chemosphere.2002,47:765-775.
    Ayusho M, Pascual J A, Garcia C, et al. Evaluation of urbanwastes for agricultural use [J]. Soil Science & Plant Nutrition,1996,42:105-111.
    Belfroid A, Van Den Berg M, et al. Uptake, bioavailability and elimination of hydrophobic compounds in earthworms (Eisenia andrei) in field-contaminated soil [J]. Environmental Toxicology & Chemistry,1995,14(4):605-612.
    Blais J F, Meuneir N, Sasseville J L, et al. Hybrid chemical and biological process for decontaminating sludge from municipal sewage. U.S. Patent No 6,2005,855,256 B2.
    Brown G G. How do earthworm affect microfloral and faunal community diversity? [J]. Plant and Soil, 1995,170(1):209-231.
    Calvet R, Bourgeois S, Msaky J J. Some experiments on extraction of heavy metals present in soil [J]. International Journal of Environmental Analytical Chemistry,1990,39:31-45.
    Chlopecka A. Assessment of form of Cd, Zn and Pb in contaminated calcareous and gleyed soils in southwest Poland [J]. Science of the Total Environment,1996,188:253-262.
    Dai J Y, Chen L, Zhao J F, et al. Characteristics of sewage sludge and distribution of heavy metal in plantswith amendment of sewage sludge [J]. Journal of Environmental Sciences. China.2006,18: 1094-1100.
    Devliegher W, Verstraete W. Lumbricus terrestris in a soil core experiment:effects of nutrient-enrichment processes (NEP) and gut-associated processed (GAP) on the availability of plant nutrients and heavy metals [J]. Soil biology and soil biochemistry,1996,28:489-496.
    Edwards C A, Bohlen P J. The Biology and Ecology of Earthworms (3rd Edition) [M]. Publ. Chapman & Hall, London,1996.
    Elvira C, Sampedro L, Benitez E, et al. Vermicomposting of sludges from paper mill and dairy industries with Eisenia andrei:a pilot scale study [J]. Bioresource Technology,1998,63:205-211.
    Filgueiras A V, Lavilla I, Bendicho C. Evaluation of distribution, mobility and binding behaviour of heavy metals in surficial sediments of Louro River (Galicia, Spain) using chemometric analysis:a case study [J]. Science of the Total Environment,2004,330:115-129.
    Fisher E, Molnar L. Environmental aspects of the chloragogenous tissue of earthworms [J]. Soil Biology and Biochemistry,1992,24:1723-1727.
    Gupta S K, Tewari A, Srivastava R, et al. Potential of Eisenia foetida for sustainable and efficient vermicomposting of fly ash [J]. Water, Air,& Soil Pollution,2005,163:293-302.
    Khwairakpam M, Bhargava R. Vermitechnology for sewage sludge recycling [J]. Journal of Hazardous Materials,2009,161:948-954.
    Liu X L, Hu C X, Zhang S Z. Effects of earthworm activity on fertility and heavy metal bioavailability in sewage sludge [J]. Environment International,2005,31:874-879.
    Loonen H, Muir D C G, Parson J R, et al. Bioaccumulation of polychlorinated dibenzo-p-dioxins in sediment by oligochaetes:Influence of exposure pathway and contact time [J]. Environmental Toxicology & Chemistry,1997,16:1518-1525.
    Ma Y, Dickinson N M, Wong M H. Toxicity of Pb/Zn mine tailings to the earthworm Pheretima and the effects of burrowing on metal availability [J]. Biology and Fertility of Soils,2002,36:79-86.
    Marin B, Valladon M, Polve M, et al. Reproducibility testing of a sequential extraction scheme for the determination of trace metal speciation in a marine reference sediment by inductively coupled plasma-mass spectrometry [J]. Analytica Chimica Acta,1997,342:91-112.
    McNicol R, Beckett P. The distribution of heavy metals between the principal components of digested sewage sludge [J]. Water Research,1989,23:199-208.
    Mitchell A. Production of Eisenia foetida and vermicompost fromfeedlot cattle manure [J]. Soil biology and soil biochemistry,1997,29:763-766.
    Ndegwa P M, Thompson S A, Das K C. Effects of stocking density and feeding rate on vermicomposting of biosolids [J]. Bioresource Technology,2000,71:5-12.
    Ndegwa P M, Thompson S A, Das K C. Effects of stocking density and feeding rate on vermicomposting of biosolids [J]. Bioresource Technology,2000,71:5-12.
    Neuhauser E F, Cukic Z V, Malecki M R, et al. Bioconcentration and biokinetics of heavy metals in the earthworm [J]. Environmental Pollution,1995,89:292-301.
    Petruzzelli G. Recycling wastes in agriculture:Heavy metal bioavailability [J]. Agriculture, Ecosystems & Environment,1989,27:493-503.
    Philipp E P, Rombke J, Meller T, et al. Bioaccumulation of lindane and hexachlorobenzene by tubificid sludgeworms (Oligochaeta) under standardised laboratory conditions [J]. Chemosphere,1997,35(4): 835-852.
    Ridvan K. Cu and Zn accumulation in earthworm Lumbricus terrestris L. in sewage sludge amended soil and fractions of Cu and Zn in casts and surrounding soil[J]. Ecological Engineering,2004,22: 141-151.
    Spinosa L, Vesilind P A. Sludge into biosolids, in:Processing, Disposal, Utilization. IWA Publishing, London, UK.2001.
    Suthar S, Singh S, Dhawan S. Earthworm as bioindicators of metals (Zn, Fe, Mn, Cu, Pb and Cd) in soils: is metal bioaccumulation affected by their ecological categories [J]. Ecological Engineering,2008, 32:99-107.
    Suthar S, Singh S. Feasibility of vermicomposting in biostabilization of sludge from a distillery industry [J]. Science of the Total Environment,2008,394:237-243.
    Suthar S. Nutrient changes and biodynamics of epigeic earthworm Perionyx excavatus (Perrier) during recycling of some agriculture wastes [J]. Bioresource Technology,2007,98:1608-1614.
    Suthar S. Vermicomposting potential of Perionyx sansibaricus (Perrier) in different waste materials [J]. Bioresource Technology,2007,97:2474-2477.
    Suthar S. Vermistabilization of municipal sewage sludge amended with sugarcane trash using epigeic Eisenia fetida (Oligochaeta) [J]. Journal of Hazardous Materials,2009,163:199-206.
    Ure A M, Davidson C M. Chemical Speciation in the Environment[M]. Blackwell Science, Oxford, Malden, MA.2001.
    Watanabe M E. Phytoremediation on the brink of commercialization [J]. Environmental Science & Technology,1997,31(1):182-186.
    邓继福,王振中,张友梅,等.重金属污染对土壤动物群落生态的影响研究[J].环境科学,1996,17(2):1-5.
    戈峰,刘向辉,江炳缜.蚯蚓对金属元素的富集作用分析[J].农业环境保护,2002,21(1):16-18.
    蒋廷惠,胡蔼堂,秦怀英.土壤中锌、铜、铁、锰的形态和有效性的关系[J].土壤通报,1989,20:228-232.
    刘小丽.蚯蚓处理对城市污泥肥效及重金属生物有效性的影响[D].武汉:华中农业大学,2003.
    中国科学院南京土壤研究所.土壤理化分析[M].上海科学技术出版社,1981:62-142.
    夏增禄等.北京东郊作物对重金属的吸附及其与重金属在土壤中含量和存在形态的关系[J].生态学报,1983,3(3):277-287.
    Becker R S. Theory and Interpretation of Fluorescence and Phosphorescence-Wiley-interscience [M]. New York,1969.
    Bellamy L J. The Infrared Spectra of Complex Molecules, third ed. Chapman and Hall, London.1975
    Darmody R G, Foss J E, McIntosh M, Wolf D C. Municipal sewage sludge compost-amended soils: some spatiotemporal treatment effects [J]. Journal of Environmental Quality,1983,12,231-236.
    Gu B, Schmitt J, Chen Z, et al. Adsorption and desorption of different organic matter fractions on iron oxide [J].Geochim.Cosmochim.Acta,1995,59:219-229.
    Guibanlt G G. Practical Fluorescenhce-Theory, Methods and Techniques[M]. Dekker, New York,1973.
    Han N Z, Thompson M L. Copper-binding ability of dissolved organic matter derived from anaerobically digested biosolids [J]. Journal of Environmental Quality,1999,28:939-944.
    Inbar Y, Chen Y, Hadar Y. Solid-state Carbon-13 Nuclearmagnetic resonance and infrared spectroscopy of composted organic matter [J]. Soil Science Society of America Journal,1989,53:1695-170.
    Wong J W C, Li K L, Zhou L X. Selvam A. The sorption of Cd and Zn by different soils in the presence of dissolve organic matter from sludge [J]. Geoderma,2007,137:310-317.
    Johnson W P, Amy G L. Facilitated transport and enhanced desorption of polycylie aromatic hydrocarbons by natural organic matter in aguifer sediments [J]. Environmental Science and Technology,1995,29:807-817.
    Kaiser K, Zech W. Competitive sorption of dissolved organic matter fractions to soils and related mineral phase [J]. Soil Science Society of America Journal,1997,61:64-64.
    Marinissen J C Y, Dexter A R. Mechanisms of stabilization of earthworm casts and artificial casts [J]. Biology and Fertility of Soils,1990,9:163-167.
    McBride M B, Richards B K, Steenhuis T, et al. Mobility and solubility of toxic metals and nutrients in soil fifteen years after sludge application [J]. Soil Science,1997,162:487-500.
    Morrison R T, Boyd R N. Organic Chemistry [M], Part 17; Allyn and Bacon Inc.:Newton, Massachusetts, USA.1983.
    Pohlman A A, McColl J G. Soluble organic from forest litter and their role in metal dissolution [J]. Soil Science Society of America Journal,1988,52:265-271.
    Provenzano M R, Senesi N, Piccone G. Thermal and spectroscopic characterization of composts from municipal solid wasters [J]. Compost Science and Utilization,1998,6(3):67-73.
    Robertson W K, Lutrick M C, Yuan T L. Heavy applications of liquiddigested sludge on three Ultisols:I. Effects on soil chemistry [J]. Journal of Environmental Quality,1982,11:278-282.
    Santos E B H, Duarte A C. The influence of pulp and paper mill effluents on the composition of the humic fraction of aquatic organic matter [J]. Water Research,1998,32:597-608.
    Santos E B H, Filipe O M S, Duarte R M B O, et al. Fluorescence as a tool for tracing the organic contamination from pulp mill effluents in surface waters [J]. Acta Hydrochim. Hydrobiol,2000,28: 364-371.
    Senesi N, Mian T M, Provenzano M R, et al. Characterization, differentiation and classification of humic substances by fluorescence spectroscopy [J]. Soil Science,1991,152(4):259-271.
    Senesi N, Miano T M, Provenzano M R, et al. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy [J]. Soil Science,1991,152(4):259-270.
    Senesi N, Miano T M, Provenzano M R, et al. Spectroscopic and compositional comparative characterization of I.H.S.S. reference and standard fulvic and humic acids of various origins [J]. Science of the Total Environment,1989,81:143-156.
    Sparks D L. Environmental Soil Chemistry [M]. Academic Press, San Diego,1995,52-185.
    Stevenson F J, Goh K M. Infrared spectra of humic acids and related substances [J]. Geochim Cosmochim Acta,1971,35:471-483.
    Williams D E, Vlamis J A H, Pukite A H, et al. Metal movement in sludge amended soils:a nine-year study [J]. Soil Science,1987,143:124-131.
    席北斗,魏自民,赵越,李鸣晓,刘鸿亮,姜永海,何小松,杨天学.垃圾渗滤液水溶性有机物荧光谱特性研究[J].光谱学与光谱分析,2008,28(11):2605-2608.
    张军政,杨谦,席北斗,魏自民,何小松,李鸣晓,杨天学.垃圾填埋渗滤液溶解性有机物组分的光谱学特性研究[J].光谱学与光谱分析,2008,28(11):2583-2587.
    Campbell C A, Read D W L, Winkleman G E. The first 12 years of a long-term crop rotation study in southwestern Saskatchewan-Nitrate-N distribution in soil and N uptake by the plant [J]. Journal of Soil Science,1983,63:563-578.
    Campbell H W. Sewage sludge treatment and use:new development [M]. Londen:Elsevier Applied Science,1989,281-290.
    Isfan D, Zizka J D, Avignon A. Relationships between nitrogen rate, plant nitrogen concentration, yield and residual soil nitrate-nitrogen in silage corn [J]. Soil Science Plant Analysis,1995,26: 2531-2557.
    曹仁林,霍文瑞,贾晓葵,等.园林绿地施用污泥堆肥对环境影响研究[J].环境科学研究,1997, 10(3):46-50.
    陈同斌,黄启飞,高定,等.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报,2003,23(5):561-569.
    陈炎辉,陈文祥,王果,等.不同施用方式下酸性土坡地污泥磷素随径流迁移的研究[J].农业环境科学学报,2008,27(3):1116-1122.
    陈炎辉,杨舜成,王果,等.不同施用方式下酸性土坡地污泥氮素随径流迁移的研究[J].水土保持学报,2008,22(2):15-19.
    陈炎辉.赤红壤坡地上污泥污染物随地表径流流失的研究[D].福建农林大学博士论文,2008.
    郭朝晖,黄昌勇,廖柏寒.模拟酸雨对污染土壤中Cd、Cu和Zn释放及其形态转化的影响[J].应用生态学报,2003,14(9):1547-1550.
    李梦红,刘家弟,黄现民.污泥对地下水质影响的模拟研究[J].山东理工大学学报,2003,17(2):104-107.
    李香真.污泥中几种重金属元素在砂土中的运移[J].中国农业大学学报,1997,2(3):113-118.
    李艳霞,陈同斌,罗维等.中国城市污泥有机质及养分含量与土地利用[J].生态学报,2003,23(11):2464-2470.
    乔显亮,骆永明.污泥土地利用研究[J].土壤,2001(4):210-213.
    王芳,蒋新,王代长,等.模拟酸雨作用下红壤中Cu2+的释放动力学[J].环境化学,2003,22(4):340-344.
    吴新民.生活污泥的性质和农业利用可行性研究[J].安徽师范大学学报,1999,22(4):359-360,374.
    中国科学院南京土壤研究所.土壤理化分析[M].上海科学技术出版社,1981:62-142.
    周立祥,胡蔼堂,戈乃玢,等.城市污泥土地利用研究[J].生态学报,1999,19(2):185-193.
    庄防成,杨寅楣,汪再娟,等.某污水处理厂污泥的毒性及盆栽试验的研究[J].环境与健康杂志,1996(1):10-12.
    Aggelides S M, Londra P A. Effect of compost produced from town wastes and sewage sludge on the physical properties of a loamy and a clay soil [J]. Bioresour Technology,2000,71:253-259.
    Benitez E, Romero M, Gomez M, et al. Biosolid and biosolid ash as sources of heavy metals in plant-soil system [J]. Water, Air,& Soil Pollution,2001,132.
    Canellas L P, Piccolo A, Dobbss L B, et al. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid [J]. Chemosphere,2010,78, (4):457-466.
    Cantanazaro C J, Williams K A, Sauve R J. Slow release versus water soluble fertilization affects nutrient leaching and growth of potted chrysanthemum [J]. Journal of Plant Nutrition,1998, 21:1025-36.
    Cogger C G, Bary A I, Fransen S C, et al. Seven years of biosolids versus inorganic nitrogen applications to tall fescue [J]. Journal of Environmental Quality,2001,30:2188-2194.
    Cox D A. Reducing nitrogen leaching-losses from containerized plant:the effectiveness of controlled release fertilizers [J]. Journal of Plant Nutrition,1993,16:533-45.
    Edwards C A, Norman, Q A. Vermicomposts suppress plant pest and disease attacks [J]. Pro Quest Agriculture Journals,2004,45, (3):51-54.
    Forstner U. Interaction at the soil colloid-soil solution interface [M].In:Bolt, G.H. et al. (Eds.), NATO ASI Series. Kluwer Academic Publishers., Dordrecht, The Netherlands,1991,543-582.
    Kwon Y T, Lee C W, Yun J H. Development of vermicast from sludge and powdered oyster shell [J]. Journal of Cleaner Production,2009,17:708-711.
    Liu X L, Hu C X, Zhang S Z. Effects of earthworm activity on fertility and heavy metal bioavailability in sewage sludge [J]. Environment International,2005,31:874-879.
    Marchiol L, Assolari S, Sacco P, Zerbi, G. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on ulticontaminated soil [J]. Environmental Pollution,2004, 132:21-27.
    Reed B E, Carriere P E, Matsumoto M R. Applying sludge on agricultural land [J]. Biocycle,1991,37: 58-60:
    Sahni S, Sarma B K, Singh D P, et al. Vermicompost enhances performance of plant growth-promoting rhizobacteria in Cicer arietinum rhizosphere against Sclerotium rolfsii [J]. Crop Protection,2008,27, (3-5):369-376.
    Selivanovskaya S Y, Latypova V Z, Kiyamova S N, Alimova F K. Use of microbial parameters to access treatment methods of municipal sewage sludge applied to grey forest soils of Tatarstan [J]. Agriculture, Ecosystems & Environment,2001,86:145-153.
    Tomati U, Grappelli A, Galli E. The hormone-like effect of earthworm casts on plant growth. Biol [J]. Fertility,1988,5:288-294.
    White C S, Loftin S R, Aguilar R. Application of biosolid to degraded semiarid rangeland:nine-year responses [J]. Journal of Environmental Quality,1997,26:1663-1671.
    Wong J W C, Fang M, Su D C. Toxicity evaluation of sewage sludge in Hong Kong [J]. Environment International,2001,27:373-380.
    Zayed A, Gowthaman S, Teryy N. Phytoaccumulation of trace elements by wetland plants:Ⅰ. Duckweed [J]. Journal of Environmental Quality,1998,27:715-721.
    陈振德,程炳嵩.蔬菜中的硝酸盐及其与人体健康[J].中国蔬菜,1988,(1):40-42.
    胡佩,刘德辉,胡锋,沈其荣.蚓粪中的植物激素及其对绿豆插条不定根发生的促进作用[J].生态学报.2002,22(8):1211-1214.
    梁艳荣,胡晓红,张颍力,刘湘萍.植物过氧化物酶生理功能研究进展[J].内蒙古农业大学学报(自然科学版),2003,24:109-113.
    中秀英,许晓路.蔬菜硝酸盐积累机制及影响因素[J].农业环境与发展,1998,57(3):4-6.
    田国忠,李怀方,裘维蕃.植物过氧化物酶研究进展[J].武汉植物学研究,2001,19(4):332-344.
    Arancon N Q, Edwards C A, Bierman P, et al. Influences of vermicomposts on field strawberries:Effects on growth andyields [J]. Bioresource Technology,2004,93 (2):145-153.
    Arancon N Q, Edwards C A, Bierman P. Influences of vermicomposts on field strawberries:Part 2. Effects on soilmicrobiological and chemical properties [J]. Bioresource Technology,2006,97: 831-840.
    Arancon N, Edwards C A, Yardim F. et al., Management of plant parasitic nematodes by use of vermicomposts[C]//. Proceedings of Brighton Crop Protection Conference Pests and Diseases 2002, 2:705-710.
    Buckland P C. Peatland archaeology:a conservation resource on the edge of extinction [J]. Biodiversity and Conservation,1993,2:513-527.
    Carlile W R. The effects of the environment lobby on the selection end use of growing media [J]. Acta Horticulturae,1999,481:587-596.
    Edwards C A. Burrows I. The potential of earthworm compost as plant growth media. In Earthworms in Waste and Environmental Management, Neuhauser [M]//E. F., Ed. SPB Academic Edwards, C.A, 1988,21-32.
    Edwards C.A, Norman Q A. Vermicomposts suppress plant pest and disease attacks [J]. Pro Quest Agriculture Journals,2004,45 (3):51-54.
    Krishnamoorthy R V, Vajranabhaiah S N. Biological activity of earthworm casts:an assessment of plant growth promoter levels in the casts [J]. Proceedings of the Indian Academy of Sciences,1986,95: 341-351.
    Kwon Y T, Lee C W, Yun J H. Development of vermicast from sludge and powdered oyster shell [J]. Journal of Cleaner Production,2009,17:708-711.
    Orozco F H, Cegarra J, Trujillo L M A R. Vermicomposting of coffee pulp using the earthworm Eisenia fetida:effects on C and N contents and the availability of nutrients [J]. Biology and Fertility of Soils, 1996,22:162-166.
    Raviv M, Chen Y, Inbar Y. The use of peat and composts as growth media for container-grown plants. In The Role of Organic Matter in Modern Agriculture[M],//Chen Y, Avnimelech Y. Eds. Martinus Nijhoff Publ. Dordrecht,1986,257-287.
    RiviBre L M, Canon J. Research on substrates:state of the art and need for the coming 10 years [J]. Acta Horticulturae,2001,54(8):29-42.
    Tomati U, Grappelli A, Galli E. The hormone-like effect of earthworm casts on plant growth [J]. Biology and Fertility of Soils,1988,5:288-294.
    柏彦超,钱晓晴,沈淮东,等.不同水、氮条件对水稻苗生长及伤流液的影响[J].植物营养与肥料学报2009,15(1):76-81.
    陈振德,黄俊杰,翟光辉,等.西芹穴盘育苗复合基质的应用[J].中国蔬菜,1998,(2):12-15.
    葛晓光,蔬菜育苗大全[M].中国农业出版社,北京,1995.
    何圣米,陈新娟,徐明飞,等.辣椒秸杆有机基质对辣椒育苗的影响[J].浙江农业科学2009,(3):457-459.
    尚庆茂,张志刚,不同浓度氮、钾肥对蚯蚓粪基质西瓜穴盘苗的影响[J].中国瓜菜2005,5:9-11.
    尚庆茂,张志刚.黄瓜蚯蚓粪基质穴盘育苗肥料添加量的研究[J].长江蔬菜,2005,11:41-43.
    杨梅.几种瓜类蔬菜育苗基质及其施肥配方的研究[M].西北农林科技大学:西安,2007.
    赵明,李祥云,高峻岭,等.茄果类蔬菜育苗基质优化施肥技术研究[J].北方园艺,2002,2:42-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700