用户名: 密码: 验证码:
一维SiC纳米材料属性及其输运机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳化硅(SiC)是一种典型的宽禁带Ⅳ—Ⅳ族二元化合物半导体材料,是近年来发展起来的最具潜力的第三代半导体材料。碳化硅具有宽的带隙、高的电子饱和迁移率、大的临界击穿场强、高的热导率以及强的抗辐射能力等特点,在高温、大功率、高频、抗辐射、短波长发光材料以及光电集成器件等方面具有良好的应用前景。论文采用了密度泛函理论与非平衡态格林函数相结合的第一性原理计算方法,系统研究了SiC及其纳米材料的电子结构和属性;同时研究了SiC纳米管和纳米线的电子输运机理,从理论上分析了不同电极结合方式、不同偏压等因素对SiC纳米材料电子输运性能的影响。研究工作为实验制备SiC纳米材料和设计制备这类器件提供了理论参考依据。论文的主要内容和结果如下:
     1.采用基于密度泛函理论框架下的第一性原理计算方法,系统研究了多型体SiC材料的几何结构和电子属性。研究结果显示SiC多型体材料均为间接宽禁带半导体材料,Si-C键具有强烈的sp~3杂化分布特征。同时,采用B3LYP交换关联泛函方法研究了3C-SiC、2H-SiC的精细结构,计算结果显示价带顶能级分裂清晰,价带顶轨道能级分裂为一个二重兼并的p x、p y态和一个一重兼并的p z态,与已有实验数据吻合;禁带宽度计算结果明显得到改善,理论结果与实验值符合。
     2.系统研究了未饱和SiC纳米线和氢饱和SiC纳米线的电子结构和属性。结果显示未饱和SiC纳米线表面Si原子和C原子都发生了较大的驰豫,表现出明显的量子尺寸效应、表面效应和小尺寸效应,但氢饱和SiC纳米线外层原子只发生微小的驰豫。电子结构计算结果显示未饱和SiC纳米线都表现出间接禁带半导体的特征,而氢饱和SiC纳米线表现出直接宽禁带半导体特征。SiC纳米线光学性质计算结果显示随着未饱和SiC纳米线尺寸的增大,低能区介电峰都向高能方向移动,出现蓝移现象,而氢饱和SiC纳米线的整个图谱呈现局域化的特征,介电图谱都向低能方向发生了漂移,出现红移现象。因此可利用SiC纳米线的蓝移和红移机理制备不同发光性质的光电子器件。
     3.系统研究了单壁SiC纳米管、多壁SiC纳米管以及Fe掺杂SiC纳米管的电子结构和属性。结果显示单壁SiC纳米管和多壁SiC纳米管都可稳定存在;单壁SiC纳米管是直接禁带半导体材料,多壁SiC纳米管是间接禁带半导体材料;SiC纳米管中Si、C原子是一种典型的混合键半导体材料,具有sp2、sp~3混合杂化现象;HOMO和LUMO轨道计算结果显示单壁SiC纳米管和多壁SiC纳米管具有不同的轨道分布特征,这对开发基于SiC纳米管光电子器件以及研究SiC纳米管电子输运机理具有重要的理论参考价值。SiC纳米管光学性质计算显示SiC纳米管是一种优异的光电子材料,具有良好的近紫外光和蓝光发射能力。Fe掺杂SiC纳米管电子结构和磁学性质计算结果显示,全弛豫的Fe掺杂SiC纳米管体系的局域对称性发生了明显变化,但整体保持一维管状结构,Fe替代C原子可形成反铁磁性材料,而Fe替代Si原子更容易形成铁磁性半金属材料,两种掺杂在基态情况下体系都发生了自旋极化现象,在费米能级附近形成了明显的p-d杂化效应,研究结果对揭示Fe掺杂SiC纳米管体系磁学属性具有重要意义。
     4.采用第一性原理与非平衡格林函数相结合的方法,系统研究了(8.0) SiC纳米管的电子输运特性。采用SiC纳米管作为电极时,孤立(8.0) SiC纳米管输运透射图谱呈现台阶状图谱特征,存在一个约1.1eV的透射谷;计算显示(8.0) SiC纳米管的伏安特性曲线呈对称分布,当偏压大于±2.2V时,电流迅速增大。电极采用金原子时,计算显示伏安特性曲线呈现不对称性分布,电流随着电压的增加呈线性增加,但在1.3V~1.7V偏压时,金电极与不同原子结合时都表现出负微分电导现象(NDC),但计算得到的电流值明显不同,表明采用不同的Si、C原子结合对SiC纳米管输运具有重要的影响,这对研究SiC纳米管输运机理和设计新的器件具有重要的理论参考价值。
     5.系统研究了SiC纳米线的电子输运特性。采用SiC纳米线作电极时,计算结果显示零偏压下SiC纳米线的透射图谱在费米能级附近呈现台阶状图谱特征,存在一个约0.5eV的透射谷,伏安特性曲线基本呈对称分布,当偏压大于±1.2V时,电流迅速增大。采用金原子作为电极时,计算结果显示在整个偏压范围内伏安特性曲线是不对称的,两种结合方式都出现了负微分电导现象(NDC),但出现负微分电导现象的偏压值明显不同,这对设计基于SiC纳米线的纳米电子器件具有重要理论参考价值。通过SiC纳米管和纳米线输运性能的对比研究,无论采用何种结合方式,计算结果都显示SiC纳米线具有比SiC纳米管更好的电子输运性能。
As a typical wide band gap IV-IV compound semiconductor, silicon carbide (SiC)is the third-generation semiconductor of the recent years with the greatest potential,which is characterized with wide band gap, high electron saturation velocity, greatcritical breakdown field strength, high heat conductivity and strong radioresistance,showing potential applications in the fields of high temperature, high power, highfrequency, anti-radiation, short wavelength emitting materials and optoelectronicintegrated devices. This paper provides systematic researches into the electronicstructures and properties of SiC and nanomaterials based on the first-principles ofdensity functional theory (DFT). Morever, the electronic transport properties of SiCnanotubes and nanowires are studied, and carries out a theoretical analysis of theinfluence of such factors as different electrode combination and different voltage biaswould have on electronic transport properties of nano-materials. The researches alsoprovide theoretical reference for SiC nano-materials preparation and design the kindsof devices.
     The main contents and results are listed below:
     1. First-principles methods on the basis of density functional theory are adopted,and geometry and electronic properties of polytype SiC materials are investigated. The results indicate that the polytype SiC materials are all of indirect band-gapsemiconductors, and that Si-C bonds have strong s-p3hybrid distribution. Meanwhile,the fine structures of3C-SiC and2H-SiC are studied to use the B3LYPexchange-correlation functional methods. The results indicate that there is significantsplitting bands one the top v band, and that the top alence orbital energy levels splitinto a dual combinedp xandp ystates, and a single combinedp zstates, whichconsist with the experiment data, and the band gap is significantly improved, so thetheoretical results are close to the experiment results.
     2. The geometry and electronic properties of unsaturated SiC nanowires andhydrogen saturated SiC nanowires are investigated systematically. The resultsindicate that extensive relaxation has been occurred to, showing significant quantumsize effects, surface effects and small-size effects, but little relaxation has occurred toSi atom and C atom on the surface of hydrogen saturated SiC nanowires. Thecomputational Results of electronic structure indicate that unsaturated SiC nanowiresdisplay characteristics of the indirect semiconductor, and that hydrogen saturated SiCnanowires display characteristics of the direct wide band gap semiconductor. Theresults of SiC nano-wire optical properties indicate that with the increase inunsaturated SiC nano-wire size, dielectric peak in the low energy area move towardhigh energy area, and blueshift takes place; for hydrogen saturated SiC nanowires, thewhole spectrum tends to be localized, and dielectric spectrum drift toward the lowenergy, and redshifts takes place. Therefore, different emitting optoelectronic devicescould be prepared on the basis of the blueshifts and redshifts phenomena of the SiCnanowires.
     3. The single-walled SiC nanotubes, multiwall SiC nanotubes and Fe-doped SiCnanotube are investigated systematically. The results indicate that single-walled SiCnanotubes and multiwall SiC nanotubes exist stably on the nanoscale, thatsingle-walled SiC nanotube is the direct wide gap conductors, and multiwall SiCnanotubes is the indirect wide gap conductors; Moreover, Si and C atoms of SiC nanotubes are a typical compound bonds, with sp2and sp~3compound hybridization.Results of HOMO and LUMO orbitals indicate that single-walled SiC nano tube andmultiwall SiC nano tube show different orbit distribution, which would be of greatvalue as theoretical reference for SiC nanotube optoelectronic devices developmentand SiC nanotube electronic transport researches. SiC nanotube optical propertiesindicate that SiC nanotubes are an excellent optoelectronic material, with good blacklight and blue light photoemissivity. Electronic structures and magnetic properties ofFe-doped SiC nanotubes indicate that local symmetry of full relaxation Fe-doped SiCnanotubes show significant change, but one-dimension tube structure as a whole ismaintained. The calculation results of energy band structures show that Fesubstitution for C can form antiferromagnetic materials while Fe substitution for Si ismore likely to form ferromagnetism half-metal materials. Spin polarization occurredat ground state under two doping conditions. Also, intense p-d hybrid effects appearnear the Fermi level. These research results are of vital and great importance formaintaining magnetic properties of nanotube doping system
     4. First principle methods combined with Non-equilibrium Green Functions,electronic transport characteristics of (8.0) SiC nanotubes are systematicallyinvestigated. Using SiC nanotube as the electrode, transport spectrum of the isolated(8.0) SiC nanotube shows the characteristic of stepped spectrum, and a transmissionvalley about1.1eV could be found. Computation results indicate that I-V curve of the(8.0) SiC nanotube show symmetrical distribution. When voltage bias is greater than±2.2V,electric current would increase rapidly. Using gold atoms as the electrode, I-Vcurve shows the distribution not symmetrical as the computation results indicate, andelectric current shows linear increase with voltage increase. When voltage bias is at1.3V~1.7V, NDC would be displayed as gold electrode combined with differentatoms, but the electric current value obtained from computation is significantlydifferent, indicating the great influence when using different Si and C combination on SiC nano tube transmission, which would be of great importance to SiC nanotubetransport research and new devices designing.
     5. Electronic transport characteristics of SiC nanowires are systematicallyinvestigated. Using SiC nanowire as the electrode, computation results indicate thattransport spectrum of SiC nanowire with zero bias show characteristics of steppedspectrum near fermi level, and a transport valley about0.5eV could be found.Computation results indicate that I-V curve generally shows symmetrical distribution.When voltage bias is greater than±1.2V, electric current would increase rapidly.Using gold atoms as the electrode, I-V curve shows the distribution within the wholebias range not symmetrical, as the computation results indicate, and both ways ofcombination have led to NDC, but with significantly different bias value, whichwould be greatly implicational to nanounit research on the basis of SiC nanowire.Through contrast analysis, computation results indicate that SiC nanowires showbetter propertied in electronic transport than SiC nanotube, regardless of the ways ofcombination.
引文
[1]张立德,牟季美.纳米科技和纳米结构[M],北京:科学出版社,2001
    [2] G A Prinz. Magnetelectronies, Science,1998,282:1660-1663
    [3] P Ball. Meet the spin doctors, Nature,2000,404:918-920
    [4]袁哲俊,纳米科学与技术,哈尔滨工业大学出版社,2005
    [5]熊家炯.材料设计[M],天津:天津大学出版社,2000
    [6] H E Nilsson, A Martinez, U Sannemo. Numerical study of Bloch electrondynamics in wide band-gap semiconductors. Applied Surface Science,2001,184:199-203
    [7] H Linewih, S Dimitrijev, C E Weitzel. Novel SiC Accumulation-Mode PowerMOSFET. IEEE TRANSACTIONS ON ELECTRON DEVICES,2001,48(8):1711-1717
    [8]鲁励.引人注目的SiC材料、器件和市场.世界产品与技术,2003,12:22
    [9] Roy Szweda. Damond and SiC electronic. Mater.Res.,2006,19:40
    [10] K Rottner, M Frischholz, T Myrtveit. SiC power devices for high voltageapplications. Material Science&Engineering B,1999,61-62:330-338
    [11] M Chafai, A Jaouhari, A Torres. Raman scattering from Lo phonon-plasmoncoupled modes and Hall-effect in n-type silicon carbide4H–SiC.Jouunal ofapplied physics,2001,90(10):5211-5215
    [12] H Matsunami. Current SiC technology for power electronic devices beyondSi.Microelectr Eng,2006,83:2
    [13] G Dhanaraj, M Dudley, Y Chen, B Ragothamachar, B Wu, H Zhang. Epitaxialgrowth and characterization of silicon carbide films. Journal of Crystal Growth,2006,287(2):344-348
    [14] D H Wang, D Xu, Q Wang, Y J Hao, G Q Jin, X Y Guo, K N Tu. Periodicallytwinned SiC nanowires. Nanotechnology,2008,19:215602
    [15] G Z Shen, Y S Bando, C H Ye, B D Liu, D Golberg. Characterization andfield-emission properties of bamboo-like β-SiC nanowires. Nanotechnology,2006,17:3468
    [16]简红彬,康建波,于威,马蕾,彭英才. SiC薄膜的化学气相沉积及其研究进展.纳米材料与结构,2006,(1):11
    [17]张进程,郝跃,赵天绪,王剑屏.SiC新型半导体器件及其应用.西安电子科技大学学报,2002,29(2):157
    [18]刘喆,徐现刚. SiC单晶生长.材料科学与工程学报.2003,21(2):274
    [19]李嘉席,孙军生,陈洪建.第三代半导体材料生长与器件应用的研究.河北工业大学学报,2002,31(2):41
    [20]高欣,孙国胜,李晋闽.水平冷壁CVD生长4H-SiC同质外延膜的研究.半导体物理,2005,26(5):936
    [21]赵武,王雪文,邓周虎,张志勇. HFCVD法制备SiC薄膜工艺.西北大学学报(自然科学版),2002,32(3):47
    [22]周继承,郑旭强,刘福. SiC薄膜材料与器件最新研究进展.材料导报,2007,21(3):112-118
    [23]王世终,徐良瑛,束碧云,庄击勇,施尔畏. SiC单晶的性质、生长及应用.无机材料学报,1999,14(4):527-534
    [24] R F Davis, G Kelner, M Shur. Thin film deposition and microelectronic andopto-electronic device fabrication and characterization in monocrystalline alphaand beta silicon carbide. Proc IEEE,1991,79(5):677-701
    [25] Y M Tairov, V F Tsetkov. Investigation of growth Process of ingots of siliconcarbide single crystals. Journal of Crystal Growth.1978,43:209-212.
    [26] Y M Tairov, V F Tsetkov. General principles of growing large-size singlecrystals of various silicon carbide polyityes, Journal of Crystal Growth.52:146-150
    [27] H Matsunami. Current SiC technology for power electronic devices beyond Si.Micro-electron.Eng,2006,83,(2):2-4
    [28] C Weitzel, L Pond, K Moore, M Bhatnagar. Effect of device temperature on RFFET power density. Mater.Sci.Forum,1998,264-268(part2):969-972
    [29] M Kanaya, H Yashiro, N Ohtani, et al., Characterization of MechanicallyPolished Surfaces of Single Crystalline6H-SiC. Mater.Sci.Forum,1998,264-268:359
    [30] A K Costa, S S Camargo. Amorphous SiC coatings for WC cutting tools. Surf.Coat.Technol,2003,163–164:176-180
    [31] A Ordine, C A Achete, O R Mattos, I C P Margarit, S S Camargo Jr. Magnetronsputtered SiC coatings as corrosion protection barriers for steels. Surf.Coat.Technol.2000,133–134:583-588
    [32] K Rottner, M Frischholz, T Myrtveit, D Mou, K Nordgren, A Henry, C Hallin, UGustafsson, A Schoner. SiC power devices for high voltage applications. MaterSci Eng.1999, B61–62:330-338
    [33] A P Alivisatos. Semiconductor Cluster, Nanocrystals, and Quantum Dots,Science,1996,271:933-937
    [34] S Iijima. Helical microtubules of graphitic carbon, Nature,2001,354:56-58
    [35] P Ball. Roll up for the revolution. Nature,2001,414:142-146
    [36] R H Baughman, A A Zakhidov, A Walt. Carbon nanotubes, the route towardapplications. Science,2002,297:787-792
    [37] R H Baughman. Muscles made from metal. Science,2003,300:268-269
    [38]郝跃,彭军,杨银堂.碳化硅宽带隙半导体技术[M],北京:科学技术出版社,2000:1-95
    [39] R Madar. Silicon carbide in contention. Nature,2004,430:974-975
    [40] A Gali. Ab initio study of nitrogen and boron substitutional impurities insingle-wall SiC nanotubes. Phys Rev B,2006,73:245415
    [41] K M Alam, A K Ray. Hybrid density functional study of armchair SiC nanotubes.Phys Rev B,2008,77:035436
    [42] B Baumeier, P Krüger, J Pollmann. Structural, elastic, and electronic propertiesof SiC, BN, and BeO nanotubes. Phys.Rev.B.,2007,76:085407
    [43] S Mukherjee, A K Ray. An initio study of molecular hydrogen interaction withSiC nanotube-a precursor to hydrogen storage. J.Comput.Theory.Nanosci,2008,5:1210-1219
    [44] D Zhou, S Seraphin. Production of silicon carbide whiskers from carbonnanoclusters. Phys.Lett.1994,222:233-238
    [45] H J Dai, E W Wong, Y Z Lu, S S Fan, C M Lieber. Synthesis and characteriza-tion of carbide nanorods, Nature,1995,375:769-772
    [46] C C Tang, S S Fan, H Y Dang, C Zhang, P Li, Q Gu. Growth of SiC nanorodsprepared by carbon nanotubes-confined reaction. Journal of Crystal Growth.2000,210:595-599
    [47] W Shi, Y Zheng, H Peng, N Wang, C S Lee, S T Lee. Laser ablation synthesisand optical characterization of silicon carbide nanowires. J.Am.Ceram.Soc.,2000,183(12):3228-3230
    [48] Z L Wang, Z R Dai, P R Gao, ZG Bai, JL Gole. Side-by-side siliconcarbide-silica biaxial nanowires: Synthesis, structure, and mechanical properties,Appl.Phys.Lett.2000,77:3349-3351
    [49] Z S Wu, S Z Deng, N S Xu, Chen, Z J Jian, J Chen. Needle-shaped siliconcarbide nanowires: Synthesis and field electron emission propertiesAppl.Phys.Lett.2002,80:3829-3831
    [50] W M Zhou, Y J Wu, Eric Siu-Wai Kong, F Zhu, Z Y Hou, Y F Zhang. Fieldemission from nonaligned SiC nanowires, Applied Surface Science,2006,253:2056–2058
    [51] J J Niu, J N Wang, N S Xu. Field emission property of aligned and random SiCnanowires arrays synthesized by a simple vaporesolid reaction, Solid StateSciences,2008,10:618-621
    [52] W Q Han,Fan,Q Q Li and Y D Hu. Synthesis of gallium nitride nanorodsthrough a carbon nanotube-confined reaction. Seience.1997,277:1287-1289
    [53] J W Liu,D Y Zhong,F Q Xie,M Sun,E G Wang,W X Liu. Synthesis ofSiC nanofibers by annealing carbon nanotubes covered with Si. ChemicalPhysics Letters,2001,348:357-360
    [54] X H Sun,C P Li,W K Wong,N B Wang,C S Lee,S T Lee, B K Teo.Formation of silicon carbide nanotubes and nanowires via reaction of silicon(from disproportionation of silicon monoxide) with carbon nanotubes.J.Am.Chem.Soc,2002,124:14464-14471
    [55]张洪涛,徐重阳. gol-gel法制备纳米碳化硅晶须的研究.电子元件与材料,2000,19(3):9-12
    [56]徐武军,徐耀,孙先勇,刘亚琴,吴东,孙予罕.溶胶-凝胶和碳热还原法制备塔状SiC纳米棒.新型碳材料,2006,21(2):167-170
    [57] H F Zhang, C M Wang, L S Wang. Helical crystalline SiC/SiO2: core-shellnanowires. NanoLetters,2002,2(9):941-944
    [58] B Q Wei,J W Ward, R Vajtai, P M Ajayan,R Ma, G Ramanath. Simultaneousgrowth of silicon carbide nanorods and carbon nanotubes by chemical vapordeposition. Chemical Physics Letters,2002,354:264-268
    [59] M Lin, K P Loha, C Boothroyd, A Y Du. Nanocantilevers made of bent siliconcarbide nanowire-in-silicon oxide nanocones. Appl. Phys. Lett.,2004,85(22):5388-5390
    [60] G W Ho, S A W Wong, A T S Wee, M E Welland. Self-assembled Growth ofCoaxial Crystalline Nanowires. Nano Lett.,2004,4:2023
    [61] J H Park,W J Kim, D J Kim, W S Ryn, J Y Park. Selective growth of β-SiCwhisker on a patterned Si (111) substrate for a field emission device.Thin SolidFilms,2007,515(13):5519
    [62] H W Shim, H C Huanga. Three-stage transition during silicon carbide nanowiregrowth. Appl. Phys. Lett.,2007,90(8):083106
    [63] W M Zhou, X Liu, Y F Zhang. Simple approach to β-SiC nanowires: Synthesis,optical, and electrical properties. Appl. Phys. Lett.,2006,89(22):223124
    [64] A M Morales, C M Lieber. A Laser Ablation Method for the Synthesis ofCrystalline Semiconductor Nanowires. Science,1998,279:208-211
    [65] D P Yu, C S Lee, I Bello, X S Sun, Y H Tang, G W Zhou, Z G Bai, Z Zhang, SQ Feng. Synthesis of Nano-scale silicon wires by excimer laser ablation at hightemperature. Solid State Commun,1998,105:403-407
    [66] Y B Li,S S Xie,X P Zhou, D S Tang, Z Q Liu, W Y Zhou, G Wang.Large-scale synthesis of SiC nanorods in the Arc-discharge. J.Cryst.Growth,2001,223(1-2):125-128
    [67] Z S Wu, S Z Deng, N S Xu, J Chen, J Zhou and J Chen. Needle-shaped siliconcarbide nanowires: Synthesis and field electron emission properties. Appl. Phys.Lett.,2002,80(20):3829-3831
    [68] S Z Deng, Z B Li, W L Wang, N S Xu, J Zhou, X G Zheng, H T Xu, J Chen, J CShe. Field emission study of SiC nanowires/nanorods directly grown on SiCceramic substrate. Appl. Phys. Lett.,2006,89(2):023118
    [69] X H Sun, C P Li, W K Wong, W B Wong, C S Lee, S T Lee, B K Teo. Formationof silicon carbide nanotubes and nanowires via reaction of silicon (fromdisproportionation of silicon monoxide) with carbon nanotubes. J. Am. Chem.Soc.,2002,124(48):14464-14471
    [70] G Gundiah, G V Madhav, A Govindaraj, M M Seikh, C N R Rao. Synthesis andcharacterization of silicon carbide, silicon oxynitride and silicon nitridenanowires. J.Mater.Chem.,2002,5:1606-1611
    [71] T Taguchi, N Igawa, H Yamamoto;S Shamoto, S Jitsukawa. Preparation andcharacterization of single-phase SiC nanotubes and C-SiC coaxial nanotubes,Physica E, Low-dimensional systems&nanostructures.2005,28(4):431-438
    [72]陶德良,谢征芳,何农跃.碳化硅纳米管的制备及表征.无机化学学报,2006,22(5):945-948
    [73] L Z Pei, Y H Tang, Y W Chen, C Guo, X X Li, Y Yuan, Y Zhang. Preparation ofsilicon carbide nanotubes by hydrothermal method. J. Appl. Phys.,2006,99:114306
    [74] L Z Pei, Y H Tang, X Q Zhao, Y W Chen, C Guo. Formation mechanism ofsilicon carbide nanotubes with special morphology. J. Appl. Phys.,2006,100:046105
    [75] M Menon, E Richter, A Mavrandonakis, G Froudakis, A Andriotis. Structure andstability of SiC nanotubes. Phys. Rev. B,2004,69:115322
    [76] M W Zhao, Y Y Xia, F Li, R Q Zhang, S T Lee. Strain energy and electronicstructures of silicon carbide nanotubes: Density functional calculations. Phys.Rev. B,2005,71:085312
    [77] A Mavrandonakis, G E Froudakis, M Schnell, X Muhlhauser. From pure carbonto silicon-carbon nanotubes: An ab-initio study. Nano Lett,2003,3:1481-1484
    [78] R Madar. Silicon carbide in contention. Nature,2004,430:974-975
    [79] A Gali. Ab initio study of nitrogen and boron substitutional impurities insingle-wall SiC nanotubes. Phys Rev B,2006,73:245415
    [80] K M Alam, A K Ray. Hybrid density functional study of armchair SiC nanotubes.Phys.Rev.B.,2008,77:035436
    [81] B Baumeier, P Krüger, J Pollmann. Structural, elastic, and electronic propertiesof SiC, BN, and BeO nanotubes. Phys.Rev.B,2007,76:085407
    [82] S Mukherjee, A K Ray. An initio study of molecular hydrogen interaction withSiC nanotube-a precursor to hydrogen storage. J. Comput.Theory.Nanosci,2008,5:1210-1219
    [83] O Madelung, Semieonduerors: Group IV Elements and Ⅲ-V ComPounds, Berlin:Springer,1991:47-57
    [84] H Schulz, K H Thiemann. Structure parameters and polarity of the wurtzite typecompounds (2H-SiC) and ZnO, Solid State Communications,1979,32:783-785
    [85]马洪磊,薛成山.纳米半导体[M],北京:国防工业出版社,2008
    [86]党翼萍.迅速发展的半导体技术.半导体情报,1995,32(5):1-6
    [1]吴兴惠,项金钟.现代材料计算与设计教程[M],北京:电子工业出版社,2002
    [2]熊家炯.材料设计[M],天津:天津大学出版社,2000
    [3]廖沐真,吴国是,刘洪霖.量子化学从头计算方法[M],北京:清华大学出版社,1984,26
    [4]谢希德,陆栋.固体能带理论[M],上海:复旦大学出版社,1998
    [5]张富春.3d过渡金属掺杂一维ZnO纳米材料磁、光机理研究[D],中国科学院西安光学精密机械研究所博士论文,2009
    [6]宋久旭.碳纳米管、碳化硅纳米管的电子结构及其输运特性研究[D],西安电子科技大学博士论文,2008
    [7]曾雉.第一原理电子结构计算研究RNi2B2C新型超导体[D],中国科学院固体物理研究所博士论文,1997
    [8]郑小宏.分子尺度导体输运性质的第一性原理研究[D],中国科学院固体物理研究所博士论文,2005
    [9]许英.关联电子体系的基态性质[D],中国科学院固体物理研究所博士论文,2005
    [10]袁定旺.金属团簇与小分子相互作用的第一性原理研究[D],中国科学院固体物理研究所博士论文,2005
    [11]李顺方.团簇和表面氧化过程的第一性原理研究[D],中国科学院固体物理研究所博士论文,2004
    [12]王江龙.新型超导体材料的电子结构研究[D],中国科学院固体物理研究所博士论文,2003
    [13]肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分法在化学和材料物理中的应用[M],北京:科学出版社,1998
    [14]徐光宪,黎乐民,王德民.量子化学(中册)[M],北京:科学出版社,1985
    [15]王金兰.金属、半导体团簇结构和性质及金纳米线热力学稳定性的理论研究[D],南京大学博士论文,2001
    [16] M Born, K Huang. Dynamical theory of crystal lattices, Oxford: OxfordUniversity Press,1954
    [17] D R Hartree. The wave mechanics of an atom with a non-coulomb central field.Part I. theory and methods. Proc.Camb.Phil.Soc.1928,24:89-110
    [18] V Fock. N herungsmethode zur L sung des quanten-mechanischen Mehrk rperproblems. Z.Phys.,1930,61:126-148
    [19] V Fock, M J Petrashen. On the Numerical Solution of the Generalized Equationof the Self-Consistent Field. Phys. Z. Sowjetunion,1934,6:368-375
    [20] H Thomas. The calculation of atomic fields. Proc.Camb.Phil. Soc.,1927,23:542-548
    [21] E Fermi. Un metodo statistico per la determinazione di alcune priorieta dellatoms Rend, Accad.Naz.Lincei.1927,6:602-607
    [22] P C Hohenberg, W Kohn, Inhomogneneous electron gas. Phys. Rev. B,1964,136:864
    [23] W Kohn, L Sham. Quantum density oscillations in an inhomogneneous electrongas. J., Phys. Rev,1965, A137:1697
    [24] W Kohn, L Sham, Self-consistent equations including exchange and correlationeffects, Phys.Rev.A,1965,140:1133
    [25] DC Langreth, J P Perdew. Theory of nonuniform electronic systems Analysis ofthe gradient approximation and a generalization that works, Phys.Rev.B,1980,21:5469
    [26] J P Perdew. Generalized gradient approximations for exchange and correlation:A look backward and forward, Physica B,1991,172:1
    [27]冯端,金国均,凝聚态物理[M],北京:高等教育出版社,2002
    [28] R M Dreizler. Density Functional Theory,1990, Springer-verlag
    [29] J Callaway, N H March. Density Functional Methods:Theory and Applications.Solid State Phys.,1984,38:135-221
    [30] I Galanakis,P Mavropoulos. Zinc-blende compounds of transition elementswith N, P, As, Sb, S, Se, and Te as half-metallic systems. Phys. Rev. B,2002,67(10):104417-1-104417-8
    [31] Y J Zhao,W T Geng, K.T.Park and A.J. Freeman. Paramagnetic Mn impuritieson Ge and GaAs surfaces. Phys.Rev.B,2001,64:035207
    [32] S Snavito,P Ordejon, N A Hill. First principles study of the origin and nature offerromagnetism in (Ga, Mn) As. Phys.Rev.B,2001,63:165206
    [33]杜磊,庄奕琪.纳米电子学[M],北京:电子工业出版社,2004
    [34]郑小宏.分子尺度导体输运性质的第一性原理研究[D],中国科学院固体物理研究所,2005
    [35]郑继明.单子分电子输运性质的第一性原理研究[D],西安:西北大学,2008
    [36]杨展如.量子统计物理[M],北京:高等教育出版社,2007
    [37]王怀玉.凝聚体物理的格林函数理论[M],北京;科学出版社,2008
    [38] E N Economou. Green’s Functions in Quantum Physics[M],北京:科学出版社,2008
    [39]戴振翔.团簇输运性质的第一性原理研究[D],中国科学院固体物理研究所,2006
    [40]杨先敏,固体物理学中格林函数方法简介[M],北京:兵器工业出版社,1989
    [41] G Rickayzen, Green’s Function and Condensed Matter[M], New York:Aca-demic Press,1980
    [42] S Doniach, E H Sondheimer, Green’s Functions for Solid State Physicist[M],WA Benjamin Inc.,1974
    [43]卫崇德,章立源,刘福绥.固体物理中的格林函数方法[M],北京,高等教育出版社,1992
    [44]蔡建华,龚昌德,姚希贤,孙鑫,李正中,吴萱如.量子统计的格林函数理论[M],北京:科学出版社,1982
    [45] ATK: http://www.hongcam.com.cn/product/product-detail.asp?id=127
    [46] Z X Dai, X H Zheng, X Q Shi, Z Zeng. Effects of Contact Geometry onTransport Properties of a Si4Cluster,Phys.Rev.B,2005,72:205408
    [47] J Taylor,H Guo,J Wang. Ab initio modeling of quantum transport properties ofmolecular electronic devices,Phys.Rev.B,2001,63:245407
    [1] C L Guo, C L Kuo. Two new long-period hexagonal silicon carbide polytypes240H and294H. Sci. Bull.,1996,41(19):1666
    [2] G C Trigunyat, G K Chadha. Phys. Stat. Sol.(a),1971,4:9
    [3] D Pandey, P Krishna. Current Topics in Materials Science,1982,9:415
    [4] P Krishna, A R Verma. Phys. Stat. Sol.1966,17:437
    [5]张进程,郝跃,赵天绪,王剑屏. SiC新型半导体器件及其应用.西安电子科技大学学报,2002,29(2):157
    [6]张昊翔,叶志镇. SiC材料及其在功率器件方面应用研究进展.材料科学与工程,1998,16(3):37
    [7] Z D Sha, X M Wu, L J Zhuge. Structure and photolumines-cence properties ofSiC films synthesized by the RF-magne-tron sputtering technique.Vacuum,2005,79:250
    [8] G Dhanaraj, M Dudley, Y Chen, Balaji Ragothamachar, B Wu, H Zhang.Epitaxialgrowth and characterization of silicon carbide films. Journal of CrystalGrowth,2006,287(2):344-348
    [9] J J Niu, J N Wang, N S Xu. Field emission property of aligned and random SiCnanowires array synthesized by a simple vaporesolid reaction, Solid StateSciences,2008,10:618-621
    [10]简红彬,康建波,于威,马蕾,彭英才. SiC薄膜的化学气相沉积及其研究进展.纳米材料与结构,2006,(1):11
    [11]鲁励.引入注目的SiC材料、器件和市场.世界产品与技术,2003,12:22
    [12]赵武,王雪文,邓周虎,张志勇. HFCVD法制备SiC薄膜工艺.西北大学学报(自然科学版),2002,32(3):47
    [13]郝跃,彭军,杨银堂.碳化硅宽带隙半导体技术[M],北京:科学出版社,2000
    [14] H Huanga, K J Winchester, A Suvorova, B R Lawn, Y Liu, X Z. Hu, J.M. Delland L. Faraone.Effect of deposition conditions on mechaniccal properties oflow-temperature PECVD silicon nitride films. Materials Science andEngineering A,2006,435–436:453–459
    [15] S Y Zhang,H Y Li,L Li, S H Zhou. Calculation of bulk modulus on carbonnitrides with chemical bond method. App.Phys.Lett.,2007,91(91):251905
    [16]李嘉席,孙军生,陈洪建,张恩怀.第三代半导体材料生长与器件应用的研究.河北工业大学学报,2002,31(2):41
    [17] K J Chang, M L Cohen. Ab initio pseudopotential study of structural andhigh-pressure properties of SiC. Phys.Rev.B,1987,35:196-8201
    [18] P Kackell, B Wenzien, F Bechstedt. Influence of atomic relaxations on thestructural properties of SiC polytypes from ab initio calculations, Phys.Rev.B,1994,50:17037-17046
    [19] V Munch, New Series, Groups IV and III-V, Vol.17, Part A (Springer, Berlin,1982), and references there in
    [20] W R L Lambrecht, B Segall, M Methfessel, M V Schilfgaarde. Calculated elasticconstants and deformation potentials of cubic SiC. Phys.Rev.B.,1991,44:3685–3694
    [21] W R L Lambrecht, B Segall, M Yoganathan, W Suttrop, R P Devaty, W. J.Choyke, J A Edmond, A Powell, M Alouani. Calculated and measured uvreflectivity of SiC polytypes. Phys. Rev. B,1994,50:10722–10726
    [22] C H Park, B H Cheong, K H Lee, K J Chang. Structural and electronic propertiesof cubic,2H,4H, and6H SiC, Phys.Rev.B,1994,49:4485-4493
    [23] G Philip, Neudeck.“SiC TECHNOLOGY”, NASA Lewis Research Center,1998.
    [24] G B Dubrovskii, A A Lepneva, Energy band structure and optical spectra ofsilicon carbide crystals. Sov. Phys. Solid State,1977,19:729
    [25] G L Harris. Properties of Silicon Carbide. INSPEC, London,1995
    [26] W H Backes, P A Bobbert,W Haeringen. Energy-band structure of SiC polytypesby interface matching of electronic wave functions. Phys.Rev.B,1994,49:7564-7568
    [27] M E Levinshtein, S L Rumyantsev, M S Shu. in Properties of AdvancedSemiconductorMaterials GaN, AlN, SiC, BN, SiC, SiGe. John Wiley&Sons,New York,2001,93-148
    [28] F Bechstedt. Mater.Sci.Forum,1998,264-268:265-270
    [29] I I Zhukova, V A Fomichev, A S Vinogradov, T M Zimkina, Sov.Phys.SolidState,1968,10:1097
    [30] H E Nilsson, A Martinez, U Sannemo. Numerical study of Bloch electrondynamics in wide band-gap semiconductors. Applied Surface Science,2001,184:199–203
    [31] H Linewih, S Dimitrijev, C E Weitzel, H B Harrison. Novel SiC AccumulationMode Power MOSFET. Ieee Transactions on Electron Devices,2001,48(8):1711-1717
    [32] R Szweda. Damond and SiC electronic. Mater.Res.,2006,19:40-43
    [33] K Rottner, M Frischholz, T Myrtveit, D Mou, K Nordgren, A Henry, C Hallin, UGustafsson, A Schoner. SiC power devices for high voltage applications.Material Science&Engineering B,1999,61-62:330-338
    [34] M Chafai, A Jaouhari, A Torres, M Chafai, A Jaouhari, R Anton, E Martin, JJimez, W C Mitchel. Raman scattering from Lo phonon-plasmon coupled modesand Hall-effect in n-type silicon carbide4H–SiC. Jouunal of Applied Physics,2001,90(10):5211-5215
    [35] H Matsunami. Current SiC technology for power electronic devices beyond Si.Micro.electr.Eng,2006,83:2
    [36] G Dhanaraj, M Dudley, Y Chen, B Ragothamachar, B Wu, H Zhang. Epitaxialgrowth and characterization of silicon carbide films. Journal of Crystal Growth,2006,287(2):344-348
    [37] D H Wang, D Xu, Q Wang, Y J Hao, G Q Jin, X Y Guo, K N Tu. Periodicallytwinned SiC nanowires. Nanotechnology,2008,19:215602
    [38] G Z Shen, Y S Bando, C H Ye, B D Liu, D Golberg. Characterization andfield-emission properties of bamboo-like β-SiC nanowires. Nanotechnology,2006,17:3468
    [39] S Iijima. Helical microtubules of graphitic carbon. Nature,2001,354:56-58
    [40] P Ball. Roll up for the revolution. Nature,2001,414:142-146
    [41] R Madar. Silicon carbide in contention. Nature,2004,430:974-975
    [42] B C Regan, S Aloni, R O Ritchie, U Dahmen, A Zettl. Carbon nanotubes asnanoscale mass conveyors. Nature,2004,428(29):924-927.
    [43] L E Hueso, J M Pruneda, V Ferrari, G Burnell, J P Valdes-Herrera, B D Simons,P B Littlewood, E Artacho, A Fert, N D Mathur. Transformation of spininformation into large electrical signals using carbon nanotubes. Nature,2007,445:410-413
    [44] P Jarillo-Herrero, J A van Dam, L P Kouwenhoven. Quantum supercurrenttransistors in carbon nanotubes. Nature,2006,439:953-956
    [45] K B Teo, E Minoux, L Hudanski, F Peauger, J P Schnell, L Gangloff, PLegagneux, D Dieumegard, G A Amaratunga, W I Milne. Carbon nanotubes ascold cathodes. Nature,2005,437:968-968
    [46] L Krusin-Elbaum, D M Newns, H Zeng, V Derycke, J Z Sun, R SandstromRoom-temperature ferromagnetic nanotubes controlled by electron or holedoping. Nature,2004,431:672-676.
    [47] M Khazaei, S Lee, F Pichierri, Y Kawazoe. Designing Nanogadgets byInterconnecting Carbon Nanotubes with Zinc Layers, ACS Nano,2008,2(5):939–943
    [48] P Bai, E Li, K T Lam, O Kurniawan and W S Koh. Carbon nanotube Schottkydiode: an atomic perspective, Nanotechnology,2008,19:115203
    [49] F Kuemmeth, S Ilani, D C Ralph, P L McEuen. Coupling of spin and orbitalmotion of electrons in carbon nanotubes, Nature,2008,452:448-452
    [50] S U Lee, M Khazaei, F Pichierri, Y Kawazoe. electron transport through carbonnanotube intramolecular heterojunctions with peptide linkages, Phys. Chem.Chem. Phys.,2008,10:5225-5231
    [51] R Li, R Wu, L Zhao, M Wu, L Yang, H Zou. P-glycoprotein antibodyfunctionalized carbon nanotube overcomes the multidrug resistance of humanleukemia cells. Nano.2010,4(3):1399-408
    [52] Y Min, K L Yao, Z L Liu, G Y Gao, H G Cheng and S C Zhu. First-principlescalculations: half-metallic Au–V(Cr) quantum wires as spin filters,Nanotechnology,2009,20:095201
    [53] D Zhou, S Seraphin. Production of silicon carbide whiskers from carbonnanoclusters. Phys.Lett.1994,222:233-238
    [54] W Q Han,Fan,Q Q Li, Y D Hu. Synthesis of gallium nitride nanorods througha carbon nanotube-confined reaction. Science,1997,277:1287-1289
    [55] J W Liu,D Y Zhong,F Q Xie,M Sun,E G Wang,W X Liu. Synthesis of SiCnanofibers by annealing carbon nanotubes covered with Si. Chemical PhysicsLetters,2001,348:357-360
    [56] X H Sun,C P Li,W K Wong,N B Wang,C S Lee,S T Lee, B K Teo. Formationof silicon carbide nanotubes and nanowires via reaction of silicon (fromdisproportionation of silicon monoxide with carbon nanotubes. J.Am.Chem.Soc,2002,124:14464-14471
    [57]张洪涛,徐重阳,gol-gel法制备纳米碳化硅晶须的研究.电子元件与材料,2000,19(3):9-12
    [58]徐武军,徐耀,孙先勇,刘亚琴,吴东,孙予罕.溶胶一凝胶和碳热还原法制备塔状SiC纳米棒.新型碳材料,2006,21(2):167-170.
    [59] H F Zhang,C M Wang, L S Wang. Helical crystalline SiC/SiO2: core-shellnanowires. NanoLetters,2002,2(9):941-944
    [60] B Q Wei,J W Ward,R Vajtai,P M Ajayan,R Ma,G Ramanath. Simultaneousgrowth of silicon carbide nanorods and carbon nanotubes by chemical vapordeposition. Chemical Physics Letters,2002,354:264-268
    [61] M Lin, K P Loha, C Boothroyd, A Y Du, Appl. Phys. Lett.2004,85:5388
    [62] G W Ho, S A W Wong, A T S Wee, M E Welland. Self-asssembled multi-coaxialcrystalline nanowires within wires, Nano Lett.2004,4:2023
    [63] J H Park, W J Kim, D J Kim, W S Ryn, J Y Park. Thermodynamic properties ofthe most stable gaseous small silicon-carbon clusters in their ground states. ThinSolid Films,2007,515(13):5519-5523
    [64] H W Shim, H C Huanga, Appl. Phys. Lett.,2007,90:083106
    [65] W M Zhou, X Liu, Y F Zhang, Appl. Phys. Lett.2006,89:223124
    [66] A M Morales,C M Lieber. A Laser Ablation Method for the Synthesis ofCrystalline Semiconductor Nanowires. Science,1998,279:208-211
    [67] D P Yu, C S Lee, I Bello, X S Sun, Y H Tang, G W Zhou, Z G Bai, Z Zhang, SQ Feng. Synthesis of Nano-scale silicon wires by excimer laser ablation at hightemperature. Solid State Commun.1998,105:403-407
    [68] Y B Li,S S Xie,X P Zhou,D S Tang, Z Q Liu, W Y Zhou, G Wang. Large-scalesynthesis of SiC nanorods in the Arc-discharge. Journal of Crystal Growth,2001,223:125-128
    [69] Z S Wu, S Z Deng, N S Xu, Jian Chen, J Zhou, Jun Chen. Needle-shaped siliconcarbide nanowires: Synthesis and field electron emission properties. Appl. Phys.Lett.,2002,80:3829
    [70] S Z Deng, Z B Li, W L Wang, N S Xu, J Zhou, X G Zheng, H T Xu, J Chen, J CShe. Field emission study of SiC nanowires nanorods directly grown on SiCceramic substrate. Appl. Phys. Lett.,2006,89:023118
    [71] B C Kang, S B Lee, J H Boo. Growth of β-SiC nanowires on Si(100) substratesby MOCVD using nickel as a catalyst. Thin Solid Films,2004,464–465:215–219
    [72] Y F Zhang, X D Han, K Zheng, Z Zhang, X N Zhang, J Y Fu, Y Ji, Y J Hao, XY Guo, Z L Wang. Direct Observation of Super-Plasticity of Beta-SiC Nanowiresat Low Temperature. Adv. Funct. Mater.,2007,17:3435–3440
    [73] J X Liu, B Lu. SiC nanowires synthesized by microwave sintering. Nanoscience,2006,11(4):281-285.
    [74] G Z Shen, Y S Bando, C H Ye, B D Liu, D Golberg. Synthesis characterizationand field-emission properties of bamboo-like β-SiC nanowires. Nanotechnology,2006,17:3468-3472
    [75]温广武,李峰,韩兆祥,白宏伟.从SiBONC陶瓷粉体中生长β-SiC纳米线,稀有金属材料与工程,2008,37(3):561-564
    [76] H T Wang, Z P Xie, W Y Yang, J Y Fang, L N An, Morphology Control in theVapor-Liquid-Solid Growth of SiC Nanowires, Crystal Growth&Design,2008,8(11):3893-3896
    [1] M D Segall, Philip J D Lindan, M J Probert, C J Pickard, P J Hasnip, S J Clark,M C Payne. First-principles simulation: ideas, illustrations and the CASTEPcode. J.Phys:Condens Matter,2002,14:2717
    [2] Y Z Tan, J Li, F Zhu, Xiao Han1, W S Jiang1, R B Huang1, Z P Zheng, Z Z Qian,R T Chen, Z J Liao, S Y Xie, X Lu, L S Zheng. Chlorofullerenes featuring triplesequentially fused pentagons, Nature Chemistry,2010,2:269-273
    [3] F G Wang, Z Y Pang, L Lin, S J Fang, Y Dai, S H Han. Origin of magnetism inundoped MoO2studied by first-principles calculations. Phys. Rev. B.,2010,81:134407
    [4] Y H Cui, J G Wang, W Xu. A density functional theory study of the one-dimensional alane, Nanotechnology,2010,21:025702
    [5] Z M Peng, H J You, H Yang. Composition-Dependent Formation of PlatinumSilver Nanowires, ACS Nano,2010,4:1501–1510
    [6] Y Gao, N Shao, Y Pei, X C Zeng. Icosahedral crown gold nanocluster Au43Cu12with high catalytic activity. Nano Lett.,2010,10(3):1055-1062
    [7] J P Perdew, J A Chevary, S H Vosko, Koblar A. Jackson, Mark R. Pederson, D JSingh, C Fiolhais. Atoms, molecules, solids, and surfaces: Applications of thegeneralized gradient approximation for exchange and correlation. Phys.Rev.B,1992,46:6671–6687
    [8] J X Liu, B Lu. SiC nanowires synthesized by microwave sintering. Nanoscience,2006,11(4):281-285
    [9] G Z Shen, Y S Bando, C H Ye, B D Liu, D Golberg. Synthesis, characterizationand field-emission properties of bamboo-like β-SiC nanowires, Nanotechnology,2006,17:3468-3472
    [10] B C Kang, S B Lee,J H Boo. Growth of β-SiC nanowires on Si (100) substratesby MOCVD using nickel as a catalyst. Thin Solid Films,2004,464-465:215-219
    [11] C H Park, Byoung-Ho Cheong, Keun-Ho Lee, K J Chang. Structural andelectronic properties of cubic,2H,4H, and6H SiC. Phys.Rev.B,1994,49:4485-4493
    [12] H E Nilsson, A Martinez, U Sannemo. Numerical study of Bloch electrondynamics in wide band-gap semiconductors. Applied Surface Science,2001,184:199-203
    [13] M E Levinshtein, S L Rumyantsev, M S Shu. In Properties of AdvancedSemiconductorMaterials GaN, AlN, SiC, BN, SiC, SiGe. John Wiley&Sons,New York,2001,93-148
    [14] H Pan, Y P Feng. Semiconductor Nanowires and Nanotubes: Effects of Size andSurface-to-Volume Ratio. ACS Nano,2008,2(11):2410–2414
    [15] Y N Xu, W Y Ching. Electronic, optical, and structural properties of somewurtzite crystals. Phys. Rev.B,1993,48:4335-4351
    [16] Z L Wang. Nanostructures of zinc oxide. Materials Today,2004,7:26-33
    [17] M H Huang, S Mao, H Feick, H Q Yan, Y Y Wu, H Kind, E Weber, R Russo, PYang. Room-temperature ultraviolet nanowire nanolasers. Science,2001,292:1897-1899
    [18] C Q Chen, Y Shi, Y S Zhang, J Zhu, Y J Yan. Size Dependence of Young'sModulus in ZnO Nanowires. Phys. Rev. Lett.,2006,96:075505
    [19] H E Unalan, Y Zhang, P Hiralal, S Dalal, D Chu, G Eda, K B K Teo, MChhowalla, W I Milne. Zinc oxide nanowire networks for macroelectronicdevices. Appl. Phys. Lett.,2009,94:163501
    [20]张富春. ZnO电子结构与属性的第一性原理研究[D],西北大学,2006
    [21]谢希德,陆栋.固体能带理论[M],上海:复旦大学出版社,1998
    [22]沈学础.半导体光谱和光学性质(第二版)[M],北京:科学出版社,1992
    [1] S Iijima. Helical microtubules of graphitic carbon. Nature.1991.354:56-58
    [2] Philip Ball. Roll up for the revolution. Nature.,2001,414:142-144
    [3] R H Baughman, A A Zakhidov, W A de Heer. Carbon Nanotubes--the Routetoward Applications. Science.2002,297(5582):787-792
    [4] R H Baughman. Muscles made from Metal. Science,2003,300(5617):268-269
    [5]郝跃,彭军,杨银堂.碳化硅宽带隙半导体技术[M],北京:科学技术出版社,2000:1-95
    [6] X H Sun, C P Li, W K Wong, N B Wong, C S Lee, S T Lee, Boon-Keng Teo.Formation of Silicon Carbide Nanotubes and Nanowires via Reaction of Silicon(from Disproportionation of Silicon Monoxide) with Carbon Nanotubes. J. Am.Chem. Soc.,2002,124(48):14464-14471
    [7] L Z Pei, Y H Tang, Y W Chen, C Guo, X X Li, Y Yuan, Y Zhang. Preparation ofsilicon carbide nanotubes by hydrothermal method. J.Appl.Phys.,2006,99:114306
    [8] L Z Pei, Y H Tang, X Q Zhao, Y W Chen, C Guo. Formation mechanism ofsilicon carbide nanotubes with special morphology. J. Appl. Phys.,2006,100:046105
    [9] M Menon, E Richter, N Antonis. Andriotis. Structure and stability of SiCnanotubes. Phys. Rev.B.,2004,69:115322
    [10] M W Zhao, Y Y Xia, F Li, R Q Zhang, S T Lee. Strain energy and electronicstructures of silicon carbide nanotubes: Density functional calculations. Phys.Rev. B.,2005,71:085312
    [11] A Mavrandonakis, G E Froudakis, M Schnell, M Mühlh user. From Pure Carbonto Silicon Carbon Nanotubes: An Ab-initio Study. Nano Letters.,2003,3(11):1481-1484
    [12] R Madar. Silicon carbide in contention. Nature,2004,430:974-975
    [13] A Gali. Ab initio study of nitrogen and boron substitutional impurities insingle-wall SiC nanotubes. Phys. Rev.,2006, B73:245415
    [14] K M Alam, A K Ray. Hybrid density functional study of armchair SiC nanotubes.Phys. Rev.,2008, B77:035436
    [15] B Baumeier, P Krüger, J Pollmann. Structural, elastic, and electronic propertiesof SiC, BN, and BeO nanotubes. Phys. Rev.B.,2007,76:085407
    [16] S Mukherjee, A K Ray. An Ab Initio Study of Molecular Hydrogen Interactionwith SiC Nanotube—A Precursor to Hydrogen Storage. Journal ofComputational and Theoretical Nanoscience,2008,5(7):1210-1219
    [17] S J Clark, M D Segall, C J Pickard, P J Hasnip, M I J Probert, K Refson, M CPayne. First principles methods using CASTEP. Z. Kristallogr,2005,220:567–570
    [18] J Dong, G Xiang, K X Yang, L J Ming. Atomistic Failure Mechanism of SingleWall Carbon Nanotubes with Small Diameters. Chinese Phys. Lett.,2007,24:165
    [19] D E Milkie, C Staii, S Paulson, E Hindman, A T Johnson, J M Kikkawa.Controlled Switching of Optical Emission Energies in SemiconductingSingle-Walled Carbon Nanotubes. Nano Lett.,2005,5(6),1135–1138
    [20] J Goldberger, R He, Y F Zhang, S W Lee, H Q Yan, H J Choi, P D Yang.Single-crystal gallium nitride nanotubes. Nature,2003,422:599-602
    [21] A Gali. Ab initio study of nitrogen and boron substitutional impurities insingle-wall SiC nanotubes. Phys. Rev.B,2006,73:245415
    [22] T L Makarova, B Sundqvist, R H hne, P Esquinazi, Y Kopelevich, P Scharff, VA Davydov, L S Kashevarova, V Aleksandra. Magnetic carbon. Nature,2001,413:716-718
    [23] Y Zhang and H J Dai. Formation of metal nanowires on suspended single-walledcarbon nanotubes. Appl. Phys. Lett.,2000,77:3015
    [24] S Dag, E Durgun, S Ciraci. High-conducting magnetic nanowires obtained fromuniform titanium-covered carbon nanotubes. Phys. Rev.B,2004,69:121407
    [25] J X Zhao, Y H Ding. Silicon Carbide Nanotubes Functionalized by TransitionMetal Atoms: A Density-Functional Study. J. Phys. Chem. C,2008,112(7):2558-2564
    [26] K M Alam, A K Ray. Interactions of Fe atom with single wall armchair SiCnanotubes: an ab initio study. Journal of Nanoparticle Research,2009,11(6):1405-1420
    [27] D Kitchen, A Richardella, J M Tang. E Michael. Flattéand Ali Yazdani.Atom-By-atom substitution of Mn in GaAs and visualization of theirhole-mediated interactions. Nature,2006,442:436-439
    [28] K M Alam, A K Ray. Hybrid density functional study of armchair SiC nanotubes.Phys. Rev. B,2008,77:035436
    [29] B Baumeier, P Krüger, J Pollmann. Structural, elastic, and electronic propertiesof SiC, BN, and BeO nanotubes. Phys. Rev.B,2007,76:085407
    [30] Q Wang, Q Sun, P Jena. Ferromagnetic GaN Cr Nanowires. Nano Lett.,2005,5(8):1587-1590
    [31] Q Wang, A K Kandalam, Q Sun, P Jena. Ferromagnetism in Al1xCrxN thinfilms by density functional calculations. Phys. Rev.B,2006,73:115411
    [32] Q Wang, Q Sun, P Jena. Ferromagnetic to ferrimagnetic crossover in Cr-dopedGaN nanohole arrays. Phys Rev.B.,2007,75:075312
    [1] C Roland, V Meunier, B Larade, H Guo. Charge Transport through small siliconcluster. Phys. Rev.,2002, B66:035332
    [1] http://www.hongcam.com.cn/product/product-detail.asp?id=127: ATK软件中文帮助文件
    [2] F PYang, J Xiao, R Guo, H Zhang, H Xu. Transport properties of T-shaped andcrossed junctions based on graphene nanoribbons. Nanotechnology,2009,20:055202
    [3] K T Lam, G C Liang. An ab initio study on energy gap of bilayer graphenenanoribbons with armchair edges. Appl. Phys. Lett.,2008,92:223106
    [4] Y T YANG, J X SONG, H X LIU, C C CHAI. Negative differential resistance insingle-walled SiC nanotubes. Chinese Science Bulletin,2008,23:3770-3772
    [5] Y F Li, B R Li, H L Zhang. Ab initio investigations of the transport properties ofHaeckelite nanotubes. J. Phys.: Condens. Matter.,2008,20:415207
    [6] P Bai, E Li, K T Lam, O Kurniawan and W S Koh. Carbon nanotube Schottkydiode: an atomic perspective. Nanotechnology,2008,19:115203
    [7] Steven Compernolle, Geoffrey Pourtois, Bart Sorée, Wim Magnus, Liviu F.Chibotaru, Arnout Ceulemans. Conductance of a copper-nanotube bundleinterface: Impact of interface geometry and wave-function interference. Phys.Rev.,2008, B77:193406
    [8] M Khazaei, S U Lee, F Pichierri, Y Kawazoe. Designing Nanogadgets byInterconnecting Carbon Nanotubes with Zinc Layers. ACS Nano.,2008,2(5):939–943
    [9] Y Min, K L Yao, Z L Liu, H G Cheng, S C Zhu, G Y Gao. CrAs(001)/AlAs(001) heterogeneous junction as a spin current diode predicted byfirst-principles calculations, J. Mag&Mag. Mat.,2009,321:312
    [10] Z Q Fan, K Q Chen, Q Wan, B S Zou, Wenhui Duan. Theoretical investigation ofthe negative differential resistance in squashed C [sub60] molecular device.Appl. Phys. Lett.,2008,92:263304
    [11] Y W Li, G P Yin, J H Yao, J W Zhao. First-principles study of substituents effecton molecular junctions: towards molecular rectification. ComputationalMaterials Science.,2008,42:638-642
    [12] Meng-Qiu Long, Ke-Qiu Chen, Lingling Wang, Wan Qing, B. S. Zou1, and Z.Shuai. Negative differential resistance behaviors in porphyrin molecularjunctions modulated with side groups. Appl. Phys. Lett.,2008,92:243303
    [13] Yoshishige Okunoand, Shiyoshi Yokoyama. Theoretical study of molecularrectification in porphyrin dimmer. Thin Solid Film.,2008,516:2630-2634
    [14] Z X Dai, X H Zheng, X Q Shiand Z Zeng. Effects of Contact Geometry onTransport Properties of a Si4Cluster. Phys. Rev.,2005, B72:205408
    [15] Jeremy Taylor1, Hong Guo, Jian Wang.Ab initio modeling of quantum transportproperties of molecular electronic devices. Phys. Rev.,2001, B63:245407
    [16] J P Perdew, A Zunger. Self-interaction correction to densityfunctionalapproximations for many-electron systems. Phys. Rev. B,1981,23:5048-5079
    [17] C T White, T N Todorov. Carbon nanotubes as long ballistic conductors. Nature,1998,393:240-242
    [18] Y T YANG, J X SONG, H X LIU, C C Chai. Negative differential resistance insingle-walled SiC Nanotubes.Chinese Science Bulletin.,2008,53(23):3770-3772
    [1]郝跃,彭军,杨银堂.碳化硅宽带隙半导体技术[M].科学出版社,2000
    [2]张进程,郝跃,赵天绪,王剑屏.SiC新型半导体器件及其应用.西安电子科技大学学报,2002,29(2):157-162
    [3] D Zhou, S Seraphin. Production of silicon carbide whiskers from carbonnanoclusters. J.Phys.Lett.,1994,222(3):233-238
    [4] Z S Wu, S Z Deng, N S Xu, Jian Chen, J Zhou, J Chen. Needle-shaped siliconcarbide nanowires: Synthesis and field electron emission properties.Appl.Phys.Lett.,2002,80(20):3829-3831
    [5] W M Zhou, Y J Wu, Eric Siu-Wai Kong, F Zhu, Z Y Hou, Y F Zhang. Fieldemission from nonaligned SiC nanowires. Applied Surface Science,2006,253(4):2056–2058
    [6] J J Niu, J N Wang,N S Xu. Field emission property of aligned and random SiCnanowires arrays synthesized by a simple vaporesolid reaction. Solid StateSciences,2008,10:618-621
    [7] Z L Wang, Z R Dai, P R Gao, Z G Bai and J L Gole. Side-by-side siliconcarbide-silica biaxial nanowires: Synthesis, structure, and mechanical properties.Appl.Phys.Lett.,2000,77(21):3349-3351
    [8] X T Zhou, H L Lai, H Y Peng, Frederick C. K. Au, L. S. Liao, N. Wang, I. Bello,C. S. Lee and S. T. Lee. Thin β-SiC nanorods and their emission properties,Chen.Phys.Lett.,2000,318(1-3):58-62
    [9] W Q Han,S S Fan,Q Q Li and Y D Hu. Synthesis of gallium nitride nanorodsthrough a carbon nanotube-confined reaction. Seience.1997,277(29):1287-1289
    [10] J W Liu,D Y Zhong,F Q Xie,M Sun,E G Wang and W X Liu. Synthesis ofSiC nanofibers by annealing carbon nanotubes covered with Si. ChemicalPhysics Letters,2001,348(5-6):357-360
    [11] X H Sun, C P Li, W K Wong, N B Wang, C S Lee, S T Lee, B K Teo. Formationof silicon carbide nanotubes and nanowires via reaction of silicon (fromdisproportionation of silicon monoxide) with carbon nanotubes. J.Am.Chem.Soc,2002,124(48):14464-14471
    [12] H F Zhang, C M Wang, L S Wang. Helical crystalline SiC/SiO2: core-shellnanowires. NanoLetters,2002,2(9):941-944
    [13] B Q Wei,J W Ward,R Vajtai,P M Ajayan, R Ma and G Ramanath.Simultaneous growth of silicon carbide nanorods and carbon nanotubes bychemical vapor deposition. Chemical Physics Letters,2002,354:264-268
    [14] M Lin, K P Loha, C Boothroyd, A Y Du. Nanocantilevers made of bent siliconcarbide nanowire-in-silicon oxide nanocones. Appl. Phys. Lett.,2004,85(22):5388-5390
    [15] G W Ho, S A W Wong, A T S Wee, M E Welland. Self-assembled Growth ofCoaxial Crystalline Nanowires. Nano Lett.,2004,4(10):2023-2026
    [16] J H Park, W J Kim, D J Kim, W S Ryn and J Y Park. Selective growth of β-SiCwhisker on a patterned Si (111) substrate for a field emission device. Thin SolidFilms,2007,515(13):5519-5523
    [17] H W Shim, H C Huang. Three-stage transition during silicon carbide nanowiregrowth. Appl. Phys. Lett.,2007,90(8):083106
    [18] W M Zhou, X Liu, Y F Zhang. Simple approach to β-SiC nanowires: Synthesis,optical, and electrical properties. Appl. Phys. Lett.,2006,89(22):223124
    [19] Y B Li, S S Xie, X P Zhou, D S Tang, Z Q Liu, W Y Zhou, G Wang. Large-scalesynthesis of SiC nanorods in the Arc-discharge. Journal of Crystal Growth,2001,223(1-2):125-128
    [20] Z S Wu, S Z Deng, N S Xu, J Chen, J Zhou, J Chen. Needle-shaped siliconcarbide nanowires: Synthesis and field electron emission properties. Appl. Phys.Lett.2002,80(20):3829-3831
    [21] S Z Deng, Z B Li, W L Wang, N S Xu, J Zhou, X G Zheng, H T Xu, J Chen, J CShe. Field emission study of SiC nanowires/nanorods directly grown on SiCceramic substrate. Appl. Phys. Lett.,2006,89(2):023118
    [22] C Roland, V Meunier, B Larade, H Guo. Charge Transport through small siliconcluster. Phys.Rev.B,2002,66(3):035332
    [23] http://www.hongcam.com.cn/product/product-detail.asp?id=127: ATK软件中文帮助文件
    [24] S H Liao, S T Chang, C Y Lin, W C Wang, J W Fan. Studying the strain effecton silicon atomic wires. J Korean Phys Soc,2008,53:3655
    [25] Man-Fai Ng, Lei Shen, Liping Zhou, Shuo-Wang Yang and Vincent B. C. Tan.Geometry dependent I-V characteristics of silicon nanowires. Nano Letters,2008,8(11):3662-3667
    [26] T Yang, S Berber, D Tománek. Compositional ordering and quantum transport inMo6S9-xIxnanowires: Ab initio calculations. Phys.Rev.B,2008,77(16):165426
    [27] Y H Zhou, X H Zheng, Y Xu and Z Y Zeng. First-principles study on thedifferences between the equilibrium conductance of carbon and silicon atomicwires. J. Phys.: Condens. Matter,2008,20(4):045225
    [28] F P Yang, J Xiao, R Guo, H Zhang, H Xu. Transport properties of T-shaped andcrossed junctions based on graphene nanoribbons. Nanotechnology,2009,20(5):055202
    [29] K T Lam, G Liang. An ab initio study on energy gap of bilayer graphenenanoribbons with armchair edges. Appl.Phys.Lett.,2008,92(22):223106
    [30] Z Q Fan, K Q Chen, Q Wan, B S Zou, W Duan, Z Shua. Theoreticalinvestigation of the negative differential resistance in squashed C60moleculardevice. Appl.Phys.L ett.,2008,92(26):263304
    [31] Yoshishige Okuno, Shiyoshi Yokoyama. Theoretical study of molecularrectification in porphyrin dimmer.Thin Solid Films,2008,516(9):2630-2634
    [32] Z X Dai, X H Zheng, X Q Shi, Z Zeng. Effects of Contact Geometry onTransport Properties of a Si4Cluster. Phys.Rev.B.,2005,72(20):205408
    [33] J Taylor, H Guo, J Wang. Ab initio modeling of quantum transport properties ofmolecular electronic devices. Phys. Rev.B.,2001,63(24):245407
    [34] J P Perder, A Zunger. Self-interaction correction to densityfunctional appro-ximations for many-electron systems. Phys.Rev.B.,1981,23(10):5048-5079
    [35] K W Wong, X T Zhou, F C K Au, H L Lai, C See, S T Lee. Field-emissioncharacteristics of SiC nanowires prepared by chemical-vapor deposition. Appl.Phys. Lett.,1999,75(19):2918-2920
    [36] Z S Wu, S Z Deng, N S Xu, J Chen and J Zhou. Needle-shaped silicon carbidenanowires: Synthesis and field electron emission properties. Appl. Phys. Lett.,2002,80(20):3829-3831
    [37] W M Zhou, Y J Wu, Eric Siu-Wai Kong, F Zhu, Z Y Hou, Y F Zhang. Fieldemission from nonaligned SiC nanowires. Applied Surface Science,2006,253(4):2056–2058

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700