用户名: 密码: 验证码:
高效净化富营养化水体能源植物的筛选及其生理生态基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自20世纪50年代以来,全球生态系统退化、环境变化加剧,河流、湖泊、水库等水体不同程度地面临着营养盐增加和富营养化的威胁。氮和磷增多是引起水体富营养的两个主要因子。因此,减少水体中的氮和磷是防止和减轻水体富营养的有效措施。由于传统的污水处理方法不能有效的去除氮和磷,以营养盐去除为目的的生态工程以成本低、维护简单等特点,在世界各地得到越来越多的应用。人工湿地能够有效的去除营养盐和有机污染物,然而由于占用大量的土地,在土地资源有限、人口密度大的中国应用受到一定的限制。因此结合景观美化的浮床技术应用越来越广泛。构建和恢复水生态在富营养化的控制和治理措施中,通过种植水生植物来吸收和去除水中的营养盐是一种成本低、有效的植物修复方法。然而,为了保持其较高的净化效率,植物生物量必须定期进行移除;否则被植物吸收、同化的营养盐会通过降解重新返回水体。另一方面,人口快速增长、有限的土地资源导致资源供应不足,生态处理系统展示了良好的水净化效果和资源循环利用。工程修复植物生物量如果能够资源化利用,不仅能够有效控制水生植物的生长,又能够不占用土地进行资源持续生产。目前大多数研究将重点放在夏秋季节应用于生态修复水生植物的选择,对于能源植物的生态修复研究尚未开展。本文在野外试验条件下筛选能够在夏秋和冬春季节富营养水体中生长良好,并对富营养水体净化效率高的暖季高秆能源植物和冷季能源草,研究其在一定时间内所产生的生物质及对水体的氮磷削减量,通过室内试验研究植物生理生态特性与水体净化效率的关系,以期找到与水体营养盐去除相伴的植物性状,并对产生的生物量进行资源利用品质特性进行了研究,为其生态工程应用提供科学依据和技术指导。结果表明:
     1.试验所选6种暖季高秆能源植物从2009年4月至2009年11月在富营养长塘中均能适应水生环境并快速生长,其中芒草(Miscanthus (sp.))和香根草(V. zizanioides)的生物量干重较大,分别是3.2kgm-2和2.34kgm-2,并且对富营养水体中磷提取以及固碳能力的表现优于茭草(Z. caduciflora)、再力花(T.dealbata)和菖蒲(Acorus calamus);绿苇(Phragmites (sp.))对富营养水体中硫提取接近芒草;芒草、茭草和再力花的氮提取能力较大。在16天的静态试验表明6种植物浮床对总氮、氨氨、氮氧化物和总磷浓度和处理时间呈负指数形式衰减,平均去除率分别为50.3%,59.4%,82.4%和86.5%,显著高于对照(P<0.05)。
     2.通过对4种冷季能源草从2009年12月至2010年4月在华家池长塘和临安尾水两种水环境中的生长情况分析,发现营养盐浓度较高的临安尾水环境中,能源草生物量比华家池长塘生物量高21.7%。在营养盐浓度低的华家池长塘中能源草根系长度增加18-66%、分蘖数增多40-75%。不同能源草种类间,高羊茅(Festuca arundinacea)生物量最高,显著高于高原(Lolium perenne Plateau),在华家池长塘中对水体氮、磷的提取量分别为43.32g m-2和6.15g m-2,在临安尾水中对氮、磷的提取量分别为48.55gm-2和7.94gm-2,是优良的富营养水体修复种质资源。通过高羊茅和固定化微生物(反硝化聚磷菌)相互作用对富营养水提的净化效应分析,结果表明接种固定化微生物增强了生态浮床对氨氮、硝态氮、总氮、总磷和正磷酸磷的去除,对氨氮、硝态氮、总氮、总磷和磷酸盐磷的去除率分别为86.32%、93.60%、90.12%、72.09%和84.29%。对氮和磷的去除速率分别为137mg m-2d-1、16.0mg m-2d-1,因此冷季能源草复合生态浮床在冬春季节具有良好的应用前景。
     3.通过对5种高秆草本能源植物和4种木本柳树在1/4Hogland营养液90天的生物量积累的分析发现,柳枝稷(Panicum virgatum)、香根草和芒草的生物量显著高于绿苇和芦竹(Arundo donax),与旱柳、蒿柳、杞柳、杂交柳(簸萁柳×杞柳)4种柳树的生物量相当;经分析这三种草本能源植物具有较高的净光合速率、最大净光合速率、光饱和点。经过15天的污水处理,9种植物的PSII最大光化学量子效率(Fv/Fm)、实际光化学量子效率(ΦPSII)和叶绿素荧光的光化学猝灭系数(qP)均有所下降,但是没有达到显著水平(P<0.05);而且柳枝稷、香根草和芒草ΦPSII下降幅度明显低于其它植物,说明它们对污水的耐性较强。对人工配制的污水的净化效果分析,发现柳枝稷、芒草对总氮和总磷的去除率均达到70%以上。经相关分析,总氮去除率与水体中细菌、反硝化菌数量以及植物生物量、植物叶片净光合速率、蒸腾速率、水分利用率、光饱和点和最大净光合速率显著相关。磷的去除率与水体中细菌数量、植物叶片净光合速率、光饱和点和最大净光合速率显著相关。因此,柳枝稷、香根草和芒草具有较高的光合能力,通过生物量的快速积累,以及促进水体中细菌特别是反硝化菌的生长,达到高效修复的目的。
     4.通过对高羊茅和9种水生植物(凤眼莲、水浮莲、黄花水龙、钱币草、水鳖、狐尾藻、梭鱼草、美人蕉和再力花)化学组分分析表明,地上部粗蛋白含量在128-255g kg-1之间,达到于禾本科牧草干草质量特级标准(农业部行业标准NY/T728-2003);除锌元素之外,Ca、Mg、Fe、Mn均能满足禽类和牲畜的需求;痕量重金属元素植物的积累Cu>Pb>Cr>As,低于美国国家研究委员会和我国饲料卫生标准,能够保证动物饲料的安全,是良好的动物饲料原料。
     5.通过对生长于浮床之上6种暖季高秆能源植物生物质分析,发现香根草、芒草粗纤维、中性洗涤纤维和酸性洗涤纤维含量均超过330g kg-1、700g kg-1和380g kg-1;上部纤维素含量和半纤维素之和均在600g kg-1左右,均显著高于菖蒲和再力花;而且酸性洗涤木质素的含量与之相反,是良好的生物质原料,而且不占用耕地、不会引起粮食安全的风险。
From the latter half of the last century, there has been increasing concern regarding the elevated nutrient status and the eutrophication of rivers and lakes. One of the most widespread examples of pollution is eutrophication due to inputs of large quantities of inorganic nutrients, particularly nitrogen and phosphorus, to freshwater rivers, lakes, streams and reservoirs. Nitrogen (N) and phosphorus (P) are the two major influencing factors on water eutrophication. Therefore, removing N and P in water is an effective approach to mitigating and preventing eutrophication. Due to inability of reduction of N and P by conventional wastewater treatment systems, other appropriate measures should be taken to lower the impacts of nutrient pollution. Ecological engineering for the removal of pollutants at low cost is an emerging field dedicated to the design and construction of sustainable ecosystems that provide a balance of natural and human values. Constructed wetlands occupies a large area of lands, which is a limiting resource in countries such as China where human population density is high. Floating bed technique can be an alternative tool. Restoration using floating, floating-leaf, emergent and submersed hydrophytes is considered crucial to regulating lake biological structure, as aquatic plants limit algal growth by competing for nutrients and sunlight and can also increase herbivorous fish biomass by providing food and refuge. However, plant biomass must be removed periodically from the water bodies to maintain purification efficiency. If not harvested, the nutrients that have been incorporated into the plant tissue may be returned to the water during the decomposition processes. On the other side, rapid population growth coupled with limited cultivable land also causes serious problems maintaining a steady supply of food. Ecological treatment systems have been demonstrated to have significant potentials for both wastewater treatment and resource recovery. There are many potential economic opportunities for the use of plant biomass associated with hygrophytes. They could be dried and used as a food source for domestic animals and the food value could partially offset the cost of harvesting, if the plants were also grown and removed for nutrient abatement purposes. The plants produced on floating islands can be harvested and subsequently used as animal feeds, or even human food, or be processed into biogas, bio-fertilizer and bio-materials. People begin to realize the importance of ecological technology for water remediation due to excellent performance, minimal capital cost and ecological benefit. However, the majority study concentrated on remediation of aquatic plants in warmer condiations. There is no report about the remediation of bioenergy plants and their resource utilization. As a result, the present study was mainly concentrated on screening tall plant type of bioenergy plants in warmer seasons and perennial bioenergy grasses species in cold seasons that could not only adapt to grow well on floating beds but also with high nutrients removal efficiency, studying their biomass production and nitrogen, phosphorus reduction during the growth period, investigating the relationship between plant biomass production and nutrients removal efficiency, aiming at determine plant characters that associated with its purification capacity, and assessing the biomass as animao feed and bioenergy feedstock. The results showed:
     1. Field study on the response of6tall bioenergy plants in eutrophic water revealed that they could all adapt the aquatic environment. Among six tested plant species grown on floating beds in the field experiment, Chinese silvergrass (Miscanthus (sp.)) and vetiver(Vetiveria zizanioides) had greater dry biomass and were3.21kg m-1and2.34kg m-2, respectively. Chinese silvergrass and vetiver had greater phosphorus phyto-uptake carbon sequestration. The sulfur phyto-uptake of green reed (Phragmites (sp.)) was near to Chinese silvergrass. Chinese silvergrass, fewflower wildrice(Zizania caduciflord) and alligator flag(Thalia dealbata) had greater nitrogen phyto-uptake. The average removal efficiency for total nitrogen, ammonium nitrogen, nitrate and nitrite nitrogen and total phosphorus by six standing plant species were respectively50.3%,59.4%,82.4%and86.5%, during a16-day experiment on floating beds. Chinese silvergrass was most promising plant species for biomass production and nutrient removal grown on eutrophic water with floating beds.
     2. It was found that root length and tillers of four tall bioenergy grasses in Hujiachi pond were greater than those in effluent of Linan municipal wastewater treatment plants. The differences of total biomass were not significant during the four tested months. However, the biomass of tall fescue (Festuca arundinacea) was significantly greater than perennial ryegrass(Lolium perenne Plateau) and had greater nitrogen phyto-uptake and phosphorus phyto-uptake. After determining the feasibility of using floating beds of tall fescue inoculated with denitrifying polyphosphate accumulating organisms (DPAOs), it was showed that tall fescue floating beds inoculated with DPAOs accomplished greater removal of NH4+-N, NO3--N, TN and ortho-phosphorus (ortho-P) after20-day treatment. The average removal rates were86.32%,93.60%,90.12%,72.09%and84.29%, respectively for NH3-N, NO3-N, TN, TP and ortho-P. The removal rates of nitrogen and phosphorus were up to137mg m-2d-1and16.0mg m-2d-1, respectively.
     3. After cultured in1/4Hogland solution for90days, the biomass of switchgrass (Panicum virgatum), vetiver and Chines silvergrass were significantly greater than green reed and giantreed, and were comparable to four willow species. This was related with their greater net photosynthetic rate (Pn), the maximum net photosynthetic rate (Amax) and light saturation point (LSP). Moreover, the maximum photochemical efficiency of PSII (ΦPSII) of switchgrass, vetiver and Chines silvergrass decreased less than other six plant species. After analyzing the nitrogen and phosphorus removal form synthetic wastewater, it was showed the nitrogen removal was signifcantly related with the number of bacteria and denitrifying bacteria, Pn, transpiration rate (Trmmol), water utilization efficiency (WUE), LSP and Amax, and the phosphorus removal was signifcantly related with the number of bacteria in water, Pn, LSP and Amax.
     4. The tested tall fescue and nine aquatic plants contained abundant crude protein ranging from128g kg-1to255g kg-1. Although Zn level of harvested biomass from remediation plants cannot meet the requirement, crude protein, Ca, Mg, Fe and Mn can meet the daily requirements of livestock and poultry at different growth stage according to National Research Council (NCR) and China Feed Database (2009). The accumulation of trace mineral elements in the tested plants was in the order of Cu> Pb> Cr> As. They were below the standard of NRC (2000) and Hygienical Standard for Feeds in China (GB13078-2001). Therefore, it should be safe when used as animal feed.
     5. Among six tested tall bioenergy species grown on floating beds in the field experiment, Miscanthus (sp.) and Vetiveria zizanioides were dominant in growth, annual biomass production, nitrogen phyto-uptake, phosphorus phyto-uptake, sulfur phyto-uptake and carbon sequestration. Neutral-detergent fiber, acid-detergent fiber, acid-detergent lignin, cellulose and hemicellulose contents of these species were similar to swithgrass. Miscanthus (sp.) and Vetiveria zizanioides were most promising plant species for biomass production and nutrient removal grown on eutrophic water with floating beds.
引文
Abbasi, S.A., P.C. Nipaney and M.B. Panholzer,1991. Biogas production from the aquatic weed Pistia(Pistia stratiotes). Bioresource technology,37:211-214.
    Abbasi, S.A., P.C. Nipaney and G.D. Schaumberg,1990. Bioenergy potential of eight common aquatic weeds. Biological wastes,34:359-366.
    Abbes, C., L.E. Parent and A. Karam,1993. Ammonia sorption by peat and N fractionation in some peat-ammonia systems. Nutrient Cycling in Agroecosystems,36: 249-257.
    Abe, K. and Y. Ozaki,1998. Comparison of useful terrestrial and aquatic plant species for removal of nitrogen and phosphorus from domestic wastewater. Soil science and plant nutrition,44:599-607.
    Allen, J.G., M.W. Beutel, D.R. Call and A.M. Fischer,2010. Effects of oxygenation on ammonia oxidation potential and microbial diversity in sediment from surface-flow wetland mesocosms. Bioresource technology,101:1389-1392.
    Alvarez, R. and G. Liden,2008. Anaerobic co-digestion of aquatic flora and quinoa with manures from Bolivian Altiplano. Waste Management,28:1933-1940.
    Ash, R. and P. Truong,2003. The use of vetiver grass wetland for sewerage treatment in Australia. Proceedings of the Third International Conference on Vetiver and Exhibition, Guangzhou, China.
    Bachand, P.A.M. and A.J. Home,1999. Denitrification in constructed free-water surface wetlands:Ⅱ. Effects of vegetation and temperature. Ecological Engineering, 14:17-32.
    Barrow, N.J.,1983. On the reversibility of phosphate sorption by soils. Journal of Soil Science,34:751-758.
    Bennicelli, R., Z. Stepniewska, A. Banach, K. Szajnocha and J. Ostrowski,2004. The ability of Azolla caroliniana to remove heavy metals (Hg (Ⅱ), Cr (Ⅲ), Cr (Ⅵ)) from municipal waste water. Chemosphere,55:141-146.
    Bergmann, B.A., J. Cheng, J. Classen and A.M. Stomp,2000. In vitro selection of duckweed geographical isolates for potential use in swine lagoon effluent renovation. Bioresource technology,73:13-20.
    Bies, L.,2006. The biofuels explosion:is green energy good for wildlife? Wildlife Society Bulletin,34:1203-1205.
    Bindu, T., V.P. Sylas, M. Mahesh, P.S. Rakesh and E.V. Ramasamy,2008. Pollutant removal from domestic wastewater with Taro (Colocasia esculenta) planted in a subsurface flow system. Ecological Engineering,33:68-82.
    Bjornstad, E. and A. Skonhoft,2002. Wood fuel or carbon sink? Aspects of forestry in the climate question. Environ Resour Econ,23:447-465.
    Boddiger, D.,2007. Boosting biofuel crops could threaten food security. The Lancet, 370:923-924.
    Boyd, C.E.,1969. Production, mineral nutrient absorption, and biochemical assimilation by Justicia americana and Alternanthera philoxeroides. Arch. Hydrobiol. 66:511-517
    Boyd, C.E.,1970. Vascular aquatic plants for mineral nutrient removal from polluted waters. Economic Botany,24:95-103.
    Boyd, C.E. and R.D. Blackburn,1970. Seasonal changes in the proximate composition of some common aquatic weeds. Hyacinth Control J,8:2-4.
    Bransby, D.I., S.B. McLaughlin and D.J. Parrish,1998. A review of carbon and nitrogen balances in switchgrass grown for energy. Biomass and Bioenergy,14: 379-384.
    Brix, H.,1997. Do macrophytes play a role in constructed treatment wetlands? Water science and technology,35:11-18.
    Brix, H., C. Arias and N.H. Johansen,2003. Experiments in a two-stage constructed wetland system:nitrification capacity and effects of recycling on nitrogen removal. In: J. Vymazal (Ed), Wetlands—Nutrients, Metals and Mass Cycling, Backhuys Publishers, Leiden, The Netherlands, pp.237-258.
    Brix, H. and H.H. Schierup,1989. The use of aquatic macrophytes in water-pollution control. Ambio. Stockholm,18:100-107.
    Chaiprapat, S., J.J. Cheng, J.J. Classen and S.K. Liehr,2005. Role of internal nutrient storage in duckweed growth for swine wastewater treatment. Transactions of the Asae, 48:2247-2258.
    Chanakya, H.N., S. Borgaonkar, M.G.C. Rajan and M. Wahi,1992. Two-phase anaerobic digestion of water hyacinth or urban garbage. Bioresource technology,42: 123-131.
    Cheng, J., B.A. Bergmann, J.J. Classen, A.M. Stomp and J.W. Howard,2002a. Nutrient recovery from swine lagoon water by Spirodela punctata. Bioresource technology,81:81-85.
    Cheng, J., L. Landesman, B.A. Bergmann, J.J. Classen, J.W. Howard and Y.T. Yamamoto,2002b. Nutrient removal from swine lagoon liquid by Lemna minor 8627. Trans. ASAE,45:1003-1010.
    Cheng, J.J. and A.M. Stomp,2009. Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean-Soil, Air, Water,37:17-26.
    Chisti, Y.,2007. Biodiesel from microalgae. Biotechnology advances,25:294-306.
    Chojnacka, K.,2006. The application of multielemental analysis in the elaboration of technology of mineral feed additives based on Lemna minor biomass. Talanta,70: 966-972.
    Chou, R.L., M.S. Su and H.Y. Chen,2001. Optimal dietary protein and lipid levels for juvenile cobia (Rachycentron canadum). Aquaculture,193:81-89.
    Chung, A.K.C., Y. Wu, N.F.Y. Tam and M.H. Wong,2008. Nitrogen and phosphate mass balance in a sub-surface flow constructed wetland for treating municipal wastewater. Ecological Engineering,32:81-89.
    Cicek, N., S. Lambert, H.D. Venema, K.R. Snelgrove, E.L. Bibeau and R. Grosshans, 2006. Nutrient removal and bio-energy production from Netley-Libau Marsh at Lake Winnipeg through annual biomass harvesting. Biomass and Bioenergy,30:529-536.
    Clarke, E. and A.H. Baldwin,2002. Responses of wetland plants to ammonia and water level. Ecological Engineering,18:257-264.
    Collins, B., J.V. McArthur and R.R. Sharitz,2004. Plant effects on microbial assemblages and remediation of acidic coal pile runoff in mesocosm treatment wetlands. Ecological Engineering,23:107-115.
    Conley, L.M., R.I. Dick and L.W. Lion,1991. An assessment of the root zone method of wastewater treatment. Research Journal of the Water Pollution Control Federation: 239-247.
    Cook, J. and J. Beyea,2000. Bioenergy in the United States:progress and possibilities. Biomass Bioenerg,18:441-455.
    Cooke, J.G.,1994. Nutrient transformations in a natural wetland receiving sewage effluent and the implications for waste treatment. Water science and technology,29: 209-217.
    Cooper, P.,1999. A review of the design and performance of vertical-flow and hybrid reed bed treatment systems. Water science and technology,40:1-9.
    Cooper, P. and B. Green,1995. Reed bed treatment systems for sewage treatment in the United Kingdom—The first 10 years'experience. Water science and technology, 32:317-327.
    Craft, C.B. and C.J. Richardson,1993. Peat accretion and phosphorus accumulation along a eutrophication gradient in the northern Everglades. Biogeochemistry,22: 133-156.
    Dale, B.E., M.S. Allen, M. Laser and L.R. Lynd,2009. Protein feeds coproduction in biomass conversion to fuels and chemicals. Biofuels, Bioproducts and Biorefining,3: 219-230.
    Davis, J.R. and K. Koop,2006. Eutrophication in Australian rivers, reservoirs and estuaries-a southern hemisphere perspective on the science and its implications. Hydrobiologia,559:23-76.
    De Busk, W.F. and K.R. Reddy,1985. Nutrient removal potential of selected aquatic macrophytes. Journal of Environmental Quality,14:459-462.
    DeBusk, W.F. and K.R. Reddy,1985. Nutrient removal potential of selected aquatic macrophytes. Journal of Environmental Quality,14:459-462.
    Demirbas, A.,2008. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Conversion and Management,49:2106-2116.
    Dewanji, A. and S. Matai,1996. Nutritional evaluation of leaf protein extracted from three aquatic plants. Journal of agricultural and food chemistry,44:2162-2166.
    Dicks, M.R., J. Campiche, D. Ugarte, C. Hellwinckel, H.L. Bryant and J.W. Richardson,2009. Land use implications of expanding biofuel demand. Journal of Agricultural and Applied Economics,41:435-453.
    Dien, B.S., H.J.G. Jung, K.P. Vogel, M.D. Casler, J.F.S. Lamb, L. Iten, R.B. Mitchell and G. Sarath,2006. Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenerg,30:880-891.
    Dohleman, F.G. and S.P. Long,2009. More productive than maize in the Midwest: how does Miscanthus do it? Plant Physiology,150:2104-2115.
    Donner, S.D. and C.J. Kucharik,2008. Corn-based ethanol production compromises goal of reducing nitrogen export by the Mississippi River. Proceedings of the National Academy of Sciences,105:4513.
    Dunne, E.J. and K.R. Reddy,2005. Phosphorus biogeochemistry of wetlands in agricultural watersheds. In:E.J. Dunne, K.R. Reddy and O.T. Carton (Eds), Nutrient management in agricultural watersheds:a wetland solution, Wageningen Academic Publishers, Wageningen, The Netherlands, pp.105-119.
    El-Nashaar, H.M., G.M. Banowetz, S.M. Griffith, M.D. Casler and K.P. Vogel,2009. Genotypic variability in mineral composition of switchgrass. Bioresource technology, 100:1809-1814.
    Erler, D.V., P.C. Pollard, M. Burke and W. Knibb,2000. Biological remediation of aquaculture waste:a combined finfish, artificial substrate treatment system, pp. 93-107.
    Evans, J.M. and M.J. Cohen,2009. Regional water resource implications of bioethanol production in the Southeastern United States. Global Change Biology,15: 2261-2273.
    Fang, Y.Y., O. Babourina, Z. Rengel, X.E. Yang and P.M. Pu,2007. Spatial distribution of ammonium and nitrate fluxes along roots of wetland plants. Plant Science,173:240-246.
    Fargione, J., J. Hill, D. Tilman, S. Polasky and P. Hawthorne,2008. Land clearing and the biofuel carbon debt. Science,319:1235-1238.
    Farquhar, G.D., S. Caemmerer and J.A. Berry,1980. A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta,149:78-90.
    Farquhar, G.D., S. von Caemmerer and J.A. Berry,2001. Models of photosynthesis. Plant Physiology,125:42-45.
    Focht, D.D. and W. Verstraete,1977. Biochemical ecology of nitrification and denitrification. Advances in microbial ecology,1.
    Gachter, R. and J.S. Meyer,1993. The role of microorganisms in mobilization and fixation of phosphorus in sediments. Hydrobiologia,253:103-121.
    Gagnon, V., F. Chazarenc, Y. Comeau, J. Brisson and J.M. Novais,2007. Influence of macrophyte species on microbial density and activity in constructed wetlands. Vol.56, IWA Publishing, pp.249-254.
    Gajalakshmi, S., T. Abbasi and S.A. Abbasi,2006. Energy from anaerobic digestion of phytomass:an enduring but unrealized dream. Indian Chemical Engineer,48:109.
    Garnett, T.P., S.N. Shabala, P.J. Smethurst and I.A. Newman,2001. Simultaneous measurement of ammonium, nitrate and proton fluxes along the length of eucalypt roots. Plant and soil,236:55-62.
    Garver, E.G., D.R. Dubbe and D.C. Pratt,1988. Seasonal patterns in accumulation and partitioning of biomass and macronutrients in Typha spp. Aquatic Botany,32: 115-127.
    Genty, B., J.M. Briantais and N.R. Baker,1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta(BBA)-General Subjects,990:87-92.
    Gersberg, R.M., B.V. Elkins, S.R. Lyon and C.R. Goldman,1986. Role of aquatic plants in wastewater treatment by artificial wetlands. Water research,20:363-368.
    Goldemberg, J.,2006. The promise of clean energy. Energy policy,34:2185-2190.
    Greenway, M. and A. Woolley,1999. Constructed wetlands in Queensland: performance efficiency and nutrient bioaccumulation. Ecological Engineering,12: 39-55.
    Greenway, M. and A. Woolley,2001. Changes in plant biomass and nutrient removal over 3 years in a constructed wetland in Cairns, Australia. Water science and technology:303-310.
    Gressel, J.,2008. Transgenics are imperative for biofuel crops. Plant Science,174: 246-263.
    Gunderson, C.A., E.B. Davis, H.I. Jager, T.O. West, R.D. Perlack, C.C. Brandt, S. Wullschleger, L. Baskaran, E. Wilkerson and M. Downing,2008. Exploring potential US switchgrass production for lignocellulosic ethanol. Oak Ridge National Laboratory, Tennessee, USA.
    Gunnarsson, C.C. and C.M. Petersen,2007. Water hyacinths as a resource in agriculture and energy production:A literature review. Waste Management,27: 117-129.
    Hand, D.W., J.W. Wilson and B. Acock,1993. Effects of Light and CO2 on Net Photosynthesis Rates of Stands of Aubergine and Amaranthus. Annals of botany,71: 209-216.
    Hayes, T.D., H.R. Isaacson, K.R. Reddy, D.P. Chynoweth and R. Biljetina,1987. Water hyacinth systems for water treatment. In:K.R. Reddy and W.H. Smith(Eds), Aquatic plants for water treatment and resource recovery, Magnolia Publishing Inc., Orlando, Fla.(USA), Florida, USA.
    Headley, T.R. and C.C. Tanner,2006. Application of floating wetlands for enhanced stormwater treatment:a review. Auckland Regional Council Technical Publication, 324.
    Headley, T.R. and C.C. Tanner,2008. Floating Treatment Wetlands:an Innovative Option for Stormwater Quality Applications, pp.1-7.
    Hronich, J.E., L. Martin, J. Plawsky and H.R. Bungay,2008. Potential of Eichhornia crassipes for biomass refining. Journal of industrial microbiology & biotechnology,35: 393-402.
    Hu, M.H., Y.S. Ao, X.E. Yang and T.Q. Li,2008. Treating eutrophic water for nutrient reduction using an aquatic macrophyte (Ipomoea aquatica Forsskal) in a deep flow technique system, agricultural water management,95:607-615.
    Hu, W, J. Salomonsen, F.L. Xu and P. Pu,1998. A model for the effects of water hyacinths on water quality in an experiment of physico-biological engineering in Lake Taihu, China. Ecological modelling,107:171-188.
    Hubbard, R.K., G.J. Gascho and G.L. Newton,2004. Use of floating vegetation to remove nutrients from swine lagoon wastewater.
    Huett, D.O., S.G. Morris, G. Smith and N. Hunt,2005. Nitrogen and phosphorus removal from plant nursery runoff in vegetated and unvegetated subsurface flow wetlands. Water research,39:3259-3272.
    Hunt, P.G., M.E. Poach and S.K. Liehr (Eds),2005. Nitrogen cycling in wetland systems. The Netherlands:Wageningen Academic Publishers,93-104 pp.
    Hwang, L. and B.A. LePage,2011. Floating Islands—An Alternative to Urban Wetlands. Wetlands:237-250.
    Isarankura-Na-Ayudhya, C., T. Tantimongcolwat, T. Kongpanpee, P. Prabkate and V. Prachayasittikul,2007. Appropriate technology for the bioconversion of water hyacinth(Eichhornia crassipes) to liquid ethanol:future prospects for community strengthening and sustainable development. EXCLI J,6:167-176.
    Jacoby, J.M., H.L. Gibbons, K.B. Stoops and D.D. Bouchard,1994. Response of a shallow, polymictic lake to buffered alum treatment. Lake and Reservoir Management, 10:103-112.
    Jassby, A.D. and T. Platt,1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography:540-547.
    Jayaweera, M.W. and J.C. Kasturiarachchi,2004. Removal of nitrogen and phosphorus from industrial wastewaters by phytoremediation using water hyacinth (Eichhornia crassipes (Mart.) Solms). Water science and technology:a journal of the International Association on Water Pollution Research,50:217.
    Jetten, M.S.M., S. Logemann, G. Muyzer, L.A. Robertson, S. de Vries, M.C.M. van Loosdrecht and J.G. Kuenen,1997. Novel principles in the microbial conversion of nitrogen compounds. Antonie van Leeuwenhoek,71:75-93.
    Jiang, C., X. Fan, G. Cui and Y. Zhang,2007. Removal of agricultural non-point source pollutants by ditch wetlands:implications for lake eutrophication control. Hydrobiologia,581:319-327.
    Johnson, J.M.F., D.L. Karlen, W.W. Wilhelm and D.T. Lightle,2007. Corn stover to sustain soil organic carbon further constrains biomass supply. Agronomy Journal,99: 1665-1667.
    Johnston, C.A.,1991. Sediment and nutrient retention by freshwater wetlands:effects on surface water quality. Critical Reviews in Environmental Science and Technology, 21:491-565.
    Korner, S. and J.E. Vermaat,1998. The relative importance of Lemna gibba L., bacteria and algae for the nitrogen and phosphorus removal in duckweed-covered domestic wastewater. Water research,32:3651-3661.
    Kairesalo, T., S. Laine, E. Luokkanen, T. Malinen and J. Keto,1999. Direct and indirect mechanisms behind successful biomanipulation. Hydrobiologia,395:99-106.
    Karp, A. and I. Shield,2008. Bioenergy from plants and the sustainable yield challenge. New Phytol,179:15-32.
    Keeney, D.R., I.R. Fillery and G.P. Marx,1979. Effect of temperature on the gaseous nitrogen products of denitrification in a silt loam soil. Soil Sci. Soc. Am. J,43: 1124-1128.
    Kerr-Upal, M., M. Seasons and G. Mulamoottil,2000. Retrofitting a stormwater management facility with a wetland component. Journal of Environmental Science & Health Part A,35:1289-1307.
    Khan, F.A. and A.A. Ansari,2005. Eutrophication:an ecological vision. The Botanical Review,71:449-482.
    Kim, S. and B.E. Dale,2004. Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy,26:361-375.
    Kim, S.Y. and P.M. Geary,2001. The impact of biomass harvesting on phosphorus uptake by wetland plants. Water science and technology:61-67.
    Kintu Sekiranda, S.B. and S. Kiwanuka,1997. A study of nutrient removal efficiency of Phragmites mauritianus in experimental reactors in Uganda. Hydrobiologia,364: 83-91.
    Kivaisi, A.K.,2001. The potential for constructed wetlands for wastewater treatment and reuse in developing countries:a review. Ecological Engineering,16:545-560.
    Kivaisi, A.K. and M. Mtila,1998. Production of biogas from water hyacinth (Eichhornia crassipes) (Mart) (Solms) in a two-stage bioreactor. World Journal of Microbiology and Biotechnology,14:125-131.
    Knight, R.L., T.W. McKim and H.R. Kohl,1987. Performance of a natural wetland treatment system for wastewater management. Journal Water Pollution Control Federation,59:746-754.
    Kuusemets, V. and K. Lohmus,2005. Nitrogen and phosphorus accumulation and biomass production by Scirpus sylvaticus and Phragmites australis in a horizontal subsurface flow constructed wetland. Journal of Environmental Science and Health, 40:1167-1175.
    Laanbroek, H.J.,1990. Bacterial cycling of minerals that affect plant growth in waterlogged soils:a review. Aquatic Botany,38:109-125.
    Laber, J., R. Haberl and G. Langergraber,2003. Treatment of hospital wastewater with a 2-stage constructed wetland system. In:R. Haberl and G. Langergraber (Eds), Achievements and prospects of phytoremediation in Europe, University of Natural Resources and Applied Life Sciences, Vienna, Austria, p.85.
    Lal, R.,2009. Soil quality impacts of residue removal for bioethanol production. Soil and Tillage Research,102:233-241.
    Lander, P.E.,1949. The feeding of farm animals in India. New Delhi, India.
    Lewandowski, I., J.C. Clifton-Brown, J.M.O. Scurlock and W. Huisman,2000. Miscanthus:European experience with a novel energy crop. Biomass and Bioenergy, 19:209-227.
    Li, H., H.P. Zhao, H.L. Hao, J. Liang, F.L. Zhao, L.C. Xiang, X.E. Yang, Z.L. He and P.J. Stoffella,2011. Enhancement of Nutrient Removal from Eutrophic Water by a Plant-Microorganisms Combined System. Environmental Engineering Science,28: 543-554.
    Li, M., Y.J. Wu, Z.L. Yu, G.P. Sheng and H.Q. Yu,2009. Enhanced nitrogen and phosphorus removal from eutrophic lake water by Ipomoea aquatica with low-energy ion implantation. Water research,43:1247-1256.
    Li, X.N., H.L. Song, W. Li, X.W. Lu and O. Nishimura,2010. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecological Engineering,36:382-390.
    Liere, L., S. Parma and R.D. Gulati,1992. Working group Water Quality Research Loosdrecht Lakes:its history, structure, research programme, and some results. Hydrobiologia,233:1-9.
    Lu, Q., Z.L. He, D.A. Graetz, P.J. Stoffella and X. Yang,2010. Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research,17:84-96.
    Lu, S.Y., F.C. Wu, Y.F. Lu, C.S. Xiang, P.Y. Zhang and C.X. Jin,2009. Phosphorus removal from agricultural runoff by constructed wetland. Ecological Engineering,35: 402-409.
    Munch, C., P. Kuschk and I. Roske,2005. Root stimulated nitrogen removal:only a local effect or important for water treatment? Water science and technology:a journal of the International Association on Water Pollution Research,51:185.
    Ma, X.W., F.W. Ma, C.Y. Li, Y.F. Mi, T.H. Bai and H.R. Shu,2010. Biomass accumulation, allocation, and water-use efficiency in 10 Malus rootstocks under two watering regimes. Agroforest Syst,80:283-294.
    Maehlum, T. and P. Stalnacke,1999. Removal efficiency of three cold-climate constructed wetlands treating domestic wastewater:effects of temperature, seasons, loading rates and input concentrations. Water science and technology,40:273-281.
    Malik, A.,2007. Environmental challenge vis a vis opportunity:The case of water hyacinth. Environment international,33:122-138.
    Marshall, B. and P.V. Biscoe,1980. A model for C3 leaves describing the dependence of net photosynthesis on irradiance. Journal of experimental botany,31:29-39.
    Michael Smart, R. and J.W. Barko,1985. Laboratory culture of submersed freshwater macrophytes on natural sediments. Aquatic Botany,21:251-263.
    Mishima, D., M. Kuniki, K. Sei, S. Soda, M. Ike and M. Fujita,2008. Ethanol production from candidate energy crops:Water hyacinth (Eichhornia crassipes) and water lettuce(Pistia stratiotes L.). Bioresource technology,99:2495-2500.
    Mishima, D., M. Tateda, M. Ike and M. Fujita,2006. Comparative study on chemical pretreatments to accelerate enzymatic hydrolysis of aquatic macrophyte biomass used in water purification processes. Bioresource technology,97:2166-2172.
    Mitsch, W.J. and S.E. J(?)rgensen,2003. Ecological engineering:a field whose time has come. Ecological Engineering,20:363-377.
    Moore, M.T., R. Kroger, C.M. Cooper and S. Smith,2009. Ability of four emergent macrophytes to remediate permethrin in mesocosm experiments. Archives of environmental contamination and toxicology,57:282-288.
    Moorhead, K.K. and R.A. Nordstedt,1993. Batch anaerobic digestion of water hyacinth:Effects of particle size, plant nitrogen content, and inoculum volume. Bioresource technology,44:71-76.
    Muhammetoglu, A., H. Muhammetoglu and S. Soyupak,2002. Evaluation of efficiencies of diffuse allochthonous and autochthonous nutrient input control in restoration of a highly eutrophic lake. Water science and technology:195-203.
    Mulder, A., A.A. Graaf, L.A. Robertson and J.G. Kuenen,1995. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiology Ecology,16:177-184.
    Naylor, S., J. Brisson, M.A. Labelle, A. Drizo and Y. Comeau,2003. Treatment of freshwater fish farm effluent using constructed wetlands:the role of plants and substrate. Water science and technology,48:215-222.
    Nigam, J.N.,2002. Bioconversion of water-hyacinth(Eichhornia crassipes) hemicellulose acid hydrolysate to motor fuel ethanol by xylose-fermenting yeast. Journal of Biotechnology,97:107-116.
    Nurk, K., I. Zaytsev, I. Talpsep, J. Truu and U. Mander,2009. Bioaugmentation in a newly established LECA-based horizontal flow soil filter reduces the adaptation period and enhances denitrification. Bioresource technology,100:6284-6289.
    O'Hogain, S.,2003. The design, operation and performance of a municipal hybrid reed bed treatment system. Water science and technology:119-126.
    Parikka, M.,2004. Global biomass fuel resources. Biomass Bioenerg,27:613-620.
    Patrick Jr, W.H., S. Gotoh and B.G. Williams,1973. Strengite dissolution in flooded soils and sediments. Science,179:564-565.
    Patrick Jr, W.H. and R.A. Khalid,1974. Phosphate release and sorption by soils and sediments:effect of aerobic and anaerobic conditions. Science,186:53-55.
    Perlack, R.D., L.L. Wright, A.F. Turhollow, R.L. Graham, B.J. Stokes and D.C. Erbach,2005. Biomass as feedstock for a bioenergy and bioproducts industry:the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory, TN, USA.
    Peterson, S.B. and J.M. Teal,1996. The role of plants in ecologically engineered wastewater treatment systems. Ecological Engineering,6:137-148.
    Picard, C.R., L.H. Fraser and D. Steer,2005. The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms. Bioresource technology,96:1039-1047.
    Pirie, N. W.,1969. Production and Use of Leaf Protein. P Nutr Soc,28:85-87.
    Prado, C.H.B.A. and J. De Moraes,1997. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions. Photosynthetica,33:103-112.
    Ra, K., F. Shiotsu, J. Abe and S. Morita,2012. Biomass yield and nitrogen use efficiency of cellulosic energy crops for ethanol production. Biomass and Bioenergy.
    Raposo, S., J.M. Pardao, Ⅰ. Diaz and M.E. Lima-Costa,2009. Kinetic modelling of bioethanol production using agro-industrial by-products. International Journal of Energy and Environment,3:1-8.
    Rectenwald, L.L. and R.W. Drenner,2000. Nutrient removal from wastewater effluent using an ecological water treatment system. Environmental science & technology,34: 522-526.
    Reddy, K.R. and E.M. D'Angelo,1997. Biogeochemical indicators to evaluate pollutant removal efficiency in constructed wetlands. Water science and technology, 35:1-10.
    Reddy, K.R. and E.M. d'Angelo,1994. Soil processes regulating water quality in wetlands. Global wetlands:old world and new, Elsevier Science BV, Amsterdam, The Netherlands, pp.309-324.
    Reddy, K.R. and T.A. DeBusk,1987a. State-of-the-art utilization of aquatic plants in water pollution control. Water science and technology,19:61-79.
    Reddy, K.R. and W.F. DeBusk,1987b. Nutrient storage capabilities of aquatic and wetland plants. Aquatic plants for water treatment and resource recovery:337-357.
    Reddy, K.R., W.H. Patrick and F.E. Broadbent,1984. Nitrogen transformations and loss in flooded soils and sediments. Critical Reviews in Environmental Science and Technology,13:273-309.
    Rhue, R.D. and W.G. Harris,1999. Sorption/Desorption Reactions in Soils and Sediments. In:K.R. Reddy, G.A. O'Connor and C.L. Schelske(Eds), Phosphorus biogeochemistry in subtropical ecosystems, CRC Press, Boca Raton, Florida, pp. 187-206.
    Richardson, C.J.,1985. Mechanisms controlling phosphorus retention capacity in freshwater wetlands. Science,228:1424-1427.
    Richardson, C.J. and P.E. Marshall,1986. Processes controlling movement, storage, and export of phosphorus in a fen peatland. Ecological Monographs,56:279-302.
    Richardson, C.J., S. Qian, C.B. Craft and R.G. Qualls,1996. Predictive models for phosphorus retention in wetlands. Wetlands Ecology and Management,4:159-175.
    Rogers, K.H., P.F. Breen and A.J. Chick,1991. Nitrogen removal in experimental wetland treatment systems:evidence for the role of aquatic plants. Research Journal of the Water Pollution Control Federation:934-941.
    Rorat, T., M. Havaux, W. Irzykowski, S. Cuine, N. Becuwe and P. Rey,2001. PSII-S gene expression, photosynthetic activity and abundance of plastid thioredoxin-related and lipid-associated proteins during chilling stress in Solanum species differing in freezing resistance. Physiologia Plantarum,113:72-78.
    Rubio, F.C., F.G. Camacho, J.M. Sevilla, Y. Chisti and E.M. Grima,2003. A mechanistic model of photosynthesis in microalgae. Biotechnology and bioengineering,81:459-473.
    Santos, M.C.R. and J.F.S. Oliveira,1987. Nitrogen transformations and removal in waste stabilization ponds in Portugal:seasonal variations. Water Science & Technology,19:123-130.
    Schmer, M.R., K.P. Vogel, R.B. Mitchell and R.K. Perrin,2008. Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences,105:464.
    Schneider, U.A. and B.A. McCarl,2003. Economic potential of biomass based fuels for greenhouse gas emission mitigation. Environ Resour Econ,24:291-312.
    Sherwood, L.J. and R.G. Qualls,2001. Stability of phosphorus within a wetland soil following ferric chloride treatment to control eutrophication. Environmental science & technology,35:4126-4131.
    Sierp, M.T., J.G. Qin and F. Recknagel,2009. Biomanipulation:a review of biological control measures in eutrophic waters and the potential for Murray cod Maccullochella peelii peelii to promote water quality in temperate Australia. Reviews in Fish Biology and Fisheries,19:143-165.
    Sikora, F.J., Z. Tong, L.L. Behrends, S.L. Steinberg and H.S. Coonrod,1995. Ammonium removal in constructed wetlands with recirculating subsurface flow: removal rates and mechanisms. Water science and technology,32:193-202.
    Singhal, V. and J.P.N. Rai,2003. Biogas production from water hyacinth and channel grass used for phytoremediation of industrial effluents. Bioresource technology,86: 221-225.
    Sissine, F.,2007. Energy Independence and Security Act of 2007:a summary of major provisions. Congressional Research Service, Washington, DC.
    Smith, V.H., G.D. Tilman and J.C. Nekola,1999. Eutrophication:impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental pollution,100:179-196.
    Soliva, C.R., L. Meile, A. Cieslak, M. Kreuzer and A. Machmuller,2004. Rumen simulation technique study on the interactions of dietary lauric and myristic acid supplementation in suppressing ruminal methanogenesis. British Journal of Nutrition, 92:689-700.
    Spieles, D.J. and W.J. Mitsch,1999. The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands:a comparison of low-and high-nutrient riverine systems. Ecological Engineering,14:77-91.
    Srivastava, J., H. Chandra and N. Singh,2007. Allelopathic response of Vetiveria zizanioides(L.)Nash on members of the family Enterobacteriaceae and Pseudomonas spp. The Environmentalist,27:253-260.
    Stecher, M.C. and R.W. Weaver,2003. Effects of umbrella palms and wastewater depth on wastewater treatment in a subsurface flow constructed wetland. Environmental technology,24:471-478.
    Stowell, R., G. Tchoba, J. Colt and R. Ludwig,1981. Concepts in aquatic treatment system design. Journal of the Environmental Engineering Division,107:919-940.
    Sun, L., Y. Liu and H. Jin,2009. Nitrogen removal from polluted river by enhanced floating bed grown canna. Ecological Engineering,35:135-140.
    Taheruzzaman, Q. and D.P. Kushari,1989. Evaluation of some common aquatic macrophytes cultivated in enriched water as possible source of protein and biogas. Aquatic Ecology,23:207-212.
    Taherzadeh, M.J. and K. Karimi,2008. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production:a review. International Journal of Molecular Sciences,9:1621-1651.
    Tanner, C.C.,1996. Plants for constructed wetland treatment systems--A comparison of the growth and nutrient uptake of eight emergent species. Ecological Engineering, 7:59-83.
    Tanner, C.C., R.H. Kadlec, M.M. Gibbs, J.P.S. Sukias and M. Nguyen,2002. Nitrogen processing gradients in subsurface-flow treatment wetlands--influence of wastewater characteristics. Ecological Engineering,18:499-520.
    Tanner, C.C., J.P.S. Sukias and M.P. Upsdell,1999. Substratum phosphorus accumulation during maturation of gravel-bed constructed wetlands. Water science and technology,40:147-154.
    Tilman, D., J. Hill and C. Lehman,2006. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science,314:1598-1600.
    Tsuji, K., M. Asakawa, Y. Anzai, T. Sumino and K. Harada,2006. Degradation of microcystins using immobilized microorganism isolated in an eutrophic lake. Chemosphere,65:117-124.
    Valiela, I., J. McClelland, J. Hauxwell, P.J. Behr, D. Hersh and K. Foreman,1997. Macroalgal blooms in shallow estuaries:controls and ecophysiological and ecosystem consequences. Limnology and Oceanography:1105-1118.
    Van Acker, J., L. Buts, C. Thoeye and G. De Gueldre,2005. Floating plant beds:BAT for CSO treatment, pp.4-8.
    Vansoest, P.J., J.B. Robertson and B.A. Lewis,1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J Dairy Sci,74:3583-3597.
    Vasudevan, P.T. and M. Briggs,2008. Biodiesel production—current state of the art and challenges. Journal of industrial microbiology & biotechnology,35:421-430.
    Verma, V.K., Y.P. Singh and J.P.N. Rai,2007. Biogas production from plant biomass used for phytoremediation of industrial wastes. Bioresource technology,98: 1664-1669.
    Vohla, C, E. Poldvere, A. Noorvee, V. Kuusemets and O. Mander,2005. Alternative filter media for phosphorous removal in a horizontal subsurface flow constructed wetland. Journal of Environmental Science and Health,40:1251-1264.
    Vojtiskova, L., E. Munzarova, O. Votrubova, A. Rihova and B. Juricova,2004. Growth and biomass allocation of sweet flag (Acorus calamus L.) under different nutrient conditions. Hydrobiologia,518:9-22.
    Vymazal, J.,1995. Algae and element cycling in wetlands. Lewis Publishers Inc.
    Vymazal, J.,2007. Removal of nutrients in various types of constructed wetlands. Science of the total environment,380:48-65.
    Vymazal, J., J. Dusek and J. Kvet (Eds),1999. Nutrient uptake and storage by plants in constructed wetlands with horizontal sub-surface flow:a comparative study. The Netherlands:Backhuys Publishers, Leiden,85-100 pp.
    Walker, D.A., P.G. Jarvis, G.D. Farquhar and J. Leverenz,1989. Automated measurement of leaf photosynthetic O2 evolution as a function of photon flux density. Philosophical Transactions of the Royal Society of London. B, Biological Sciences,323:313-326.
    Wang, G.X., L.M. Zhang, H. Chua, X.D. Li, M.F. Xia and P.M. Pu,2009. A mosaic community of macrophytes for the ecological remediation of eutrophic shallow lakes. Ecological Engineering,35:582-590.
    Wen, L. and F. Recknagel,2002. In situ removal of dissolved phosphorus in irrigation drainage water by planted floats:preliminary results from growth chamber experiment. Agriculture, ecosystems & environment,90:9-15.
    Wilkie, A.C.,2008. Biomethane from biomass, biowaste and biofuels. American Society for Microbiology Press, Washington, DC, USA,195-205 pp.
    Wilkie, A.C. and J.M. Evans,2010. Aquatic plants:an opportunity feedstock in the age of bioenergy. Aquatic,1:311-321.
    Xu, J. and G. Shen,2011. Growing duckweed in swine wastewater for nutrient recovery and biomass production. Bioresource technology,102:848-853.
    Xu, Z., Q. Zhang and H.H.P. Fang,2003. Applications of porous resin sorbents in industrial wastewater treatment and resource recovery. Critical Reviews in Environmental Science and Technology,33:363-389.
    Yang, X., X. Wu, H. Hao and Z. He,2008a. Mechanisms and assessment of water eutrophication. Journal of Zhejiang University-Science B,9:197-209.
    Yang, Z., S. Zheng, J. Chen and M. Sun,2008b. Purification of nitrate-rich agricultural runoff by a hydroponic system. Bioresource technology,99:8049-8053.
    Zeng, R.J., R. Lemaire, Z. Yuan and J. Keller,2003. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnology and bioengineering,84:170-178.
    Zhao, F., S. Xi, X. Yang, W. Yang, J. Li, B. Gu and Z. He,2012. Purifying eutrophic river waters with integrated floating island systems. Ecological Engineering,40: 53-60.
    Zhu, L.D., Z.H. Li and T. Ketola,2011. Biomass accumulations and nutrient uptake of plants cultivated on artificial floating beds in China's rural area. Ecological Engineering,37:1460-1466.
    丁则平,2007.日本湿地净化技术人工浮岛介绍.海河水利:63-65.
    王丹,张银龙,庞博,2010.金鱼藻对不同程度污染水体的水质净化效果.南京林业大学学报:自然科学版,34:83-86.
    王心芳,魏复盛,齐文启,2002.水和废水监测分析方法.中国环境出版社,北京,216-219 pp.
    王圣瑞,年跃刚,侯文华等,2004.人工湿地植物的选择.湖泊科学,16.
    王建龙,2003.核酸杂交技术用于废水处理的微生物学研究.中国给水排水,19:23-27.
    王国祥,濮培民,1998.人工复合生态系统对太湖局部水域水质的净化作用.中国环境科学,18:410-414.
    王国祥,濮培民,张圣照等,1998.用镶嵌组合植物群落控制湖泊饮用水源区藻类及氮污染.植物资源与环境,7:35-41.
    王强,张其德,卢从明等,2002.超高产杂交稻不同生育期的光合色素含量,净光合速率和水分利用效率.植物生态学报,26:647-651.
    史加达,谢贻发,柴夏等,2008.生态修复技术在富营养化水库水质改善中的应用研究.环境科学与管理,33:106-108.
    任照阳,邓春光,2007.生态浮床技术应用研究进展.农业环境科学学报,26:261-263.
    成水平,夏宜争,1998.香蒲,灯心草人工湿地的研究:Ⅲ.净化污水的机理.湖泊科学,10:66-71.
    成水平,夏宜铮,1998.香蒲,灯心草人工湿地的研究-Ⅱ.净化污水的空间.湖泊科学,10:62-66.
    成水平,况琪军,1997.香蒲,灯心草人工湿地的研究:Ⅰ.净化污水的效果.湖泊科学,9:351-358.
    衣十妹,武鹏,张鹰等,2011.不同植物对富营养化水体净化效果的研究.安徽农业科学,39:12307-12307.
    宋伟,周庆,王彦玲,等,2011.几种植物净化能力的比较及浮床应用效果研究.江苏农业科学:474-477.
    李曲友,2000.水体富营养化污染的生物防治对策及效益分析.生物学杂志,17:35-36.
    李建娜,胡曰利,吴晓芙等,2007.人工湿地污水处理系统中的植物氮磷吸收富集能力研究.环境污染与防治,29:506-509.
    李科德,胡正嘉,1994.人工模拟芦苇床系统处理污水的效能.华中农业大学学报,13:511-517.
    李锋民,胡洪营,2004.芦苇抑藻化感物质的分离及其抑制蛋白核小球藻效果研究.环境科学,25:89-92.
    周小平,王建国,薛利红等,2005.浮床植物系统对富营养化水体中氮,磷净化特 征的初步研究.应用生态学报,16:2199-2203.
    周真明,陈灿瑜,叶青等,2010.浮床植物系统对富营养化水体的净化效果.华侨大学学报:自然科学版,31:576-579.
    林东教,唐淑军,何嘉文等,2004.漂浮栽培蕹菜和水葫芦净化猪场污水的研究.华南农业大学学报,25:14-17.
    武琳慧,吴林林,黄民生等,2006.人工浮床及其在污染水体治理中应用进展.净水技术,25:8-9.
    金相灿,1995.中国湖泊环境.海洋出版社,北京.
    金相灿,2008.湖泊富营养化研究中的主要科学问题.环境科学学报,28:21-23.
    胡彦春,魏铮,洪剑明,2008.低温下几种沉水植物对生活污水深度处理效果的研究.安徽农业科学,36:1573-1575.
    胡绵好,袁菊红,张玲等,2009.不同品种黑麦草对富营养化水体净化能力的比较.环境科学学报:1740-1749.
    胡绵好,袁菊红,杨肖娥,2011.温度对植物浮床净化富营养化水体能力的影响.环境科学学报,31:283-291.
    胡绵好,奥岩松,杨肖娥等,2007.不同N水平的富营养化水体中经济植物净化能力比较研究.水土保持学报,21:147-150.
    郭沛涌,朱荫湄,宋祥甫等,2007a.浮床黑麦草去除富营养化水体总氮的试验研究.华中科技大学学报:城市科学版,24:33-35.
    郭沛涌,朱荫湄,宋祥甫等,2007b.陆生植物黑麦草(Lolium multi florum)对富营养化水体修复的围隔实验研究——氨氮的净化效应及其动态过程.浙江大学学报:理学版,34:76-79.
    郭连旺,沈允钢,1996.高等植物光合机构避免强光破坏的保护机制.植物生理学通讯,32:1-8.
    童昌华,杨肖娥,濮培民,2003.低温季节水生植物对污染水体的净化效果研究水土保持学报,17.
    葛滢,常杰,王晓月等,2000.两种程度富营养化水中不同植物生理生态特性与净化能力的关系.生态学报,20:1050-1055.
    熊集兵,刘春法,杨肖娥等,低温条件下陆生观叶植物红叶甜菜去除不同富营养化水体氮磷的效应.农业环境科学学报,27:736-740.
    雒维国,王世和,黄娟等,2006.植物光合及蒸腾特性对湿地脱氮效果的影响.中国环境科学,26:30-33.
    刘士哲,林东教,何嘉文等,2005.猪场污水漂浮栽培植物修复系统的组成及净化效果研究.华南农业大学学报,26:46-49.
    卢晓明,2009.植物净化槽处理城市黑臭河水的效果、机理及工程示范.博士学位论文,华东师范大学,上海.
    吕旭东,2005.浙江省农业废弃物的能源利用初探.能源研究与利用:11-13.
    吴小慧,张勇,何岩等,2009.污染水体净化与生态修复中水生植物光合,呼吸特性研究进展.净水技术:5-7.
    吴湘,杨肖娥,李廷强等,2007.漂浮植物对富营养化景观水体的净化效果研究.水土保持学报,21:128-132.
    吴伟,胡庚东,金兰仙等,2008.浮床植物系统对池塘水体微生物的动态影响.中国环境科学,28:791-795.
    孙连鹏,刘阳,冯晨等,2008.不同季节浮床美人蕉对水体氮素等污染物的去除.中山大学学报:自然科学版,47:127-130.
    张志勇,常志州,刘海琴等,2010a.不同水力负荷下凤眼莲去除氮,磷效果比较.生态与农村环境学报,26:148-154.
    张志勇,冯明雷,杨林章等,2008.人工模拟污水净化系统去除生活污水氮,磷效果的比较研究.土壤学报,45:466-475.
    张志勇,刘海琴,严少华等,2009.水葫芦去除不同富营养化水体中氮,磷能力的比较.江苏农业学报,25:1039-1046.
    张志勇,郑建初,刘海琴等,2010b.凤眼莲对不同程度富营养化水体氮磷的去除贡献研究.中国生态农业学报,18:152.
    张峰华,王学江,2010.河道原位处理技术研究进展.四川环境,29.
    张荣社,李旭东,2002.自由表面人工湿地脱氮效果中试研究.环境污染治理技术与设备,3:9-11.
    张荣社,李广贺,周琪等,2005.潜流湿地中植物对脱氮除磷效果的影响中试研究.环境科学,26:83-86.
    时应征,王晓,强艳艳等,2008.人工湿地植物的选择驯化研究综述.技术与创新管理,29:90-94.
    杨雁,李永梅,张怀志等,2011.不同水稻品种对滇池富营养化水体中氮磷去除效果研究.西南农业学报,23:1923-1929.
    杨彦军,韩会玲,龚欣欣,2009.不同植物净化富营养化水体的静态试验研究.中国农村水利水电:28-30.
    汤显强,李金中,李学菊等,2008.聚丙烯小球对人工垂直潜流湿地氮磷去除性能的优化研究.环境科学,29:1284-1288.
    罗固源,郑剑锋,许晓毅等,2009.4种浮床栽培植物生长特性及吸收氮磷能力的比较.环境科学学报:285-290.
    蒋跃平,葛滢,岳春雷等,2004.人工湿地植物对观赏水中氮磷去除的贡献.生态学报,24:1720-1725.
    许桂芳,2010.4种观赏植物对富营养化景观水体的净化效果.中国农学通报,26:299-302.
    许航,陈焕壮,熊启权等,1999.水生植物塘脱氮除磷的效能及机理研究.哈尔滨建筑大学学报.
    谢建华,杨华,2006.不同植物对富营养化水体净化的静态试验研究.工业安全与环保,32:23-25.
    贺纪正,张丽梅,2009.氨氧化微生物生态学与氮循环研究进展.生态学报,29:406-415.
    贺鸿志,余景,李拥军,黎华寿,2011.3种湿地植物构建的浮床系统修复富营养化水体的效果研究.华南农业大学学报,32:16-20.
    陈永华,吴晓芙,何钢等,2009.人工湿地污水处理系统中的植物效应与基质酶活性.生态学报,29:6051-6058.
    陈永华,吴晓芙,郝君等,2011.人工湿地植物应用现状与问题分析.中国农学通报,27:88-92.
    陈永华,吴晓芙,蒋丽鹃,等,2008.处理生活污水湿地植物的筛选与净化潜力评价.环境科学学报,28:1549-1554.
    陈永华,吴晓芙,陈明利等,2010.人工湿地污水处理系统冬季植物的筛选与评价.环境科学,31:1789-1794.
    陈玉辉,张勇,黄民生等,2011.梯级生态浮床系统净化富营养化水体的示范工程研究.华东师范大学学报(自然科学版),1.
    陈立婧,顾静,张饮江等,2008.从浮游藻类的变化分析人工浮岛在治理上海白 莲泾中的作用.水产科技情报,35:135-137.
    陈荷生,2001.太湖生态修复治理工程.长江流域资源与环境,10.
    陈开宁,包先明,史龙新等,2006.太湖五里湖生态重建示范工程——大型围隔试验.湖泊科学,18:139-149.
    马霓,刘丹,张春雷等,2009.植物生长调节剂对油菜生长及冻害后光合作用和产量的调控效应.作物学报,35:1336-1343.
    黄承才,葛滢,1998.富营养化水中三种野生蓼科植物蒸腾和营养吸收的关系.杭州大学学报:自然科学版,25:80-84.
    黄娟,王世和,雒维国等,2006a.植物光合特性及其对湿地DO分布、净化效果的影响.环境科学学报,26:1828-1832.
    黄娟,王世和,雒维国等,2006b.人工湿地污水处理系统植物光合作用特性的研究.安全与环境工程,13:55-57.
    黄军,何健,周青,2007.循环农业模式下的农业废弃物资源化利用.世界科技研究与发展,28:76-79.
    龚月桦,王俊儒,1998.植物修复技术及其在环境保护中的应用.农业环境保护,17:268-270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700