用户名: 密码: 验证码:
(准)周期结构光波特性研究及其微纳器件设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科技与制造工艺的日益成熟,光子学正经历着前所未有的发展,一些新的交叉学科和研究方向不断产生。目前在国际上,表面等离子体和光子晶体被广泛认为是有潜力实现光子器件集成的两个研究领域。它们的发展簇生了很多传统光学无法实现的新现象。本论文以表面等离子体及一维光子晶体中的(准)周期性结构为基础,在理论上研究了它们的光学特性。基于这些特性,提出和设计了具有各种应用价值的新型微纳光子器件。
     本文的研究内容包括以下几个方面:
     1.研究并推导了一维周期性布拉格光纤光栅的耦合模方程。在此基础上,提出了一种光栅合成的新方法。该方法简单高效,可以选择性的优化光栅参数,同时克服了传统离散剥层算法不能有效降低折射率调制的缺点。基于该算法成功设计了多信道和三角谱布拉格光纤光栅等全光器件。
     2.推导了金属-介质-金属结构的色散关系。研究发现,由于表面等离子体的产生,金属-介质-金属结构可以把光控制在纳米尺度上。通过在金属-介质-金属结构中分别引入准周期啁啾和切趾结构,设计了具有超大带宽和低旁瓣特点的表面等离子体反射器。通过在金属-介质-金属结构中插入两种按斐波纳契序列排列的介质,实现了多信道表面等离子体滤波器。
     3.提出了一种基于金属-介质-金属结构的新型T形波导。该波导中有两个纳米腔,可以使不同的频率产生共振,从而实现了光的单向传输。
     4.研究了金属纳米孔周期阵列结构的吸收特性。当光入射到该结构上时,上下两层金属平板上会形成方向相反的感应电流,产生了磁共振。调节结构参数能有效改变磁导率,达到阻抗匹配,从而实现了完美吸收。在此基础上,进一步研究了当中间介质层为非线性克尔介质时,该结构的全光开关特性。
     5.研究了金属/周期性光子晶体结构的Tamm激元特性。提出了一种金属/斐波纳契准周期结构。传输矩阵和有限时域差分法计算结果表明,该结构可获得多波长Tamm激元的激发。
With the increasing maturity of nanotechnology and manufacture, photonics areundergoing unprecedented development, many new interdisciplinary and researchfields are emerging. In the worldwide, surface plasmon polaritons (SPPs) andphotonic crystal are considered as two promising ways to potentially realizephotonic integrated devices. Their developments have intrigued many newphenomena that cannot occur in the traditional optics. In this dissertation, opticalproperties of the (quasi)periodical structure in plasmonics and photonic crystal areinvestigated. Based on the optical properties, various kinds of new micronanophotonic devices for different applications are proposed and designed.
     The main contents of this dissertation are as follows:
     1. One-dimensional periodical fiber Bragg gratings are investigated and thecoupled-mode equations are derived. A new grating synthesis method isproposed. It is simple and fast, can optimize the grating parameters oneinterested, and overcome the shortcomings of the traditional discrete layerpeeling method that cannot effectively reduce the refractive index modulation ofBragg gratings. With the proposed method, multichannel andtriangular-spectrum Bragg gratings are designed, respectively.
     2. The dispersion relation of the metal-insulator-metal (MIM) structure is studied.It is found that with the excitation of the SPPs, MIM structure can manipulatethe light at nanoscale size. By means of introducing quasiperiodical chirpstructure and apodiztion structure to the MIM waveguide, a broadband and lowsidelobe plasmonic reflector is realized. Meanwhile, by inserting two dielectricsin the MIM waveguide and arranging them with Fibonacci sequence,multichannel plasmonic filter is achieved.
     3. Based on the MIM structure, a new kind of T-shaped waveguide is proposed. Itconsists of dual nanocavities which can excite two different resonate frequencies,thus unidirectional manipulation of optics is realized.
     4. The absorption properties of the metallic nanostructure with periodical air-hole arrays are investigated. When an electromagnetic wave is impinged to theproposed structure, magnetic response appears and excites two antiparallelcurrents in upper and lower metallic layers. By changing the structure geometryparameters, permeability is tuned. So impedance between the metamaterials andthe air can be matched, thereby perfect absorption is realized. Further studiesindicate that when middle dielectric spacer of the metallic nanostructure isnonlinear Kerr material, all-optical absorption switch can be achieved.
     5. The properties of Tamm polaritons in a metal/periodical photonic crystal arestudied. One-dimensional quasi-periodical photonic crystal composed of a thinmetallic layer and dielectric Fibonacci multilayers is proposed. The transfermatrix and the finite-difference time-domain results demonstrate that thestructure is able to excite multiwavelength Tamm polaritons.
引文
1. S. John,“Strong localization of photons in certain disordered dielectricsuperlattices,” Phys. Rev. Lett.58,2486-2489(1987)
    2. E. Yablonovitch,“Inhibited Spontaneous Emission in Solid.State Physics andElectronics,” Phys. Rev. Lett.58,2056-2062(1987)
    3. A. R. McGurn èK. T. Christensen, F. M. Mueller, and A. A. Maradudin,“Anderson localization in one-dimensional randomly disordered optical systemsthat are periodic on average,” Phys. Rev. B.47,13120-13125(1993)
    4. J{è#è)_&I èC%è “$J ' J h*ü”(è=)ú28,393-398(1998)
    5. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho,M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur,“All-metallicthree-dimensional photonic crystals with a large infrared bandgap,” Nature394,251-253(1998)
    6. H. Kosaka, T. Kawashima, A. Tomita, T. Sato, and S. Kawakami,“Photoniccrystals for micro lightwave circuits using wavelength-dependent angular beamsteering,” Appl. Phys. Lett.74,1370-1372(1999)
    7. X. F. Yu and S. H. Fan,“Bends and splitters for self-collimated beams inphotonic crystals,” Appl. Phys. Lett.83,3251-3253(2003)
    8. M. Notomi,“Theory of light propagation in strongly modulated photoniccrystals: refractionlike behavior in the vicinity of the photonic band gap,” Phys.Rev. B.62,10696.10705(2000)
    9. J. C. Knight, T. A. Birks, P. St. J. Russell, and J. P. de Sandro,“Properties ofphotonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A15,748-752(1998)
    10. J. C. Knight, T. A. Birks, P. St. Russell.“Large mode area photonic crystalfiber,” Elect. Lett.34,1347-1348(1998)
    11. Y. Akahane, T. Asano, B. S. Song, and S. Noda,“High-Q photonic nanocavity ina two-dimensional photonic crystal,” Nature425,944-947(2003)
    12. O. Painter, R. K.Lee, and A. Yariv,“Two-Dimensional Photonic Band-GapDefect Mode Laser,” Science284,1819-1821(1999)
    13. Y. Kanamori, and K. Inoue,“Photonic crystals switch by inserting nano.crystaldefects using MEM Sactuator,” Proceedings of the2003IEEE/LEOSInternational Conference on Optical MEMS Waikoloa.,107-108(2003)
    14. M. Scalora, J. P. Dowling, and C. M. Bowden,“Optical limiting and switchingof ultrashort pulses in nonlinear photonic band gap materials,” Phys. Rev. Lett.73,1368-1371(1994)
    15. N R$d è “>    16. H. Raether, Surface plasmon oscillations and their applications, Physics of ThinFilms,1977(2):145.151
    17. U. Kunz, A. Katerkamp, R. Renneberg, F. Spener, and K. Cammann,“Sensingfatty acid binding protein with planar and fiber-optical surface plasmonresonance spectroscopy devices,” Sensors and Actuators B,32,149-153(1996)
    18. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee,“Quantitative interpretation of the response of surface plasmon resonancesensors to absorbed films,” Langmuir,19,5636-5648(1998)
    19. J. G. Armenta, R. G. Llamas, and J. D. Favela,“Electromagnetic near and farfield from the interaction between surface plasmons and a surface defect in athin metallic film,” Phys. Rev. B.15,155412(2006)
    20. Y. Zeng, Y. Fu, X. Chen, W. Lu, and H. Agren,“Dynamics of the dampingoscillator formed by the collective generation of surface polaritons forextraordinary light transmission through subwavelength hole arrays in thin metalfilms,” Phys. Rev. B.12,124509(2007)
    21. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, Jean. Yves Laluet, and T. W.Ebbesen,“Channel plasmon subwavelength waveguide components includinginterferometers and ringresonators,” Nature440,508(2006)
    22. J. A. Conway, S. Sahni, and T. Szkopek,“Plasmonic interconnects versusconventional interconnects: a comparison of latency, cross-talk and energycosts,” Opt. Express15,4474-4484(2007)
    23. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen,“Channelplasmon.polariton guiding by subwavelength metal grooves,” Phys.Rev. Lett.0468022005(95)
    24. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio and P. A. Wolff,“Extraordinary optical transmission through sub.wavelength hole arrays,”Natrure391,667-669(1998)
    25. W. L. Barnes, A. Dereux and T. W. Ebbesen,“Surface plasmon sub-wavelengthoptics,” Nature424,824-830(2003)
    1.葛德彪,闫玉波。电磁波时域有限差分方法。西安,西安电子科技大学出版社,2002,pp1.5
    2. A. Taflove and S. C. Hagness,"Computational Electrodynamics:The Finite-Difference Time-Domain Method," Norwood, MA:Artech House,2000.
    3. M. G. Moharam and T. K. Gay lord,"Rigorous coupled-wave analysis of planar.grating diffraction," J. Opt. Soc. Am.71,811-818(1981)
    4. M. G. Moharam, D. A. Pommet, Eric B. Grann, and T. K. Gaylord,"Stable implementation of the rigorous coupled.wave analysis for surface-relief gratings: enhanced transmittance matrix approach," J. Opt. Soc. Am. A.12,1077-1086(1995)
    5. N. Chateau and J. P. Hugonin,"Algorithm for the rigorous coupled-wave analysis of grating diffraction," J. Opt. Soc. Am. A11,1321-1331(1994)
    6. H. E. Hemandez, F. A. Hemandez,"Vectorial Finite Element Modeling of2D leaky Waveguides," IEEE Trans Magnetics.31,1710-1713(1995)
    7. H. Uranus and H. Hoekstra,"Modelling of micro structured waveguides using a finite.element.based vectorial mode solver with transparent boundary conditions," Opt. Express12,2795-2809(2004)
    8. J. M. Bendickson, E. N. Glytsis, and T. K. Gaylord,"Scalar integral diffraction methods:unification, accuracy, and comparison with a rigorous boundary element method with application to diffractive cylindrical lenses," J. Opt. Soc. Am. A15,1822-1837(1998)
    9. P. M. Bell, J. B. Pendry, L, M. Moreno, and A. J. Ward,"A program for calculating photonic band structures and transmission coefficients of complex structures," Comput. Phys. Commun.85,306-322(1995).
    10. Z. Y. Li and L. L. Lin,"Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E67,046607(2003)
    11. L. L. Lin, Z. Y. Li, and K. M. Ho,"Lattice symmetry applied in transfer-matrix methods for photonic crystals," J. Appl. Phys.94,811-821(2003)
    12. K. M. Ho, C. T. Chan, and C. M. Soukoulis,“Existence of a photonic gap inperiodic dielectric structures,” Phys. Rev. Lett.65,3152-3155(1990)
    13. D. Cassagne, C. Jouanin, and D. Bertho,“Hexagonal photonic-band-.gapstructures,” Phys. Rev. B53,7134-7142(1996)
    14. Z. Y. Li, J. Wang, and B. Y. Gu,“Creation of partial band gaps in anisotropicphotonic.band.gap structures,” Phys. Rev. B58,3721-3729(1998)
    1. T. Erdogan,“Fiber grating spectrum,” J. Lightw. Technol,15,1277-1294(1997)
    2. J. F. Zhao,“A object-oriened simulation program for fiber bragg gratings,” RandAfrikaans University,2011
    3. Y. Liu, K. S. Chiang, and P. L. Chu,“Multiplexing of temperature compensatedfiber.Bragg.grating magnetostrictive sensors with a dualwavelength pulse laser,”IEEE Photon. Technol. Lett.16,572–574(2004)
    4. Y. K. Gong, A. X. Lin, X. H. Hu, L. R Wang, and X. M. Liu,“Optimal methodof designing triangular-spectrum fiber Bragg gratings with low indexmodulation and chirp-free structure”, J. Opt. Soc. Am. B,26,1042–1048(2009)
    5. S. Pradhan, G. E. Town, and K. J. Grant,“Dual-wavelength DBR fiber laser,”IEEE Photon. Technol. Lett.18,1741–1743(2006)
    6. J. H. Chow, I. Littler, G. de Vine, D. McClelland, and M. Gray,“Phase sensitiveinterrogation of fiber Bragg grating resonators for sensing applications,” J.Lightw. Technol.23,1881–1889(2005)
    7. A. Rosenthal and M. Horowitz,“Analysis and design of nonlinear fiber Bragggratings and their application for optical compression of reflected pulses,” Opt.Lett.,31,1334–1336(2006)
    8. K. A. Winick and J. E. Roman,“Design of corrugated waveguide filters byFourier transform techniques,” IEEE J. Quantum Electron,26,1918-1929(1990)
    9. G. H. Song and S. Y. Shin,“Design of corrugated waveguide filters by theGel’fand.Levitan.Marchenko inverse scattering method,” J. Opt. Soc. Am.2,1905-1915(1985)
    10. J. Skaar and K. M. Risvik,“A genetic algorithm for the inverse problem insynthesis of fiber gratings,” J. Lightw. Technol.16.1928-1932(1998)
    11. J. Skaar, W. L. Gang, and T. Erdogan,“On the synthesis of fiber Bragg gratingsby Layer Peeling,” IEEE J. Quantum Electron.37,165-173(2001).
    12. H. Li and Y. Sheng,“Direct design of multichannel fiber Bragg grating withdiscrete layer.peeling algorithm”, IEEE Photon. Technol. Lett.15,1252-1254(2003)
    13. X. Shu, E. Turitsyna, and I. Bennion,“Broadband fiber Bragg grating withchannelized dispersion,” Opt. Express15,10733-10736(2007)
    14. E. G. Turitsyna, X. Shu, S. K. Turitsy, and I. Bennion,“Design and Fabricationof Fiber Bragg Gratings With V.Shaped Dispersion Pro le,” J. Lightw. Technol.25,606-610(2007)
    15. X. Shu, B. A. L. Gwandu, Y. Liu, L. Zhang, and I. Bennion,“Sampled fiberBragg grating for simultaneous refractive.index and temperature measurement,”Opt. Lett.26,774-776(2001)
    16. H. Li and Y. Sheng,“Direct design of multichannel fiber Bragg grating withdiscrete layer.peeling algorithm,” IEEE Photon. Technol. Lett.15,1252-1254(2003)
    17. H. Li, T. Kumagai, K. Ogusu, and Y. Sheng,“Advanced design of amultichannel fiber Bragg grating based on a layer-peeling method,” J. Opt. Soc.Am. B.21,1929-1938(2004)
    18. A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov,“Optimization ofrefractive index sampling for multichannel fiber Bragg gratings”, IEEE J.Quantum Electron.39,91-98(2003)
    19. Q. Wu, C. Yu, K. Wang, X. Wang, Z. Yu, H. P. Chan and P. L. Chu,“Newsampling.based design of simultaneous compensation of both dispersion anddispersion slope for multichannel fiber Bragg gratings,” IEEE Photon. Technol.Lett.17,381-383(2005)
    20. H. P. Li, M. Li, Y. L. Sheng, and J. E. Rothenberg,“Advances in the design andfabrication of high-channel.count fiber Bragg gratings,” J. Lightw. Technol.25,2739-2750(2007)
    21. Y. Painchaud, A. Mailloux, H. Chotard, E. Pelletier, and M. Guy,“Multi-channelfiber Bragg gratings for dispersion and slope compensation,” in Optical FiberCommunications Conference, Vol.70of OSA Trends in Optics and Photonics(Optical Society of America,2002), paper ThAA5.
    22. Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu and P. Shum,“ExperimentalDemonstration of Multipoint Temperature Warning Sensor Using a MultichannelMatched Fiber Bragg Grating,” IEEE Photon. Technol. Lett.20,933-935(2008)
    23. M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming,“Sinc-sampled fiberBragg gratings for identical multiple wavelength operation,” IEEE Photon.Technol. Lett.10,842-844(1998)
    24. K. Kolossovski, R. Sammut, A. Buryak, and D. Stepanov,“Three-step designoptimization for multi.channel fibre Bragg gratings,” Opt. Express11,1029-1038(2003)
    25. N. Plougmann and M. Kristensen,“Efficient iterative technique for designingBragg gratings,” Opt. Lett.29,23-25(2004)
    26. Q. Wu, P. L. Chu, and H. P. Chan,“General Design Approach to MultichannelFiber Bragg Grating,” J. Lightw. Technol.24,1571-1580(2006)
    27. J. E. Rothenberg, H. Li, Y. Li, J. Popelek, Y. Sheng, Y. Wang, R. B. Wilcox, andJ. Zweiback,“Dammann fiber Bragg gratings and phase.only sampling for highchannel counts,” IEEE Photon. Technol. Lett.14,1309-1311(2002)
    28. H. Li, Y. Sheng, Y. Li, and J. E. Rothenberg,“Phased-Only Sampled Fiber BraggGratings for High-Channel-Count Chromatic Dispersion Compensation,” J.Lightw. Technol.21,2074-2083(2003)
    29. H. Lee and G. Agrawal,“Bandwidth equalization of purely phase.sampled fiberBragg gratings for broadband dispersion and dispersion slope compensation,”Opt. Express12,5595-5602(2004)
    30. C. Lee, R. Lee, and Y. Kao,“Design of multichannel DWDM fiber Bragggrating filters by Lagrange multiplier constrained optimization,” Opt. Express14,11002-11011(2006)
    31. S. Baskar, R. T. Zheng, A. Alphones, N. Q. Ngo, and P. N. Suganthan,“ParticleSwarm Optimization for the Design of Low-Dispersion Fiber Bragg Gratings,”IEEE Photon. Technol. Lett.17,615-617(2005)
    32. Y. Zhu, P. Shum, C. Lu, P. L. Swart, B. M. Lacquet, and S. J. Spammer,“Promising compact wavelength-tunable optical add-drop multiplexer in densewavelength-division multiplexing systems,” Opt. Lett.29,682-684(2004)
    33. J. M. Tang and K. Alan Shore,“Wavelength-Routing Capability ofReconfigurable Optical Add/Drop Multiplexers in Dynamic Optical Networks,”J. Lightw. Technol.24,4296-4303(2006)
    34. R. Huang, Y. W. Zhou, H. W. Cai, R. H. Qu, and Z. J. Fang,“A fiber Bragggrating with triangular spectrum as wavelength readout in sensor systems,” Opt.Commun.229,197-201(2004)
    35. L. G. de Peralta, A. A. Bernussi, S. Frisbie, R. Gale, and H. Temkin,“Reflectivearrayed waveguide grating multiplexer,” IEEE Photon. Technol. Lett.15,1398(2003)
    36. N. Burani and J. Lagsgaard,“Perturbative modeling of Bragg-grating-basedbiosensors in photonic.crystal fibers,” J. Opt. Soc. Am. B.22,2487.2493(2005)
    37. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion,“Characterization of infrared surface plasmon resonances generated from afiber-optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B.25,481-490(2008)
    38. D. J. F. Cooper, and P.W.E. Smith,“Simple and highly sensitive method forwavelength measurement of low-power time.multiplexed signals using opticalamplifiers,” J. Lightw. Technol.21,1612-1620(2003)
    39. Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. F. Wang,“Low-cost wavelengthmeasurement based on a macrobending single.mode fiber,” Opt. Lett.31,1785-1787(2006)
    40. P. Tsai, F.G. Sun, G. Z. Xiao, Z. Y. Zhang, S. Rahimi, and D. Y. Ban,“A newfiber Bragg grating sensor interrogation system deployingfree-spectral-range-matching scheme with high precision and fast detectionrate,” IEEE Photon. Technol. Lett.20,300-302(2008)
    41. H. Chi, X. Tao, D. Yang, and K. Chen,“Simultaneous measurement of axialstrain, temperature, and transverse load by a superstructure fiber grating,” Opt.Lett.26,1949-1951(2001)
    42. Q. Sun, D. Liu, L. Xia, J. Wang, H. Liu, and P. Subm,“Experimental
    Demonstration of Multipoint Temperature Warning Sensor Using a Multichannel
    Matched Fiber Bragg Grating,” IEEE Photon. Technol. Lett.20,933-935(2008)
    43. K. Zhou, L. Zhang, X. Chen, and I. Bennion,“Optic sensors of high
    refractive.index responsivity and low thermal cross sensitivity that use fiber
    Bragg gratings of>80°tilted structures,” Opt. Lett.31,1193-1195(2006)
    1. H. Rather, Surface Plasmons (Springer.Verlag, Berlin,1988).
    2. S. Zhang, Y. S. Park, J. Li, X. C. Lu, W. L. Zhang, and X. Zhang,“NegativeRefractive Index in Chiral Metamaterials,” Phys. Rev. Lett.102,023901(2009)
    3. J. B. Pendry,“Negative refraction makes a perfect lens,” Phys. Rev. Lett.86,3996(2000)
    4. J. Valentine, J. Li, T. Zentgraf, G. Bartal and X. Zhang,“An optical cloak madeof dielectrics,” Nat. Mater.8,568-571(2009)
    5. N. Liu, L. Langguth, T. Weiss, J. K stel, M. Fleischhauer, T. Pfau, and H.Giessen,“Plasmonic analogue of electromagnetically induced transparency atthe Drude damping limit,” Nat. Mater.8,758–762(2009)
    6. I. Salakhutdinova and J. S. Thakur,“Characterization of long-range surfaceplasmon.polariton in stripe waveguides using scanning near-field opticalmicroscopy,” J. Appl. Phys.102,123110(2007)
    7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen,“ChannelPlasmon.Polariton Guiding by Subwavelength Metal Grooves,” Phys. Rev. Lett.95,046802(2005)
    8. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter,“Experimentaldemonstration of fiber-accessible metal nanoparticle plasmon waveguides forplanar energy guiding and sensing,” Appl. Phys. Lett.86,071103(2005)
    9. J. A. Porto, F. J. Garc′a.Vidal, and J. B. Pendry,“Transmission resonance onmetallic gratings with very narrow slits,” Phys. Rev. Lett.83,2845-.2848(1999)
    10. K. Donghyun,“Effect of the azimuthal orientation on the performance ofgrating-coupled surface.plasmon resonance biosensors,” Appl. Opt.44,3218-3223(2005)
    11. T. Nikolajsen, K. Leosson, and S. I. Bozhevolnyi,“Surface Plasmon polaritonbased modulators and switches operating at telecom wavelengths,” Appl. Phys.Lett.85,5833(2004).
    12. A. Boltasseva, S. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson,“Compact Z-add-drop wavelength filters for long-range surface plasmonpolaritons,” Opt. Express13,4237-4243(2005)
    13. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson,“CompactBragg gratings for long-range surface plasmon polaritons,” J. Lightw. Technol.24,912–918(2006)
    14. Y. K. Gong, X. M. Liu, L. R. Wang, Y. N. Zhang,“Unidirectional manipulationof surface plasmon polariton by dual-nanocavity in a T-shaped waveguide”, Opt.Commun.284,795(2011)
    15. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I.Bozhevolnyi,“Integrated Optical Components Utilizing Long-Range SurfacePlasmon Polaritons,” J. Lightw. Technol.23,413-422(2005).
    16. Kazuo Tanaka, Masahiro Tanaka, and Tatsuhiko Sugiyama,“Simulation ofpractical nanometric optical circuits based on surface plasmon polariton gapwaveguides,” Opt. Express13,256-266(2005)
    17. P. Berini,“Figures of merit for surface plasmon waveguides,” Opt. Express14,13030-13042(2006)
    18. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B.Chichkov,“Novel efficient design of Y-splitter for surface plasmon polaritonapplications,” Opt. Express16,14369-14379(2008)
    19. M. L. Nesterov, A. V. Kats, and S. K. Turitsyn,“Extremely short-length surfaceplasmon resonance devices,” Opt. Express16,20227-20240(2008)
    20. Z. Zheng, Y. Wan, X. Zhao, and J. Zhu,“Spectral interferometric measurementof wavelength-dependent phase response for surface plasmon resonancesensors,” Appl. Opt.48,2491-2495(2009)
    21. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen,“Channel plasmon subwavelength waveguide components includinginterferometers and ring resonators,” Nature.440,508-511(2006)
    22. Z. Han, L. Liu, and E. Forsberg,“Ultra-compact directional couplers andMach–Zehnder interferometers based on surface plasmon polariton,” Opt.Commun.259,690–695(2006)
    23. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater,“Plasmon slot waveguides:Towards chip.scale propagation with subwavelength-scale localization,” Phys.Rev. B.73,035407-035415(2006)
    24. R, Selker, M. D. Selker, P. B. Catrysse, and M. L. Brongersma,“Geometries andmaterials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A.21,2442-2446(2004)
    25. P. Berini,“Bulk and surface sensitivities of surface plasmon waveguides,” NewJ. Phys.10,105010(2008)
    26. G. Veronis, Z. Yu, S. Kocabas, Miller. D, M. Brongersma, and S. Fan,“Metal-dielectric-metal plasmonic waveguide devices for manipulating light atthe nanoscale,” Chin. Opt. Lett.7,302-308(2009)
    27. B. Wang and G. P. Wang,“Plasmon Bragg reflectors and nanocavities on flatmetallic surfaces,” Appl. Phys. Lett.87,013107-013109(2005)
    28. A. Hosseini and Y. Massoud,“A low-loss metal-insulator-metal plasmonicBragg reflector,” Opt. Express14,11318-11323(2006)
    29. A. Hosseini, H. Nejati, and Y. Massoud,“Modeling and design methodology formetal-insulator-metal plasmonic Bragg reflectors,” Opt. Express16,1475-1480(2008)
    30. J. Q. Liu, L.L.Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S.C. Wen,“A wide bandgap plasmonic Bragg reflector,” Opt. Express16,4888-4894(2008)
    31. Y. K. Gong, L. R. Wang, X. H. Hu, A. X. Li and X. M. Liu,“Broad-bandgap andlow sidelobe surface plasmon polariton reflector with Bragg-grating-based MIMwaveguide,” Opt. Express17,13727-13736(2009)
    32. K. Ennser, M. N. Zervas, and R. I. Laming,“Optimization of apodized linearlychirped fiber gratings for optical communications,” IEEE J. Quantum Electron.34,770-778(1998)
    33. M. Kohmoto, B. Sutherland, and K. Iguchi,“Localization of optics:Quasiperiodic media,” Phys. Rev. Lett.58,2436-2438(1987)
    34. J. Park, H. Kim, and B. Lee,“High order plasmonic Bragg reflection in themetal.insulator.metal waveguide Bragg grating,” Opt. Express16,413-425(2008)
    35. Z. H. Han, E. Forsberg, and S. L. He,“Surface plasmon Bragg gratings formedin metal9insulator-metal waveguides,” IEEE Photon. Technol. Lett.1991.93(2007)
    36. S. Jetté.Charbonneau and P. Berini,“Theoretical performance of Bragg gratingsbased on long.range surface plasmon.polariton waveguides,” J. Opt. Soc. Am. A.23,1757-1767(2006)
    37. L. Zhou, X. Q. Yu, and Y. Y. Zhu,“Propagation and dual.localization of surfaceplasmon polaritons in a quasiperiodic metal heterowaveguide,” Appl. Phys. Lett.89,051901(2006)
    38. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor,“Localization oflight waves in fibonacci dielectric multilayers,” Phys. Rev. Lett.72,633-636(1994)
    39. D. Lusk, I. Abdulhalim, and F. Placido,“Omnidirectional reflection fromFibonacci quasi-periodic one-dimensional photonic crystal,” Opt. Commun.198,273-279(2001)
    40. X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu,“Perfect transmission andself.similar optical transmission spectra in symmetric Fibonacci-classmultilayers,” Phys. Rev. E.63,245104(2001)
    41. R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian,“Symmetry-induced perfect transmission of light waves in quasiperiodicdielectric multilayers,” Appl. Phys. Lett.80,3063-3065(2002)
    42. Y. K. Gong, X. M. Liu, and L. R. Wang,“High-channel-count plasmonic lterwith the metal–insulator–metal Fibonacci-sequence gratings,” Opt. Lett.35,285-287(2010)
    43. X. H. Zou, W. Pan, B. Luo, W. L. Zhang, and M. Y. Wang,“One-DimensionalPhotonic Crystal-Based Multichannel Filters Using Binary Phase-OnlySampling Approach,” J. Lightwave Technol.25,2482-2486(2007)
    44. D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q.Park, and C. Lienau,“Microscopic Origin of Surface.Plasmon Radiation inPlasmonic Band-Gap Nanostructures,” Phys. Rev. Lett.91,143901(2003)
    45. D. Egorov, B. S. Dennis, G. Blumberg, and M. I. Haftel,“Two-dimensionalcontrol of surface plasmons and directional beaming from arrays ofsubwavelength apertures,” Phys. Rev. B70,033404(2004)
    46. F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. G. Vidal, E. Devaux, T. W.Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C.Weeber, and A. Dereux,“Efficient unidirectional nanoslit couplers for surfaceplasmons,” Nat. Phys.3,324–328(2007)
    47. Z. W. Liu, Q. H. Wei, and X. Zhang,“Surface Plasmon InterferenceNanolithography,” Nano Lett.5,957.961(2005)
    48. K. G. Lee and Q. Han Park,“Coupling of Surface Plasmon Polaritons and Lightin Metallic Nanoslits,” Phys. Rev. Lett.95,103902(2005)
    49. P. Lalanne, J. P. Hugonin, and J. C. Rodier,“Theory of surface plasmongeneration at nanoslit apertures,” Phys. Rev. Lett.95,263902(2005)
    50. J. Y. Laluet, E. Devaux, C. Genet, T. W. Ebbesen, J.C. Weeber, and A. Dereux,“Optimization of surface plasmons launching from subwavelength hole arrays:modeling and experiments,” Opt. Express15,3488-3495(2007)
    51. Q. Q. Gan, B. S. Guo, G. F. Song, L. H. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli,“Plasmonic surface-wave splitter,” Appl. Phys. Lett.90,161130(2007)
    52. F. L. Tejeira, S. G. Rodrigo, L. M. Moreno, F. J. G. Vidal, E. Devaux, T. W.Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. Gonzalez, J. C.Weeber, and A. Dereux,“Efficient unidirectional nanoslit couplers for surfaceplasmons,” Nat. Phys.3,324–328(2007)
    53. Z. Fu, Q. Gan, K. Gao, Z. Pan, and J. B. Filbert,“Numerical Investigation of aBidirectional Wave Coupler Based on Plasmonic Bragg Gratings in the NearInfrared Domain,” J. Lightw. Technol.,26,3699-3703(2008)
    54. T. Xu, Y. H. Zhao, D. C. Gan, C. T. Wang, C. L. Du, and X. G. Luo,“Directionalexcitation of surface plasmons with subwavelength slits,” Appl. Phys. Lett.92,101501(2008)
    55. S. Xiao, L. Liu, and M. Qiu,“Resonator channel drop filters in aplasmon.polaritons metal,” Opt. Express14,2932–2937(2006)
    56. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. Ping J,“A subwavelengthcoupler-type MIM optical filter,” Opt. Express17,7549-7555(2009)
    57. X. S. Lin and X. Huang,“Numerical modeling of a teeth-shaped nanoplasmonicwaveguide filter,” J. Opt. Soc. Am. B26,1263-1268(2009).
    58. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski,“Opticalproperties of metallic films for vertical-cavity optoelectronic devices,” Appl.Opt.37,5271-5283(1998)
    59. S. Yun, and G. P. Wang,“Optical bistability in metal gap waveguidenanocavities,” Opt. Express16,8421-8426(2008)
    60. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma,“Gain-induced switching inmetal-dielectric-metal plasmonic waveguides,” Appl. Phys. Lett.92,041117(2008)
    1. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla,“Perfectmetamaterial absorber,” Phys. Rev. Lett.100,207402(2008)
    2. W. J. Padilla, M. T. Aronsson, C. Highstrete, M. Lee, A. J. Taylor and R. D.Averitt,“Electrically resonant terahertz metamaterials: theoretical andexperimental investigations,” Phys. Rev. B75,041102R (2007)
    3. D. Schurig, J. J. Mock and D. R. Smith,“Electric-eld-coupled resonators fornegative permittivity metamaterials,” Appl. Phys. Lett.88,041109(2006)
    4. H. Tao, C. M. Bingham,A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I.Landy, K. Fan, X. Zhang,“Highly flexible wide angle of incidence terahertzmetamaterial absorber: Design, fabrication, and characterization” Phys. Rev. B78,241103(2008)
    5. B. Wang, T. Koschny, and C. M. Soukoulis,“Wide-angle andpolarization-independent chiral metamaterial absorber,” Phys. Rev. B80,033108(2009)
    6. N. I. Landy,C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla,“Design, theory, and measurement of a polarization.insensitive absorber forterahertz imaging,” Phys. Rev. B79,125104(2009)
    7. H. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W.J. Padilla,“Complementary planar terahertz metamaterials,” Opt. Express15,1804-1095(2007)
    8. Y. Q. Ye, Y. Jin, and S. L. He,“Omnidirectional, polarization-insensitive andbroadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B,27,498-504(2010)
    9. C. G. Hu, L. Y. Liu, Z. Y. Zhao, X. N. Chen and X. G. Luo,“Mixed plasmonscoupling for expanding the bandwidth of near-perfect absorption at visiblefrequencies,” Opt. Express17,16745-16749(2010)
    10. J. Yang, X. H. Hu, X Li, Z. Liu, Z. Liang, X. Jiang, and J. Zi,“Broadbandabsorption enhancement in anisotropic metamaterials by mirror reflections,”Phys. Rev. B80,125103(2009)
    11. Q. Y. Wen, H. W. Zhang, Y. S. Xie, Q. H. Yang, and Y. L. Liu,“Dual bandterahertz metamaterial absorber: Design, fabrication, and characterization,”Appl. Phys. Lett.95,241111(2009)
    12. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C.S nnichsen, and H. Giessen,“Infrared Perfect Absorber and Its Application AsPlasmonic Sensor,” Nano Lett.10,2342–2348(2010)
    13. X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla,“Infrared Spatial and FrequencySelective Metamaterial with Near-Unity Absorbance”, Phys. Rev. Lett.104,207403(2010)
    14. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff,“Extraordinary optical transmission through sub-wavelength hole arrays,”Nature391,667-669(1998)
    15. C. Genet, and T. W. Ebbesen,“Light in tiny holes,” Nature445,39-46(2007)
    16. J. A. Porto, F. J. Garc′a.Vidal, and J. B. Pendry,“Transmission resonance onmetallic gratings with very narrow slits,” Phys. Rev. Lett.83,2845-2848(1999)
    17. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur,“Transmission oflight through a periodic array of slits in a thick metallic film,” Opt. Express13,4485-4491(2005)
    18. L. Mart′n.Moreno, and F. J. Garc′a.Vidal,“Optical transmission throughcircular hole arrays in optically thick metal films,” Opt. Express12,3619.3628(2004)
    19. L. Mart′n.Moreno, F. J. Garc′a.Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B.Pendry, and T. W. Ebbesen,“Theory of extraordinary optical transmissionthrough subwavelength hole arrays,” Phys. Rev. Lett.86,1114-1117(2001)
    20. K. J. K. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers,“Strong influence of hole shape on extraordinary transmission through periodicarrays of subwavelength holes,” Phys. Rev. Lett.92,183901(2004)
    21. Z. Ruan and M. Qiu,“Enhanced transmission through periodic arrays ofsubwavelength holes: The role of localized waveguide resonances,” Phys. Rev.Lett.96,233901(2006)
    22. N. Liu, L. Langguth, T. Weiss, J. K stel, M. Fleischhauer, T. Pfau, and H.Giessen,“Plasmonic analogue of electromagnetically induced transparency atthe Drude damping limit,” Nat. Mater.8,758–762(2009)
    23. Y. Shen and G. P. Wang,“Optical bistability in metal gap waveguidenanocavities,” Opt. Express16,8421-426(2008)
    24. Y. Liu, F. Qin, F. Zhou, and Z. Y. Li,“Ultrafast and low-power photonic crystalall.optical switching with resonant cavities,” J. Appl. Phys.106,083102(2009).
    1. D. Kim, S. Hohng, V. Malyarchuk, Y. Yoon, Y. Ahn, K. Yee, J. Park, J. Kim, Q.Park, and C. Lienau,“Microscopic Origin of Surface-Plasmon Radiation inPlasmonic Band-Gap Nanostructures,” Phys. Rev. Lett.91,143901(2003)
    2. D. Egorov, B. S. Dennis, G. Blumberg, and M. I. Haftel,“Two-dimensionalcontrol of surface plasmons and directional beaming from arrays ofsubwavelength apertures,” Phys. Rev. B70,033404(2004)
    3. Z. W. Liu, Q. H. Wei, and X. Zhang,“Surface Plasmon InterferenceNanolithography,” Nano Lett.5,957-961(2005)
    4. K. G. Lee and Q. Han Park,“Coupling of Surface Plasmon Polaritons and Lightin Metallic Nanoslits,” Phys. Rev. Lett.95,103902(2005)
    5. P. Lalanne, J. P. Hugonin, and J. C. Rodier,“Theory of surface plasmongeneration at nanoslit apertures,” Phys. Rev. Lett.95,263902(2005)
    6. I. E. Tamm, Phys. Z. Sowjetunion1,733(1932)
    7. A. V. Kavokin, I. A. Shelykh, and G. Malpuech,“Lossless interface modes at theboundary between two periodic dielectric structures,” Phys. Rev. B72,233102(2005)
    8. T. Goto, A. V. Dorofeenko, A. M. Merzlikin, A. V. Baryshev,“Optical TammStates in One-Dimensional Magnetophotonic Structures,” Phys. Rev. Lett.101,113902(2008)
    9. S. Brand, M. Kaliteevski, and R. A. Abram,“Optical Tamm states above thebulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B.79,085416(2009)
    10. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V.Kavokin, and I. A. Shelykh,“Tamm plasmon-polaritons: Possibleelectromagnetic states at the interface of a metal and a dielectric Bragg mirror,”Phys. Rev. B.76,165415(2007)
    11. M. E. Sasin, R. P. Seisyan, M. Kalitteevski, S. Brand, R. A. Abram, J. M.Chamberlain, A. Y. Egorov, A. P. Vasilev, V. S. Mikhrin, and A. V. Kavokin,“Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett.92,251112(2008)
    12. X. Kang, W. Tan, Z. Wang, and H. Chen,“Optic Tamm states: TheBloch-wave-expansion method,” Phys. Rev. A.79,043832(2009)
    13. M. Kaliteevski, S. Brand, R. A. Abram, I. Iorsh, A. V. Kavokin, and I. A.Shelykh,“Hybrid states of Tamm plasmons and exciton polaritons,” Appl. Phys.Lett.95,251108(2009)
    14. H. Zhou, G. Yang, K. Wang, H. Long, and P. Lu,“Multiple optical Tamm statesat a metal–dielectricmirror interface,” Opt. Lett.35,4114(2010)
    15. Z. Zhang, G. Du, H. Jiang,“Complete absorption in a heterostructure composedof a metal and a doped photonic crystal,” J. Opt. Soc. Am. B.27,909(2010)
    16. W. Gellermann, M. Kohmoto, B. Sutherland, and P. C. Taylor,“Localization oflight waves in fibonacci dielectric multilayers,” Phys. Rev. Lett.72,633-636(1994)
    17. D. Lusk, I. Abdulhalim, and F. Placido,“Omnidirectional reflection fromFibonacci quasi-periodic one.dimensional photonic crystal,” Opt. Commun.198,273-279(2001)
    18. X. Q. Huang, S. S. Jiang, R. W. Peng, and A. Hu,“Perfect transmission andself.similar optical transmission spectra in symmetric Fibonacci.classmultilayers,” Phys. Rev. E.63,245104(2001)
    19. R. W. Peng, M. Mazzer, X. Q. Huang, F. Qiu, M. Wang, A. Hu, and S. S. Jian,“Symmetry-induced perfect transmission of light waves in quasiperiodicdielectric multilayers,” Appl. Phys. Lett.80,3063-3065(2002)
    20. Y. K. Gong, X. M. Liu, and L. R. Wang,“High-channel-count plasmonic lterwith the metal–insulator–metal Fibonacci-sequence gratings,” Opt. Lett.35,285-287(2010)
    21. M. Born and E. Wolf, Principles of Optics, fourth ed., Pergamon, Oxford,1970,58-68
    22. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C.S nnichsen, and H. Giessen,“Infrared Perfect Absorber and Its Application AsPlasmonic Sensor,” Nano Lett.10,2342–2348(2010)
    23. J. Nakayama,“Periodic Fourier transform and its application to wave scatteringfrom a finite periodic surface: Two-dimensional case,” IEICE Trans. Electron.,E88.C,1025-1032(2005)
    24. X. L. Liu, T. Starr, A. F. Starr, and W. J. Padilla,“Infrared Spatial and FrequencySelective Metamaterial with Near-Unity Absorbance”, Phys. Rev. Lett.104,207403(2010)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700