用户名: 密码: 验证码:
回转窑视觉检测方法与优化控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
回转窑是对散状或浆状物料进行烧结处理的大型热工设备,被广泛应用于有色冶金、水泥生产等工业部门,在国民经济建设中发挥着重要作用。由于缺乏有效的接触式传感技术,基于窑头图像的视觉检测技术成为了辨识窑内现场工况参数的有效途径。现有的研究工作大多集中在窑头图像中火焰区的特征提取,以及如何利用火焰图像特征来进行窑温标定和工况辨识,却缺乏对窑头图像中熟料区的视觉检测技术的深入研究。本文在国家自然科学基金的资助下,以工业回转窑熟料图像为研究对象,以保证熟料的正常烧结和窑况稳定为主要目标,对回转窑熟料图像的视觉检测技术以及回转窑系统的优化控制方法进行深入研究。本文完成的主要工作如下:
     (1)提出了基于纹理分析的熟料烧结状态定性分析方法。以灰度共生矩阵及其统计学参数作为描述熟料纹理的主要工具,对实际工况下的不同烧结状态的熟料纹理特征进行计算和分析。针对灰度共生矩阵位置算子和特征参数多样性特点,提出基于Fisher系数的灰度共生矩阵最佳位置算子和最有效分类特征参数集判别方法,并利用C4.5决策树对“过烧”、“欠烧”和“正烧”三种不同烧结状态下的熟料纹理进行分类,获取了具体分类规则。
     (2)熟料休止角是表征熟料特性的重要参数,为实现熟料烧结度的定量分析,研究了熟料上休止角的图像识别方法。利用边缘检测和直线拟合方法完成单帧图像的熟料动态休止角的计算,结合具体工况下的回转窑窑头视频得到休止角序列变化曲线,引入序列分析思想来实现熟料运动周期中的上休止角检测。对熟料休止角序列变化曲线进行滤波、平滑处理,有效地滤除数据序列中的“野点”,弥补了窑头视野不清时导致的熟料动态休止角检测信息的异常或缺失;基于多峰高斯拟合方法完成了熟料休止角序列变化曲线的正峰值检测,从而精确地计算出熟料运动周期的上休止角。
     (3)为实现窑尾来料量和窑温异常检测,研究了熟料填充率的图像测量方法。提出了一种融合空间信息的灰度级自适应FCM快速分割算法以完成熟料区的精细和快速分割,算法采用基于空间信息的线性权重和图像来更新原有灰度处理对象,基于直方图统计和权重计算实现聚类算法初始点的选择,以灰度级为聚类对象提高了FCM分割的速度,并结合形态学的区域生长方法实现了窑头熟料区的灰度区提取、填充空洞并平滑边缘,最终利用像素求和方法完成熟料填充率的计算。结合回转窑工况恒定、烧结带温度异常上升和异常降低这三种不同工况下的视频进行仿真实验,并对熟料填充率曲线变化与来料量和窑内烧结带温度异常情况进行了具体分析。
     (4)针对回转窑控制系统中窑温变化和熟料烧结状态变化响应时间常数不同的问题,引入煤粉燃烧过程和熟料烧结过程串级控制思想,提出了基于熟料视觉特征的熟料烧结仿人智能控制和基于DRSPC算法的窑温优化控制方法。首先通过对熟料纹理和上休止角进行模糊融合以实现熟料烧结度的判断,并将其作为控制器的工况反馈,仿人智能控制算法根据熟料烧结度误差的大小、方向及其变化趋势对窑温设定值采用不同的控制模式。其次,提出了一种基于DRSPC算法的工业回转窑窑温优化控制方法。该法采用统计学方法消除窑温测量误差,为回转窑控制系统建立了均值(烧结带温度)和标准差(烧结带、窑头、窑尾三处温度差)两个响应面模型,在优化过程中基于标准差的响应优化结果对烧结带温度均值响应面模型进行适当地约束,保证了优化输出的鲁棒性;控制算法的目标函数以最小化喷煤管转速变化量作为主要优化对象,并兼顾了窑温的期望值和稳定性要求,通过在优化模型目标函数中设定不同目标权重系数以平衡系统的计算开销与处理效率。基于实际工业窑炉获得的现场工况数据,DRSPC优化控制算法处理动态复杂工况的有效性得以证明。
     文章从图像处理的基本理论出发,研究回转窑的视觉检测相关技术,提出应用视觉检测信息的控制方法,对于提高工业回转窑的自动控制水平和扩大图像视觉的应用领域,具有重要的科学意义和广阔的应用前景。
An industrial rotary kiln is a large-scale thermal equipment for processing bulk or slurry materials. It is widely employed in many fields such as metallurgical and cements industry and plays an important role in the national economy. Due to the lack of viable online contact sensors under high combustion temperature, contactless image-based visual inspection technology has become an effective method for estimating some key quality parameters of the working condition inside the kiln. Since existing techniques mainly focus on extracting the visual features from the flame and utilizing these features for demarcating the kiln temperature and identifying the working condition, it still needs further investigation on the technology of visual inspection for clinker and the effective method to deal with the complex and dynamic calcinations process. This thesis is supported by National Natural Science Foundation of China, and the clinker image of industrial rotary kiln is choosen as study object. The main purpose of this research is to ensure the normal sinter for clinker and stable control for rotary kiln. Thus, the technology of visual inspection and the optimal control for rotary kiln are deeply studied and the major achievments of this thesis are described as follows:
     Firstly, a texture analysis of the clinker image based on GLCM is proposed for predicting the sinter mode of clinker. According to the variety of displacement operator and description features of GLCM, the Fisher coefficient is used to extract the best displacement operator of the GLCM and to reduce the texture measurement sets. Then C4.5decision tree is applied to classify the sampled clinker images into three categories:over-sintering, under-sintering and normal-sintering, whose detailed classification rule was listed.
     Secondly, the visual recognition of upper repose angle of clinker is developed to quantitatively analyze the sinter degree of clinker. The repose angle of single image sample is calculated by edge detection and linear least square regression. Corresponding to the real-time video captured under industrial rotary kiln, the sequence analysis is needed for the curve of repose angle in order to extract the upper repose angle of each motion period. Noises are filtered and smoothed from the original curve, and then the abnormal and missed data can be removed. Finally, all positive peaks of curve are detected by the method of Guassion-based muti-peak curve fitting. As a result, the upper repose angles are achievmented with these peaks.
     Thirdly, the visual-based measurement of filling percentage of clinker is produced. The value of filling percentage of clinker can be used to detect the feeding rate of slurry and the mutation of sinter zone temperature. An innovative FCM method is developed for segmenting the clinker from the whole image accurately and quickly. This segmentation mothod applies local spatial neighborhood information with an adaptive window to generate the linear-weighted sum image, in which the noise is eliminated while the edge is preserved. It is worth noting that the clustering segmentation is based on the number of gray-level rather than pixels of the whole image to reduce the computation complexity. The total clinker region is then recognized by region growing technology based on gray-level connectivity. Consequently, the filling percentage of clinker is calculated by the rate of the pixels number between the clinker region and the total image. The relationship between the curve of filling percentage and the feeding rate of slurry and zone temperature mutation is analyzed by case study and simulation.
     Fourthly, the cascade control strategy is proposed to deal with the mismatch change delay between the temperature of the rotary kiln and the sintering status of the clinker. The cascade control consists of two controllers, which are the HISC for the clinker sinter and the DRSPC for the temperature control of rotary kiln. In the automatic control of clinker sinter, the sinter degree of clinker is determined by the fuzzy fusion result of the texture feature and the upper repose angle. HISC switches to different control modes following the variation of the sinter degree error, such as the amplitude, the direction and the trend of the variation. Then, the temperature of the rotary kiln, which is the output response of the HISC, is transmitted to DRSPC as input. The adjustments of the rotation speed of coal burner pipe are used to respond to temperature changes in the kiln. The DRSPC can rapidly provide corresponding optimal and robust outputs to serve the rotation speed of coal burner pipe. In the DRSPC, the measurement errors of the kiln temperature can be statistical eliminated. Two response surface models, one for the mean value and the other for the standard deviation of the kiln temperature, can achieve optimal and robust outputs because of the appropriate constraint given by each other. The objective function of controller is designed for minimizing the variation of the rotation speed of the coal burner pipe, which also considers the requirement of accurate and stable control for the kiln temperature. The weight coefficients are used in the objective function to keep the trade-off between system cost and efficiency. Case study and experiment results validate the efficiency of the controller, which is designed for dynamic and complex induatrial work conditions of roatry kiln.
     This thesis is based on the basic theory of image processing, and focuses on the key technology of visual inspection for rotary kiln, provides vision-based optimal control methods, demonstrates important scientific significance and broad application prospect of improving automatic control technology of rotary kiln and expanding the vision application area.
引文
[1]H.N.叶列明,等著.王延明,阎鼎欧,杨重愚,等译.氧化铝生产过程与设备.北京:冶金工业出版社,1987.
    [2]中国有色金属工业行业协会.中国节能技术政策大纲,2004,10
    [3]易正明.氧化铝回转窑热工分析与控制应用研究:[中南大学博士学位论文].湖南,中南大学,2007.
    [4]Mayer J D.Vision system:technology of the future at work today. Computer World,1985,19(21):13
    [5]吴永建,周晓杰,柴天佑,等.氧化铝熟料烧结回转窑智能控制系统设计与应用.华东理工大学学报,2006,32(7):745-749.
    [6]黄然婷,刘咏平,狄琤,等.锌钡白干煅窑炉过程控制系统的研制一测量数据预处理技术.华南理工大学学报(自然科学版),2002,30(4):52-55.
    [7]章兢,张小刚,刘小燕.回转窑集成智能控制系统.电工技术学报,2002,17(4):62-66.
    [8]杜启亮,莫鸿强,毛宗源,林俊.硫化钡回转窑红外温度测量与分析.仪器仪表学报,2007,28(8):1492-1496.
    [9]易正明,周孑民,刘志明,吕子剑.基于红外测温的回转窑状态预报系统研究.武汉理工大学学报,2005,27(12):79-82.
    [10]Allan R. Machine Vision-Technology Report, Electronic Design,1985,11(14): 106-116.
    [11]斯托克曼,夏皮罗(著),蔡利栋,钱芳,赵清杰(译).计算机视觉.北京:机械工业出版社,2005.
    [12]王少林,章立新,茅忠明,等.回转窑火焰监视及温度测量系统.工程热物理学报,2003,24(6):1034-1036.
    [13]Zhang L, Gao X W. Survey on rotary kiln process control. Control and Decision Conference, CCDC'09. Guilin,2009:4151-4156.
    [14]Koumboulis F N, Kouvakas N D. Indirect adaptive neural control for precalci-nation in cement. Mathematics and Computers in Simulation,2002,60(3-5):325-334.
    [15]Cai Z X, Wang Y N, Cai J F. A real-time expert control system. Artificial Intelligence in Engineering,1996,10(4):317-322.
    [16]Valiquette J, Savoie M. Practical Aspects of model predictive control imple- mentation on an industrial lime kiln. Tappi Journal,1999,82(5):130-136.
    [17]Zanovello R, Budman H. Model predictive control with soft constraints with application to lime kiln control. Computers and Chemical Engineering,1999, 23(6):791-806.
    [18]Jarvensivua M, Esko J, Olli A. Intelligent Control of a Rotary Kiln Fired with Producer Gas Generated from Biomass. Engineering Applications of Artificial Intelligence,2001,14(5):629-653.
    [19]Chen W C, Chang N B, Chen J C. GA-based fuzzy neural controller design for municipal incinerators. Fuzzy Sets and Systems,2002,129(3):343-369.
    [20]Holmblad L P. The FLS application of fuzzy logic. Fuzzy Sets and Systems,1995,70(2):135-146.
    [21]Stephen E, Sheridan P S. Automatic Kiln Control at Oregon Portland Cement Company's Durkee Plant Utilizing Fuzzy Logic. IEEE Trans. Industry Applica-tions,1984,IA-20(3):562-567.
    [22]Sutinen R. Causticizing plant and lime kiln computer control. Pulp and Paper Canada,1981,82(8):90-95.
    [23]Bailey R M, Willison T R. Supervisory control for lime kilns slashes operating costs by up to 20%. Pulp and Paper,1986,60(2):100-105.
    [24]Hagemoen S W. An expert system application for lime kiln automation, Proceedings of Pulp and Paper Industry Technical Conference, IEEE, Hyannis, 1993:91-97.
    [25]Stadler K S, Poland J, Gallestey E. Model predictive control of a rotary cement kiln. Control Engineering Practice,2011,19(1):1-9.
    [26]Wang Y N, Tong T S. A hybrid intelligent control for industrial rotary kiln plant. Proceeding of the 1996 IEEE IECON 22nd International Conference on Industrial Electronics, Control, and Instrumentation,Taipei,1996:1418-1423.
    [27]姚维,孟溶,颜文俊,等.水泥回转窑生产过程的模糊控制.化工自动化及仪表,2000,27(2):15-18.
    [28]王介生,战红仁,王伟.基于粗糙集的T-S模糊神经网络在回转窑烧结过程中的应用.华东理工大学学报(自然科学版),2006,32(7):796-800.
    [29]邹健,诸静.模糊预测函数控制在水泥回转窑分解炉温控系统中的应用研究.硅酸盐学报,2001,29(4):318-321.
    [30]吴永建,周晓杰,柴天佑,等.氧化铝熟料烧结回转窑智能控制系统设计与应用.华东理工大学学报(自然科学版),2006,32(7):745-749.
    [31]王蕊,万健如,王亭津.水泥回转窑温度模糊控制系统设计.自动化与仪表, 2005,20(2):32-34.
    [32]张立岩,柴天佑.氧化铝回转窑制粉系统磨机负荷的智能控制.控制理论与应用,2010,27(11):1471-1478.
    [33]张立,高宪文,李申明,等.基于Wang-Mendel模型的有约束模糊预测控制.控制与决策,2010,25(9):1384-1388.
    [34]Hu J, Zhang J, Zhang X M. Automated Visual Detection of the Rotary Kiln Temperature. Advances in Modelling&Analysis B,1994,30(1):1-8.
    [35]Zhang J, Tong T S, Li F C, et.al. Rotary Kiln Intelligent Control Based on Flame Image Processing. IEEE International Conference on Intelligent Processing System, Beijing,1997,1(2):154-168.
    [36]章兢,刘小燕.基于图像序列处理的回转窑锻烧区温度测量.电子测量与仪器学报,1999,13(4):67-71.
    [37]刘小燕,章兢,章振华.回转窑燃烧图像中火焰区的动态标定.湖南大学学报(自然科学版),2002,29(6):91-94.
    [38]李树涛,王耀南.基于神经网络的回转窑火焰图像分割.仪器仪表学报,2001,22(1):10-12.
    [39]李树涛,王耀南,毛建旭.基于多神经网络分类器组合的火焰图像分割.数据采集与处理,2000,15(4):443-446.
    [40]李树涛,唐艳,王耀南.基于色彩通道融合的火焰图像分割.湖南大学学报(自然科学版),2001,28(4):64-68.
    [41]李树涛,王耀南,张昌凡.基于燃烧火焰图象特征的回转窑神经网络控制系统.自动化学报,2002,28(4):591-595..
    [42]张小刚,陈华,章兢.基于多传感器融合的窑温检测与控制方法.控制与决策,2002,17(6):865-870.
    [43]张小刚,陈华,章兢,等.基于图像反馈的回转窑烧结温度智能预测控制.控制理论与应用,2007,24(6):995-998.
    [44]孙鹏,周晓杰,柴天佑.面向复杂工业过程应用的图像处理系统.东北大学学报(自然科学版),2008,29(6):765-768.
    [45]孙鹏,柴天佑,周晓杰,等.氧化铝回转窑烧成带火焰图像识别系统.化工学报,2008,59(7):1839-1842
    [46]孙鹏,周晓杰,柴天佑.基于纹理粗糙度的回转窑火焰图像FCM分割方法.系统仿真学报,2008,20(16):4438-4441.
    [47]姜慧研,崔晓亮,周晓杰,等.基于改进的双快速行进法的图像分割方法.系统仿真学报,2008,20(3):803-806.
    [48]姜慧研,周晓杰,柴天佑.基于多级SVM的回转窑烧结状态识别方法.东北大学学报(自然科学版),2009,30(1):54-57.
    [49]姜慧研,景世磊,柴天佑,等.基于SVM和PSO的烧结工况预报方法.东北大学学报(自然科学版),2010,31(4):494-497.
    [50]Zhou X J, Chai T Y. Pattern-based Hybrid Intelligent Control for Rotary Kiln Process. Proceedings of the IEEE International Conference on Control Applications,Singapore,2007,Oct.:31-35.
    [51]刘玉长,刘志明,易正明.氧化铝回转窑火焰图像分割和特征提取技术.计算机测量与控制,2006,14(17):909-911.
    [52]易正明,吕子剑,刘志明.氧化铝回转窑火焰图像处理与特征提取.仪器仪表学报,2006,27(8):969-972.
    [53]张红亮.氧化铝回转窑火焰图像识别、检索与聚类研究:[中南大学博士学位论文].湖南,中南大学,2008.
    [54]张红亮,李劫,陈湘涛,等.回转窑火焰图像阈值分割的应用研究.计算机应用,2007,27(12):75-79.
    [55]Zhang H L, Zou Z, Li J,et.al. Flame image recognition of alumina rotary kiln by artificial neural network and support vector machine methods. Journal of Central South University of Technology,2008,15(1):39-43.
    [56]张红亮,陈湘涛,李劫,等.基于火焰状氧化铝回转窑火焰图像检索.中国有色金属学报,2008,18(7):1364-1370.
    [57]张红亮,李劫,陈湘涛,等.基于灰关联规则的回转窑火焰图像检索方法.中南大学学报(自然科学版),2008,39(5):881-886.
    [58]Li W T, Mao K Z, Zhou X J, et.al. Eigen-flame image-based robust recognition of burning states for sintering process control of rotary kiln. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai,2009,12:16-18.
    [59]牟学民,王荣俊.氧化铝烧成过程自动控制系统.电气传动自动化,1999,21(2):35-38.
    [60]Simoglou A, Martin E B, Morris A J. Statistical performance monitoring of dynamic multivariate processes using state space modeling. Computers and Chemical Engineering,2002,26(6):909-920.
    [61]Marchant J A. Testing a measure of image quality for acquisition control. Image and Vision Computing,2002,20(7):449-458.
    [62]Gonzalez R C, Woods R E. Digital Image Processing,2nd ed. PrenticeHall, Upper Saddle River, NJ,2002.
    [63]Doyle W. Operations useful for similarity-invariant pattern recognition. Journal of the ACM,1962,9(2):259-267.
    [64]Lim J S. Two-Dimensional Signal and Image Processing. Englewood Cliffs, NJ, Prentice Hall,1990.
    [65]韩思奇,王蕾.图像分割的阈值法综述.系统工程与电子技术,2002,24(6):92-94.
    [66]Otsu N. Discriminant and least square threshold selection. In:Proc 4IJCPR, 1978:592-596.
    [67]Cagnoni S, Coppini G, Rucci M,et.al. Neural network segmentation of magnetic resonance spin echo images of the brain. Journal of Biomedical Engineering, 1993,15(5):355-362.
    [68]Bezdek J C, Pal M R, Keller J, et.al. Fuzzy Models and Algorithms for Pattern Recognition and Image Processing.Kluwer Academic Publishers Norwell, MA, USA,1999.
    [69]刘良江.先进电子制造生产线机器视觉检测方法与技术研究:[湖南大学博士学位论文].湖南,湖南大学,2009.
    [70]Davis L S. A survey of edge detection techniques. Computer Graphics and Image Processing,1975,4(3):248-260.
    [71]Prewitt J M S. Object enhancement and extraction. In Picture Processing and Psychopictorics. Academic Press, New York,1970.
    [72]Kanopoulos N, Vasanthavada N, Baker R. Design of an image edge detection filter using the sobel operator. IEEE Journal of solid-state circuits,1988,23(2): 358-367.
    [73]Haralick R. Digital step edges from zero crossing of second directional derivatives. IEEE Trans. Pattern Analysis and Machine Intelligence,1984, 6(1):58-68.
    [74]Huertas A, Medioni G. Detection of Intensity Changes with Subpixel Accuracy Using Laplacian-Gaussian Masks. IEEE Trans.Pattern analysis and machine intelligence.1986,8(5):651-664.
    [75]Canny J. A Computational Approach To Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence,1986,8(6):679-714.
    [76]Coggins J M. A Framework for Texture Analysis Based on Spatial Filtering, Ph.D.Thesis, Computer Science Department, Michigan State University, East Lansing, Michigan,1982.
    [77]Tuceryan M. Texture Analysis, The Handbook of Pattern Recognition and Computer Vision(2nd Edition),World Scientific Publishing Co.,1998:207-248.
    [78]Blostein D, Ahuja N. Shape from Texture:Integrating Texture-Element Extraction and Surface Estimation. IEEE Trans. Pattern Analysis and Machine Intelligence,1989,11 (12):1233-1251.
    [79]Pentland A. Fractal-Based Description of Natural Scenes.IEEE Trans. Pattern Analysis and Machine Intelligence,1984,6(6):661-674.
    [80]Cross G C, Jain A K. Markov Random Field Texture Models. IEEE Trans. Pattern Analysis and Machine Intelligence,1983,5(1):25-39.
    [81]Sherman S. Markov random fields and Gibbs random fields. Israel Journal of Mathematics,1973,14(1):92-103
    [82]许存禄.图像纹理分析的新方法及其应用:[复旦大学博士学位论文].上海,复旦大学,2005.
    [83]李树涛,孙凤梅.基于Curvelet和小波变换的纹理图像识别.湖南大学学报(自科版),2008,35(4):51-54.
    [84]Haralick R M, Shanmugam K, Dinstein I. Textural features for image classifica-tion. IEEE Trans.Systems, Man and Cybernetics,1973,3(6):610-621.
    [85]Haralick R M. Statistical and Structural Approaches to Texture. Proceedings of the IEEE,1979,67(5):786-804.
    [86]Galloway M M. Texture analysis using gray level run lengths. Computer Graphics and Image Processing,1975,4(2):172-179.
    [87]Tang X. Texture information in run-length matrices. IEEE Trans. Image Processing,1998,7(11):1602-1609.
    [88]Theodoridis S, Koutroumbas K. Pattern Recognition. Academic Press:NewYork, 1998.
    [89]Quinlan J R. C4.5:Programs for Machine Learning. San Francisco, CA:Morgan Kaufmann,1993.
    [90]雷先明,肖友刚,蒋寿生.耦合工况下回转窑热工过程综合数学模型.化学工程,2009,37(10):18-21.
    [91]Liu X Y, Specht E, Mellmann J. Experimental study of the lower and upper repose of granular materials in rotating drums. Powder Technology,2005,154 (2-3):125-131.
    [92]Ogale S B, Bathe R N, et.al. Boundary effects on the stability of thin submerged granular piles. Physica A:Statistical Mechanics and its Applications,2005, 354(15):49-58.
    [93]Wong A C Y. Characterisation of the flowability of glass beads by bulk densities ratio. Chemical Engineering Science,2000,55(18):3855-3859.
    [94]Tegzes P, Vicsek T, Schiffer P. Avalanche dynamics in wet granular materials. Physical Review Letters,2002,89(9):094301
    [95]Heneuin H, Brimacombe J K, Watkinson A P. Experimental study of transverse bed motion in rotary kilns. Metallurgical and Materials Trans.B,1983,14(2): 191-205.
    [96]Liu X Y, Specht E, Mellmann J. Slumping-rolling transition of granular solids in rotary kilns. Chemical Engineering Science,2005,60(13):3629-3636.
    [97]Sherritt R G, Chaouki J, Mehrotra A K, et.al. Axial dispersion in the three-dimensional mixing ofparticles in a rotating drum reactor. Chemical Engineering Science.2003,58(2):401-415.
    [98]Heydenrych M D, Greeff P, Heesink A, et.al. Mass transfer in rolling rotary kilns:A novel approach. Chemical Engineering Science,2002,57(2):3851-3859.
    [99]Liu X Y, Specht E, Gonzalez 0 G,et.al. Analytical solution for the rolling-mode granular motion in rotary kilns. Chemical Engineering and Processing.2006, 45(6):515-521.
    [100]Richard A J. Statistical Analysis. Prentice Hall, Upper Saddle River, New Jersey,2008.
    [101]Macciotta N P P, Cappio-Borlino A, Pulina G. Time series autoregressive integrated moving average modeling of test-day milk yields of dairy ewes Journal of Dairy Science,2000,83(5):1094-1103.
    [102]Savitzky A, Golay M J E. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry,1964,36(8):1627-1639.
    [103]李培生,胡松,孙路石,等.基于SG算法的燃煤微分热重曲线平滑去噪.华中科技大学学报(自然科学版),2005,33(7):61-64.
    [104]Nuttall A H. Some Windows with Very Good Sidelobe Behavior. IEEE Trans. Acoustics, Speech and Signal Processing,1981,29(1):84-91.
    [105]Bergen S W A, Antoniou A. Design of Ultraspherical Window Functions with Prescribed Spectral Characteristics.EURASIP Journal on Applied Signal Processing,2004,(13):2053-2065.
    [106]温和,滕召胜,郭斯羽,等Hanning自卷积窗函数及其谐波分析应用.中国科学E辑:技术科学,2009,39(6):1190-1198.
    [107]Pham D L, Prince J L. Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans.Med Imaging.1999,18(9):737-752.
    [108]Ahmed M N, Yamany S M, Mohamed N,et.al. A Modified Fuzzy C-Means Algorithm for Bias Field Estimation and Segmentation of MRI Data. IEEE Trans. Medical Imaging,2002,21(3):193-199.
    [109]朱林,王士同,邓赵红.改进模糊划分的FCM聚类算法的一般化研究.计算机研究与发展,2009,46(5):814-822.
    [110]Chen S C, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Systems, Man and Cybernetics, Part B,2004,34(4):1907-1916.
    [111]范九伦,吴成茂.FCM算法中隶属度的新解释及其应用.电子学报,2004,32(2):350-352.
    [112]Pham D L. Spatial models for fuzzy clustering. Computer Vision and Image Understanding,2001,84(2):285-297.
    [113]Shen S, Sandham W., Granat M, et.al. MRI Fuzzy Segmention of Brain Tissue Using Neighborhood Attraction With Neural-Network Optimization. IEEE Trans. Information Technology in Biomedicine,2005,9(3):459-467.
    [114]Cai W L, Chen S C, Zhang D Q, Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognition,2007,40(3):825-838.
    [115]王璐,蔡自兴.改进的快速FCM算法.小型微型计算机系统,2005,26(10):1774-1777.
    [116]Shannon C E. A mathematical theory of communication. ACM Sigmobile Mobile Computing and Communications Review,2001,5(1):3-55.
    [117]Jarvensivu M, Saari K, Jamsa-Jounela S L. Intelligent Control System of an Industrial Lime Kiln Process. Control Engineering Practice,2001,9(6):589-606.
    [118]Tscheng S H, Watkinson A P. Convective heat transfer in a rotary kiln. The Canadian Journal of Chemical Engineering,1979,57(8):433-443.
    [119]Barr P V, Brimacombe J K, Watkinson A P. A heat transfer model for the rotary kiln. Met Trans.B,1989,20B(6):391-419.
    [120]Boateng A A, Barr P V. A thermal model for the rotary kiln including heat transfer within the bed. International Journal of Heat Mass Transfer,1996,39 (10):2131-2147.
    [121]Zhou Q J, Bai J G. An Intelligent Controller of Novel Design. Proc. of a Multi-National Instrumentation Confemnce, Part 1, Shanghai,China,1983,137-149.
    [122]李祖枢,涂亚庆.仿人智能控制.北京:国防工业出版社,2003:
    [123]李祖枢,万文略,郭文书,等.计算机电液控制系统中仿人智能控制的研究.四川兵工学报,1997,18(3):20-23.
    [124]孙瑜,李光明,王孟效.纸浆中浓仿人智能控制.化工自动化及仪表,1999,35(1):14-17.
    [125]向欣,宾鸿赞.高精度数控分度头的仿人智能控制方法.光学精密工程,1998,6(1):65-70.
    [126]刘立君,吴林.遥控焊接力觉临场感仿人智能控制.焊接学报,2005,26(7):9-13.
    [127]吴垣甫.小车单摆系统仿人智能控制与参数优化仿真.信息与控制,2010,39(1):120-128.
    [128]吴朋,时光,聂绍忠.仿人智能控制在智能电气阀门定位器中的应用.仪器仪表学报,2009,30(9):1930-1934.
    [129]赵太富,李太福,陈鸿雁.橡胶硫化过程的仿人智能控制.橡胶工业,2003,50(9):545-549.
    [130]Dong X M, Li Z S, Yu M, et.al. Human simulated intelligent control and its application in magnetorheological suspension. Control Theory&Applications, 2010,27(2):249-256.
    [131]陈波,康戈文,涂铭旌.高频感应加热设备仿人智能控制及其仿真.四川大学学报(工程科学版),2001,33(2):89-91.
    [132]郁建平,冷承业.应用HSIC控制的直接转矩控制系统研究与仿真.电气传动,2005,35(6):42-44.
    [133]盛朝强,谢昭丽.基于仿人智能控制的汽车动力转向系统.重庆大学学报(自然科学版),2004,27(11):47-50.
    [134]雷李,李祖枢,王牛.基于仿人智能控制的足球机器人底层运动研究.哈尔滨工业大学学报,2004,36(7):978-980.
    [135]何光宏,李祖枢.仿人智能控制在煤炉燃烧系统中的应用.计算机测量与控制,2003,11(8):597-599.
    [136]Lin D,Tu W. Dual response surface optimization. Journal of Quality Technology, 1995,27(1):34-39.
    [137]Castilo D E, Montgomery D C. A nonlinear programming solution to the dual response problem. Journal of Quality Technology,1993,25(3):199-204.
    [138]Vining G G, Bohn L L. Response surfaces for the mean and variance using a nonparameteric approach. Journal of Quality Technology,1998,30(3):282-291.
    [139]Anderson-Cook C M, Borror C M, Montgomery D C. Response surface design evaluation and comparison. Journal of Statistical Planning and Inference,2009, 139(2):629-641.
    [140]Myers R H, Montgomery D C, Vining G G, et.al. Response surface methodology: a retrospective and literature survey. Journal Quality Tech.2004,36(1):53-78.
    [141]Vining G G, Myers R H. Combining taguchi and response surface philosophies: a dual response approach. Journal of Quality Technology,1990,22(1):38-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700