用户名: 密码: 验证码:
基于多天线多载波的高频谱效率传输关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于频谱资源的紧缺,如何提升每赫兹授权频谱可承载的比特速率,已经成为目前高速率数字通信必须解决的核心问题之一。研究高频谱效率的物理层增强技术,对无线和有线通信系统整体性能的提升都具有重要意义。
     本文针对提高频谱效率的两项核心技术——“多天线传输”和“多载波高阶调制”展开研究。在“多天线传输”方面,分析了多载波异步分层空时码在多径莱斯信道中相对同步分层空时码的性能提升,研究了蜂窝小区中使小区平均频谱效率最大化的分布式多天线位置选择方法,提出了多天线视觉辅助的功率控制方法;在“多载波高阶调制”方面,设计了8.7bps/Hz4096-QAM多载波通信链路,并完成了实验验证。具体包括如下四个创新点:
     第一,针对LOS信道下传统分层空时码性能恶化的问题,分析了异步多载波分层空时码在多径莱斯信道中的线性检测性能。数值分析和仿真结果表明多载波异步分层空时码能适应多径莱斯信道,且利用低复杂度线性检测方法即可获得系统的最大空间分集度。当采用联合MMSE检测时,相对于同步多载波分层空时码,异步结构在莱斯K因子等于5的两发两收MIMO信道下能带来约4dB的BER性能提升。
     第二,针对存在同频干扰的多小区环境,研究了分布式发射天线最优位置选择问题。分析了多层同频干扰对蜂窝小区平均频谱效率的影响,给出了使平均频谱效率最大化的分布式发射天线位置优选方法。在具有工程意义的场景假设下,数值分析和仿真结果表明外围第一层同频小区干扰能量决定了分布式天线的最佳位置。在半径1000m的小区中,各天线距离小区中心450m附近时,平均频谱效率达到峰值。
     第三,针对基于SINR测量-反馈的传统功率控制方法环境适应能力不足的问题,提出了多天线视觉辅助的功率控制。讨论了下一代移动通信系统中如何利用多天线获得视觉信息,提前感知和响应无线环境变化,并进行功率控制的初步思路。当初始信噪比为10dB时,整个功率控制过程中,视觉辅助方法的平均误比特率达到了1.501×105,而传统方法的平均误比特率只有1.128×103。
     最后,针对4096-QAM多载波传输,设计了8.7bps/Hz4096-QAM多载波通信链路。分析了4096-QAM对OFDM系统频率同步精度的要求,提出一种载波与采样频偏联合纠正的方法,多径块衰落莱斯信道中的数值分析和仿真结果表明,频偏纠正后的BER性能与无频偏情况相比,差异小于1dB;在AWGN信道中,工程样机的BER性能实测结果与定点仿真差异小于2dB。
     论文工作为多天线多载波高频谱效率传输技术提供了理论和方法支撑,部分成果得到了工程应用。具有较好的理论和实用价值,可应用于下一代宽带数字通信系统。
Because of the scarcity of frequency spectrum resources, how to increase theinformation rate transmitted over a given authorized bandwidth has currently become animportant issue in high-speed digital communications. High spectral efficientphysical-layer enhancing techniques play an important role in enhancing the overallperformance of both wire and wireless communication systems.
     This thesis focuses on two kinds of promising techniques for spectral efficiencyimprovement—multi-antenna transmission and high-order modulation. Threephysical-layer enhancing techniques are discussed with respect to multi-antennatransmission, including asynchronous multi-carrier layered space-time code, distributedmulti-antenna location optimization, and multi-antenna visual cognitive radio.Meanwhile, an8.7bps/Hz4096-QAM multi-carrier transmission system is designedwith some field trials taken.
     Firstly, the detection performance of the asynchronous multi-carrier layeredspace-time code is analyzed over MIMO Channels with LOS component which mayseverely reduce BER performance of a traditional layered space-time code. Thetheoretical analysis and simulation results show that the asynchronous multi-carriertransmission scheme can achieve full receiving diversity with low complexity lineardetector. When jointly MMSE detector is used, the asynchronous multi-carrier layeredspace-time code outperforms its traditional counterpart with4dB BER performanceenhancement over a2×2MIMO Rician channel with K factor equals5.
     Secondly, the issues of finding the optimal location of distributed transmittingantennas in a multi-cell cellular system are analyzed. The effects of co-channelinterference from multiple tiers of cells on both average ergodic capacity and optimalantenna location are analyzed, and the relationship between the optimal antenna locationand the average ergodic capacity is also discussed. Numerical analysis and simulationresults show that the optimal distributed antenna location is determined by theinterference energy of the first tier of the peripheral co-channel cells. For example, in a cell with a typical radius of1000meters, the average ergodic capacity of the cellreaches the peak point while all antennas are located at about450meters away from thecenter.
     Thirdly, an approach for the combination of multi-antenna techniques andtraditional power control method is proposed. Traditional power control is always basedon SINR measurement to monitor the link attenuation, which makes it hard to respondto a deep shadow in the radio environments in advance. This thesis proposes a newsystem called vision assisted power control, which uses multi-antennas to obtain visualinformation for radio environments cognition. This new power control process iscompared with the traditional way, besides, numerical analysis and simulation resultsshow that visual assisted power control has lower average bit error rate than itstraditional counterpart.
     Finally, an8.7bps/Hz4096-QAM multi-carrier transmission system is designedwith some field trials taken. The impact of frequency synchronization errors on highorder QAM modulated OFDM signal is analyzed and an algorithm to jointly correctboth CFO and SFO is proposed. A closed-form formula for the mean square error of theestimation is given by the theoretical analysis and its reasonability is verified bysimulation results, which show that the difference between BER performance overmultipath Rician channel with and without frequency offset is less than1dB. Testresults from field trials show that the difference of BER performance between fix-pointsimulation and implementation is less than2dB.
     The research results above not only enrich the existing techniques for highspectrum efficiency transmission with multi-antenna and multi-carrier, but also showsome theoretical and practical values and can be applied to the next generationbroadband digital communication systems.
引文
[1] MARY Meeker. Internet trends. Morgan Stanley Corporation[EB/OL].http://www.morganstanley.com/institutional/techresearch.htm, April12,2010
    [2]尤肖虎. FuTURE B3G研究开发及关键技术进展[J].移动通信,2006,2(6):18-22.
    [3]尤肖虎,王京,张平,等.对绿色无线移动通信技术的研究和思考[J].中国科技大学学报,2009,39(10):1009-1015.
    [4]王汝言,代琦,吴大鹏.中国下一代广播电视网[J].数字通信,2010,37(6):24-31.
    [5]国家广播电影电视总局科技司.面向下一代广播电视网(NGB)电缆接入技术(EOC)需求白皮书[S].北京:国家广播电影电视总局科技司,2009年3月.
    [6] D. Gesbert, M. Shafi, S. Da-shan, et al. From theory to practice: An overview of MIMOspace-time coded wireless systems[J]. IEEE Journal on Selected Areas in Communications,2003,21(3):281-302.
    [7] ETSI EN302769V1.2.1(2011-04), Digital Video Broadcasting (DVB): Frame structurechannel coding and modulation for a second generation digital transmission system for cablesystems (DVB-C2)[S].
    [8] Z. Abichar, J. M. Chang, C-Y Hsu, Wimax vs. LTE: Who Will Lead the Broadband MobileInternet?[J]. IEEE IT Professional Magazine,2010,12(3):26-32.
    [9] D. Tse, P. Viswanath. Fundamental of wireless communication[M]. Cambridge: CambridgeUniversity Press,2005,120-417.
    [10] C. E. Shannon. A mathematical theory of communication[J]. Bell System Technical Journal,1948,379-423,623-656.
    [11] J. G. Proakis. Digital Communications[M]. McGraw-Hill, New York,2001.
    [12] P. S. Chow, J. C. Tu, J. M. Cioffi. Performance evaluation of a multichannel transceiversystem for ADSL and VHDSL services[J]. IEEE Journal on Selected Areas inCommunications,1991,9(6):909-919.
    [13] Hossam S. Hassanein. LTE, LTE-advanced, and WiMAX: towards IMT-advancednetworks[M]. United Kingdom: John Wiley&Sons, Ltd.,2012,1-37.
    [14] M. R. Kibria, A. Jamalipour. On designing issues of the next generation mobile network[J].IEEE Network,2007,21(1):6-13.
    [15] Song Yun-xia, Wang Deqiang, Li Man, et al. A novel constant-power bit loading algorithm forQAM modulated OFDM systems[C]. IEEE International Conference on Information Theoryand Information Security. Beijing, China,2010,1042-1045.
    [16] S. Ghosh, K. Basu, S. K. Das. An architecture for next-generation radio access networks[J].IEEE Network,2005,19(5):35-42.
    [17] S. Parkvall, E. Dahlman, A. Furuskar, et al. LTE-advanced evolving LTE towardsIMT-advanced[C]. IEEE68th Vehicular Technology Conference. Calgary, BC,2008,1-5.
    [18] Z. Wang, E. K. Tameh, A. R. Nix. Statistical peer-to-peer channel models for outdoor urbanenvironments at2GHz and5GHz[C]. IEEE60th Vehicular Technology Conference. LosAngeles, USA,2004,5101-5105.
    [19] G. D. Durgin. Space-Time Wireless Channels[M]. New Jersey: Prentice Hall,2003.
    [20] D. Gesbert. Robust linear MIMO receivers: a minimum error-rate approach. IEEETransactions on Signal Processing,2003,51(11):2863-2871.
    [21] A. Paulraj, R. Nabar, D. Gore. Introduction to space-time wireless communications[M].Cambridge, UK: Cambridge University Press,2003.
    [22] Wang Qi-xing, Chang Yong-yu, Yang Da-cheng. Deliberately designed asynchronoustransmission scheme for MIMO systems[J]. IEEE Signal Processing Letters,2007,14(12):920-923.
    [23]邵士海.多天线异步发射信号的设计及检测技术研究.[D].成都:电子科技大学,2008,1-5.
    [24]林华炯.异步发射MIMO系统的检测及编码技术[D].成都:电子科技大学,2010,1-6.
    [25] Shao Shi-hai, Tang You-xi, Ma Wan-zhi. Layered space-time codes over Ricean fadingchannels by reducing the correlation of spatial shaping pulses[J]. IEEE Transactions onWireless Communications,2009,8(2):574-579.
    [26] A. Bria, F. Gessler, O. Queseth, et al.4th-Generation wireless infrastructures: scenarios andresearch challenges[J]. IEEE Personal Communications,2001,8(6):25-31.
    [27] Zhou Shidong, Ming Zhao, Xibin Xu, et al. Distributed wireless communication system: anew architecture for future public wireless access[J]. IEEE Communications Magazine,2003,41(3):108-113.
    [28] M. V. Clark, T. M. Willis, L. J. Greenstein, et al. Distributed versus centralized antenna arraysin broadband wireless networks[C]. IEEE Vehicular Technology Conference. Rhodes,2001,33-37.
    [29] Hairuo Zhuang, Lin Dai, Liang Xiao, et al. Spectral efficiency of distributed antenna systemwith random antenna layout[J]. Electronics Letters,2003,39(6):495-496.
    [30] Wang Xin-zheng, Zhu Peng-cheng, Chen Ming. Antenna location design for generalizeddistributed antenna systems[J]. IEEE Communications Letters,2009,13(5):315-317.
    [31]胡亚辉.基于MIMO OFDM无线资源管理技术的研究[D].北京:北京邮电大学,2009,3-4.
    [32]吴杰,李建东.混合蜂窝系统中采用信干比功率控制的反向链路容量分析[J].电子学报,2003,31(4):506-509.
    [33]李锵.蜂窝移动通信系统中功率控制算法的研究[D].天津:天津大学,2003,11-12.
    [34] Dejan M. Novakovic and Miroslav L. Dukic. Evolution of the power control techniques forDS-CDMA toward3G wireless communication systems[J]. IEEE Communications Surveys&Tutorials,2000,3(4):2-15.
    [35] K. Saneyoshi. Drive assist system using stereo image recognition[C]. Proceedings of the1996IEEE Intelligent Vehicles Symposium. Tokyo, Japan,1996,230-235.
    [36] G. J. Foschini, M. J. Gans. On limits of wireless communication in a fading environment whenusing multiple antennas[J]. Wireless Personal Communications,1998,6(1):311-335.
    [37] G. J. Foschini. Layered space-time architecture for wireless communication in a fadingenvironment when using multiple antennas[J]. Bell Laboratories Technical Journal,1996,1(2):41-59.
    [38] Mathini Sellathurai, Simon Haykin. Space-time layered information processing for wirelesscommunications[M]. Hoboken, New Jersey: John Wiley&Sons, Inc.,2009,35-70.
    [39] Heunchul Lee, Inkyu Lee. New approach for error compensation in coded V-BLAST OFDMsystems[J]. IEEE Transactions on Communications,2007,55(2):345-355.
    [40] B. Hassibi, H. Vikalo. On the sphere-decoding algorithm I. expected complexity[J]. IEEETransactions on Signal Processing,2005,53(8):2806-2818.
    [41] H. Vikalo, B. Hassibi. On the sphere-decoding algorithm II. Generalizations, second-orderstatistics, and applications to communications[J]. IEEE Transactions on Signal Processing,2005,53(8):2819-2834.
    [42] G. D. Golden, G. J. Foschini, R. A. Valenzuela, et al. Detection algorithm and initial laboratoryresults using the V-BLAST space-time communication architecture[J]. Electronic Letter,1999,35(1):14-16.
    [43] B. Hassibi. An efficient square-root algorithm for BLAST[C]. IEEE International Conferenceon Acoustics, Speech, Signal Process. Istanbul, Turkey,2000,556-560.
    [44] J. Benesty, Y. Huang, J. Chen. A fast recursive algorithm for optimum sequential signaldetection in a BLAST system[J]. IEEE Trans. Signal Processing,2003,51(7):1722-1729.
    [45] D. W. Waters, J. R. Barry. Noise-predictive decision-feedback detection for multiple-inputmultiple-output channels[J]. IEEE Transactions on Signal Processing,2005,53(5):1852-1859.
    [46] S. Tavildar, P. Viswanath. Tradeoff-optimality of D-BLAST[C]. IEEE Information TheoryWorkshop. Urbana, IL, USA,2004,45-49.
    [47] C. Spiegel, J. Berkmann, Zijian Bai, et al. On MIMO for UTRA LTE[C]. IEEE3rdInternational Conference on Communications, Control and Signal Processing. St Julians,2008,1004-1008.
    [48] Andreas F Molisch. Wireless Communications[M], Second Edition. New Jersey: John Wiley&Sons Ltd,2011,464-488.
    [49]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
    [50] H. Artes, D. Seethaler, F. Hlawatsch. Efficient detection algorithms for MIMO channels: ageometrical approach to approximate ML detection[J]. IEEE Transactions on Communications,2003,51(11):2808-2820.
    [51] Peter F. Driessen, G. J. Foschini. On the capacity formula for multiple input-multiple outputwireless channels: a geometric interpretation[J]. IEEE Transactions on Communications,1999,47(2):173-176.
    [52] A. F. Molisch, M. Steinbauer, M. Toeltsch, et al. Capacity of MIMO systems based onmeasured wireless channels[J]. IEEE Journal on Selected Areas in Communications,2002,20(3):561-569.
    [53] Y. Ma, L. Zhao. Achievable performance of orthogonal STBC over spatially correlated ricianchannels[J]. IEEE Transactions on Vehicular Technology,2007,56(3):1251-1261.
    [54] J. K. Milleth, K. Giridhar, D. Jalihal. Performance enhancement of space-time trellis codeswhen encountering AWGN and Ricean channels[J]. IEEE Transactions on VehicularTechnology,2005,54(4):1352-1359.
    [55] A. Forenza, M. R. McKay, I. B. Collings. Adaptive MIMO transmission for exploiting thecapacity of spatially correlated channels[J]. IEEE Transactions on Vehicular Technology,2007,56(2):619-630.
    [56] J. Akhtar, D. Gesbert, A. Hjorungnes. Linear closed-form precoding of MIMO multiplexingsystems in the presence of transmit correlation and Ricean channel[C]. In Proc. IEEE GlobalTelecommunications Conference (Globecom). Dallas Texas, USA,2004,3160-3164.
    [57] Gu Bong Lim; L. J. Cimini, L. J. Greenstein. Analysis and results for H-MIMO-a hybrid ofspatial multiplexing and adaptive beamforming[C]. IEEE Military CommunicationsConference. Atlantic City, USA,2005,1187-1192.
    [58] R. Xu, F. C. M. Lau. Performance analysis for MIMO systems using zero forcing detectorover fading channels[J]. IEE Proceedings Communications,2006,153:74-80.
    [59] W. Wang, R. Jin, J. Geng. Minimum symbol error rate precoder design for spatial multiplexingover correlated channels[J]. IET Communications,2007,1(5):1082-1087.
    [60] Di Lu, D. K. C. So, A. K. Brown. Receive Antenna Selection Scheme for V-BLAST withMutual Coupling in Correlated Channels[C]. IEEE19th International Symposium on PIMRC.Cannes,2008,1-5.
    [61] A. A. Khan, S. Irteza, F. Khawar, et al. Performance analysis of detection schemes in MIMOspatially correlated channels[C]. IEEE Symposium on Industrial Electronics&Applications.Kuala Lumpur,2009,968-972.
    [62] M. Moustafa. Switched-mode BLAST technique for MIMO communications[C].11thInternational Conference on Advanced Communication Technology. Phoenix Park,2009,1499-1502.
    [63] Yonghua Li, Tiejun Lv, Xiaoguang Zhang, et al. On intelligent V-BLAST detection algorithmwith D-S theory in correlated MIMO channel[C]. IET International Conference onCommunication Technology and Application. Beijing,2011,10-14.
    [64] Kim, Wonsop, Kim Namshik, Chung Hyun Kyu, et al. Performance analysis and high-SNRpower allocation for MIMO ZF receivers with a precoder in transmit-correlated rayleighchannels[J]. IEEE Communications Letters,2012,16(8):1304-1307.
    [65] Y. L. C. de Jong, T. J. Willink. Iterative trellis search detection for asynchronous MIMOsystems[C]. IEEE58th Vehicular Technology Conference. Orlando, FL, USA,2003,503-507.
    [66] Taiwen Tang, R. W. Heath. A space-time receiver with joint synchronization and interferencecancellation in asynchronous MIMO-OFDM systems[J]. IEEE Transactions on VehicularTechnology,2008,57(5):2991-3005.
    [67] Shihai Shao, Youxi Tang, Ting Kong, et al. Performance analysis of a modified V-BLASTsystem with delay offsets using zero-forcing detection[J]. IEEE Transactions on VehicularTechnology,2007,56(6):3827-3837.
    [68] H. Lin, Y. Tang, S. Shao. Optimum zero-forcing detection of a modified V-BLAST systemwith delay offsets[C]. International Conference on Communications, Circuits and Systems.Xiamen, China,2008,242-245.
    [69] Huajiong Lin, Youxi Tang, Lu Guan, et al. Optimum linear detection of a modified V-BLASTsystem with delay offsets[C]. IEEE68th Vehicular Technology Conference. Calgary, Canada,2008,535-538.
    [70] DAS A, B. D. Rao. Impact of rceiver structure and timing offset on MIMO spatialmultiplexing[C]. IEEE9th Workshop on Signal Processing Advances in WirelessCommunications. Recife,2008,466-470.
    [71] K. Barman, O. Dabeer. Improving capacity in MIMO systems with asynchronous PAM[C].IEEE International Symposium on Information Theory and Its Applications. Auckland,2008,1-6.
    [72] H. Lin, Y. Tang, S. Shao, et al. Successive interference cancelllation (SIC) in V-BLASTsystems with asynchronous transmission mode[J]. Science in China Series F: InformationSciences,2009,52(12):2317-2323.
    [73] H. Lin, Y. Tang, S. Shao, et al. Ordered successive interference cancelllation (OSIC) inV-BLAST systems with asynchronous transmission mode[J]. Wireless PersonalCommunications,2010,60(2):263-275.
    [74]官鹭,唐友喜,邵士海,邓凯.基于迫零检测的异步V-BLAST最优发射功率分配[J].电子与信息学报,2010,32(4):786-789.
    [75] Aniruddha Das, Bhaskar D Rao. MIMO systems with intentional timing offset[J]. EurasipJournal on Advances in Signal Processing,2011:1-14.
    [76]莫韬甫,刘田,邵士海,唐友喜.异步V-BLAST中基于功率扩展的迭代并行干扰消除[J].电子与信息学报,2012,34(5):1196-1201.
    [77]易新平.异步发射MIMO-OFDM信号设计与检测[D].成都:电子科技大学,2009,34-49.
    [78] M. Ramezani, M. Hajiaghayi. Receive antenna selection for unitary space-time modulationover semi-correlated ricean channels[J]. IEEE Transactions on Communications,2010,58(2):521-530.
    [79] K. Deng, Y. Tang, S. Shao, K. Sun. Correction of carrier frequency offsets in OFDM-basedspatial multiplexing MIMO with distributed transmit antennas[J]. IEEE Transactions onVehicular Technology,2009,58(4):2072-2077.
    [80] M. Dohler, A. Gkelias, H. Aghvami. A resource allocation strategy for distributed MIMOmulti-hop communication systems[J]. IEEE Communications Letters,2004,8(2):99-101.
    [81] Shuangfeng Han, Jing Wang, V. O. K. Li, et al. Optimal diversity performance of space-timeblock codes in correlated distrinbuted mimo channels[J]. IEEE Transactions on WirelessCommunication.2008,7(6):2106-2118.
    [82] R. M. Leandro, L. B. Henry. Cell shape for microcellular systems in residential andcommercial environments[J]. IEEE Transactions on Vehicular Technology,1994,43(5):270-278.
    [83] H. D. Sherali, C. M. Pendyala, T. S. Rappaport. Optimal location of transmitters formicro-cellular radio communication system design[J]. IEEE Journal on Selected Areas inCommunications,1996,14(4):662-673.
    [84] K. Tutschku. Demand-based radio network planning of cellular mobile communicationsystems[C]. IEEE17th Annual Joint Conference of the IEEE Computer and CommunicationsSocieties. San Francisco, CA,1998,1054-1061.
    [85] A. Molina, A. R. Nix, G. E. Athanasiadou. Optimised base-station location algorithm for nextgeneration microcellular networks[J]. Electronics Letters,2000,36(3):668-669.
    [86] R. Bose. A smart technique for determining base-station locations in an urban environment[J].IEEE Transactions on Vehicular Technology,2001,50(1):43-47.
    [87] G. Robert, V. Manju, N. Mort, et al. Multicell CDMA network design[J]. IEEE Transactionson Vehicular Technology,2001,50(5):711-722.
    [88] W. Nicole, S. Gabor, W. Karsten, et al. Evolutionary multiobjective optimization for basestation transmitter placement with frequency assignment[J]. IEEE Transactions onEvolutionary Computation,2003,7(4):189-203.
    [89] S. S. Samer, J. S. Khoury. An alternative setup for a base-station cellular antenna[J]. IEEETransactions on Vehicular Technology,2007,56(1):35-42.
    [90] L. F. Ibrahim, M. H. Al Harbi. Employing clustering techniques in mobile networkplanning[C]. New Technologies, Mobility and Security. Tangier,2008,1-9.
    [91] J. Munyaneza, A. Kurien, B. Van Wyk. Optimization of antenna placement in3G networksusing genetic algorithms[C]. Third International Conference on Broadband Communications,Information Technology&Biomedical Applications. Gauteng,2008,30-37.
    [92] Ying Shen, Youxi Tang, Ting Kong, et al. Optimal antenna location for STBC-OFDMdownlink with distributed transmit antennas in linear cells[J]. IEEE Communications Letters,2007,11(5):387-389.
    [93] J. S. Gan, Y. Z. Li, S. D. Zho, et al. On sum rate of multi-user distributed antenna system withcircular antenna layout[C]. IEEE66th Vehicular Technology Conference. Baltimore, MD,2007,596-600.
    [94] Y. Qian, M. Chen, X. Wang, et al. Antenna location design for distributed antenna systemswith selective transmission[C]. International Conference on Wireless Communications&Signal Processing. Nanjing,2009,1-5.
    [95] W. Feng, X. Zhang, S. Zhou, et al. Downlink power allocation for distributed antenna systemswith random antenna layout[C]. IEEE70th Vehicular Technology Conference. Anchorage, AK,2009,1-5.
    [96] L. Han, Y. Tang, S. Shao, et al. On the design of antenna location for OSTBC with distributedtransmit antennas in a circular cell[C]. IEEE International Conference on Communications.Cape Town,2010,1-5.
    [97]韩亮,柳鑫,唐友喜,邵士海.线型小区中V-BLAST两根分布发射天线的位置优化[J].电子与信息学报,2010,32(4):978-982.
    [98] W. Zhang, C. Diao, M. Zhao, et al. Impact of path loss exponents on antenna location designfor GDAS[C]. IEEE75th Vehicular Technology Conference. Yokohama,2012,1-5.
    [99] J. Zhang, J G. Andrews. Distributed antenna systems with randomness[J]. IEEE Transactionson Wireless Communications,2008,7(9):3636-3646.
    [100] E. Park, S. Lee, I. Lee. Antenna placement optimization for distributed antenna systems[J].IEEE Transactions on Wireless Communications,2012,11(7):2468-2477.
    [101]3rd Generation Partnership Project Technical Specification Group.3GPP TS25.213. RadioAccess Network Spreading and modulation (FDD)[S],3GPP,2005.
    [102]3rd Generation Partnership Project Technical Specification Group.3GPP TS25.223. RadioAccess Network Spreading and modulation (TDD)[S],3GPP,2007.
    [103] IEEE.802.11n-2009. Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) Specifications[S]. IEEE, Sep.2009.
    [104] R. Van Nee. Breaking the gigabit-per-second barrier with802.11ac[J]. IEEE WirelessCommunications.2011,18(2):4.
    [105] ETSI. EN302755V1.2.1. Digital Video Broadcasting (DVB). Frame structure channelcoding and modulation for a second generation digital terrestrial television broadcastingsystem (DVB-T2)[S]. ETSI, Feb.2011.
    [106] Yu-Ju Lin, H. A. Latchman, R. E. Newman, et al. A comparative performance study ofwireless and power line networks[J]. IEEE Communications Magazine.2003,41(4):54-63.
    [107] M. M. Rahman, Choong Seon Hong, Sungwon Lee, et al. Medium access control for powerline communications: an overview of the IEEE1901and ITU-T G.hn standards[J]. IEEECommunications Magazine.2009,49(6):183-191.
    [108] S. Galli, O. Logvinov. Recent developments in the standardization of powerlinecommunications within the IEEE[J]. IEEE Communications Magazine.2008,46(7):64-71.
    [109] E. Guerrini, D. Veronesi. Bit loading algorithm based on a probabilistic approach forHomePlug AV[C]. IEEE GLOBCOM. Houston, TX, USA,2011,1-6.
    [110] Hongming Chen, Xiaoyuan Chen, Tie Liu, et al. ASIC implementation of an OFDM basebandtransceiver for HINOC[C]. IEEE9th International Conference on ASIC. Xiamen,2011,160-170.
    [111] Multimedia over Coax Alliance. MoCA MAC/PHY Specification v1.1Extentions[S].Multimedia over Coax Alliance,2007.
    [112] HomePNA Alliance. HomePNA Specification3.1[S]. Dec.2006.
    [113] V. Oksman, S. Galli. G. hn: The new ITU-T home networking standard[J]. IEEECommunications Magazine,2009,47(10):138-145.
    [114] Keqian Yan, Kewu Peng, Fang Yang, et al. Performance improvement of G.hn system basedon bit mapping technique[C].16th IEEE International Symposium on Power LineCommunications and Its Applications. Beijing,2012,150-154.
    [115] Dirk Jaeger. DVB-C2gets reality—Facts and figures on a new transmission approach[C].8thBroadband Technology Conference, Gdynia: Redesign Project,2010,1-21.
    [116] Zhang, Zhengya, Winoto Renaldi, Bahai Ahmad, et al. Peak-to-average power ratio reductionin an FDM broadcast system[C]. IEEE Workshop on Signal Processing Systems. Shanghai,China,2007,25-30.
    [117] J. Van Wyk, L. Linde. Bit error probability for a M-ary QAM OFDM-based system[C].AFRICON. Windhoek,2007,1-5.
    [118] R. Y. Yen, Hong-Yu Liu, W. K. Tsai. Qam symbol error rate in OFDM systems overfrequency-selective fast ricean-fading channels[J]. IEEE Transactions on VehicularTechnology,2008,57(2):1322-1325.
    [119] I. I. Al-kebsi, M. Ismail, K. Jumari, et al. A novel algorithm with a new adaptive modulationform to improve the performance of OFDM for4G systems[C]. International Conference onFuture Computer and Communication. Kuala Lumpar,2009,11-15.
    [120] Xinli Duan, Guangliang Ren, Lihua Yang, et al. Low complexity QRM-MLD algorithm forMIMO systems with256QAM modulations[C].12th IEEE International Conference onCommunication Technology. Nanjing, China,2010,1052-1055.
    [121] S. C. H. Huang, Wu Hsiao-Chun, J. M. Cioffi. Novel PMEPR control approach for64and256-QAM coded OFDM systems[C]. IEEE GLOBECOM. Miami, FL,2010,1-6.
    [122] Meng Li, C. A. Nour, C. Jego, et al. A shuffled iterative bit-interleaved coded modulationreceiver for the DVB-T2standard: design, implementation and FPGA prototyping[C].2011IEEE Workshop on Signal Processing Systems. Beirut,2011,55-60.
    [123] L. Riche, K. Sujaee, R. George. The performance of high order modulation QAM-OFDM inthe presence mutipath fading channels. Proceedings of IEEE Southeastcon[C]. Orlando, FL,2012,1-3.
    [124] W. Eberle, V. Derudder, G. Vanwijnsberghe, et al.80-Mb/s QPSK and72-Mb/s64-QAMflexible and scalable digital OFDM transceiver ASICs for wireless local area networks in the5-GHz band[J]. IEEE Journal of Solid-State Circuits,2001,36(11):1829-1838.
    [125] S. S. Mehta, D. Weber, M. Terrovitis, et al. An802.11g WLAN SoC[J]. IEEE Journal ofSolid-State Circuits,2005,40(12):2483-2491.
    [126] M. Zargari, L. Y. Nathawad, H. Samavati, et al. A dual-band CMOS MIMO radio SOC forIEEE802.11n wireless LAN[J]. IEEE Journal of Solid-State Circuits,2008,43(12):2882-2895.
    [127] H. Oguma, S. Kameda, N. Izuka, et al. Coverage estimation of downlink64QAM signal up to20MHz bandwidth based on field trial results of FH-OFDMA system[C]. IEEE InternationalConference on Communication Systems. Singapor,2010,600-605.
    [128] C. Kocks, A. Viessmann, A. Waadt, et al. A DVB-T2receiver realization based on asoftware-defined radio concept[C]. IEEE Proceedings of the4th International Symposium onCommunications, Control and Signal Processing. Limassol,2010,1-4.
    [129] Xiaoxin Cui, Jinkai Long, Bin Sun, et al. A high performance baseband transceiver IC forHINOC communication systems[C].10th IEEE International Conference on Solid-State andIntegrated Circuit Technology. Shanghai,2010,442-444.
    [130] Sangchae Lim, Youngin Park, Eonpyo Hong, et al. Implementation of FPGA-based DVB-T2modulator with multiple PLPs[C]. IEEE The11th International Symposium onCommunications&Information Technologies. Hangzhou,2011,78-83.
    [131] B. Zarikoff, D. Malone. Construction of a PLC Test bed for network and transport layerexperiments[C]. IEEE International Symposium on Power Line Communications and ItsApplications. Udine,2011,135-140.
    [132]王洪新.基于IEEE P1901标准的下一代EOC技术[J].中国有线电视,2011,12:1379-1380.
    [133] Chano Gomez. G.hn: ITU-T标准将引爆居家有线网络的广大市场[J].今日电子, Oct.2011,38-41.
    [134] Lantiq. XWAYTMHNX100Product Family G.hn Networking Transceiver[EB/OL].http://www.lantiq.com.htm,2011.
    [135] P. Hasse, J. Robert. A software-bsed real-time DVB-C2receiver[C]. IEEE InternationalSymposium on BMSB. Nuremberg,2011,1-6.
    [136] Wang Zhang, Xiaohui Duan, Hong Kou, et al. High-speed configurable signal generator foraccess network system test[C]. IEEE International Conference on Systems and Informatics.Yantai,2012,2079-2083.
    [137] M. Speth, S. A. Fechtel, G. Fock, et al. Optimum receiver design for wireless broad-bandsystems using OFDM-Part I[J]. IEEE Transactions on Communications,1999,47(11):1668-1677.
    [138] M. Morelli, C. C. J. Kuo, M. O. Pun. Synchronization techniques for orthogonal frequencydivision multiple access (OFDMA): a tutorial review[J]. Proceedings of the IEEE,2007,95(7):1394-1427.
    [139] M. Morelli, M. Moretti. Fine carrier and sampling frequency synchronization in OFDMsystems[J]. IEEE Transactions on Wireless Communications,2010,9(4):1514-1524.
    [140] Wen Lei, Weiming Cheng, Liming Sun, Improved joint carrier and sampling frequency offsetestimation scheme for OFDM systems[C]. Global Telecommunications Conference. SanFrancisco, CA,2003,2315-2319.
    [141] Young Hwan You, Kyung Taek Lee. Accurate Pilot-Aided Sampling Frequency OffsetEstimation Scheme for DRM Broadcasting Systems[J]. IEEE Transactions on Broadcasting,2010,56(4):558-563.
    [142] Young Hwan You, Sang Tae Kim, Kyung Taek Lee, et al. An Improved Sampling FrequencyOffset Estimator for OFDM-Based Digital Radio Mondiale Systems[J]. IEEE Transactions onBroadcasting,2008,54(2):283-286.
    [143] S. A. Fechtel. OFDM carrier and sampling frequency synchronization and its performance onstationary and mobile channels[J]. IEEE Transactions on Consumer Electronics,2000,46(3):438-441.
    [144] Young Hwan You, JoonBeom Kim, Hyoung Kyu Song. Pilot-assisted fine frequencysynchronization for OFDM-based DVB receivers[J]. IEEE Transactions on Broadcasting,2009,55(3):674-678.
    [145] Lizhong Han, Bingyang Wu. DCT-based channel estimation for wireless OFDM systems withthe hexagonal pilot pattern[C]. International Conference on Wireless Communications andSignal Processing. Suzhou China,2010.1-5.
    [146] T. Pollet, P. Spruyt, M. Moeneclaey. The BER performance of OFDM systems usingnon-synchronized sampling[C]. Global Telecommunications Conference. San Francisco, CA,1994.253-257.
    [147] Baoguo Yang, Khaled Ben Letaief, Roger S. Cheng. Timing Recovery for OFDMTransmission[J]. IEEE Journal on Selected Areas in Communications,2000,18(11):2278-2291.
    [148] Dong Kyu Kim, Sang Hyun Do, et al. A new joint algorithm of symbol timing recovery andsampling clock adjustment for OFDM systems[J]. IEEE Transactions on ConsumerElectronics,1998,44(3):1142-1149.
    [149] Bo Ai, Zhi xing Yang, Chang yong Pan, et al. On the synchronization techniques for wirelessOFDM systems[J]. IEEE Transactions on Broadcasting,2006,52(2):236-244.
    [150] K. Y. Kim, Q. Zou, H. J. Choi, et al. An efficient carrier phase synchronization technique forhigh-order M-QAM-OFDM[J] IEEE Transactions on Signal Processing,2008,56(8):3789-3794.
    [151] Y. Nasser, J. F. Helard, M. Crussiere. Robustness of MIMO-OFDM schemes for future digitalTV to carrier frequency offset[C]. IEEE International Symposium on Broadband MultimediaSystem and Broadcasting. Las Vegas, NV,2008.1-4.
    [152] M. Samuel, M. Fitz. Multi-strata codes: space-time block codes with low detectioncomplexity[J]. IEEE Transactions on Communications,2010,58(4):1080-1089.
    [153] H. Ochiai. Exact and approximate distributions of instantaneous power for pulse-shapedsingle-carrier signals[J]. IEEE Transactions on Wireless Communications,2011,10(2):682-692.
    [154] S. Verdu. Multiuser Detection[M]. Cambridge, U. K.: Cambridge Univ. Press,1998:166-175.
    [155] W. C. Lindsey. Error probabilities for rician fading multichannel reception of binary and N-arysignals[J]. IEEE Transactions on Information Theory,1964,10(4):339-350.
    [156]易新平,唐友喜,邵士海等.分布式发射天线MIMO信号的最优线性检测[J].电子学报,2009,37(12):2694-2699.
    [157]3GPP. TS.25.141, v9.4.0. Base Station (BS) conformance testing (FDD)[S],3GPP, Jun.2010.
    [158] S. Chatzinotas, M. Imran, R. Hoshyar. On the multicell processing capacity of the cellularMIMO uplink channel in correlated rayleigh fading environment[J]. IEEE Transactions onWireless Communications,2009,8(7):3704-3715.
    [159] J. D. Parsons. The Mobile Radio Propagation Channel,2nd edition[M]. New York: Wiley,2000,168-169.
    [160] A. Assra, W. Hamouda, A. Youssef. A channel-estimation and data-detection scheme formultiuser MIMO-CDMA systems in fading channels[J]. IEEE Transactions on VehicularTechnology,2010,59(6):2830-2834.
    [161] Wan Choi, J. G. Andrews. Downlink performance and capacity of distributed antenna systemsin a multicell environment[J]. IEEE Transactions on Wireless Communications,2007,6(1):69-73.
    [162] A. Goldsmith. Wireless Communications[M]. London, UK: Cambridge University Press,2005,424-425.
    [163] R. Fletcher. Practical Methods of Optimization[M],2nd edition. NewYork: Wiley-Interscience,2000,265-270.
    [164] J. Caffery Jr, G. L. Stuber. Subscriber location in CDMA cellular networks[J]. IEEETransactions on Vehicular Technology,1998,47(2):406-416.
    [165] T. S. Rappaport, J. H. Reed, B. D. Woerner. Position location using wireless communicationson highways of the future[J]. IEEE Communication Magazine,1996,34(10):33-41.
    [166] K. C. Xu, Y. J. Guo, Huang Xiaojing, et al. DoA based positioning employing uniform circulararrays[C]. ISCIT2011. Sydney, Australia,2011,328-332.
    [167] M. Vossiek, L. Wiebking, P. Gulden, et al. Wireless local positioning[J]. IEEE MicrowaveMagazine,2003,4(4):77-86.
    [168] Y. T. Chan, W. Y. Tsui, H. C. So, et al. Time-of-arrival based localization under NLOSconditions[J]. IEEE Transactions on Vehicular Technology,2006,55(1):17-24.
    [169] Honglei Miao, Kegen Yu, Markku J. Juntti. Positioning for NLOS propagation: algorithmderivations and Cramer-Rao bounds[J]. IEEE Transactions on Vehicular Technology,2007,56(5):2568-2580.
    [170] Weiguo Guan, Zhongliang Deng, Yuetao Ge, et al. A practical TDOA positioning method forCDMA2000mobile network[C]. IEEE International Conference on Wireless Communications,Networking and Information Security. Beijing, China,2010,126-129.
    [171] T. Wigren, J. Wennervirta. RTT positioning in WCDMA[C]. Fifth International Conference onWireless and Mobile Communications. Cannes/La Bocca, FranceL,2009,303-308.
    [172] Hong Tang, Yongwan Park, Gyuyoung Han, et al. Location tracking of mobile stations inTD-SCDMA systems[C].4th Workshop on Positioning, Navigation and Communication.Hannover,2007,153-158.
    [173]3GPP. TS36.305. Stage2functional specifi cation of User Equipment (UE) positioning inE-UTRAN, Release9(V9.1.0)[S],2010.
    [174] R. Sharma. Application of MIMO to IFSAR[C]. IEEE Radar Conference. Washington, DC,2010,81-84.
    [175] K. Ito. Recent small Antennas for medical applications[C]. International Workshop onAntenna Technology: Small Antennas and Novel Metamaterials. Chiba, Japan,2008,1-4.
    [176]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [177]王怀军. MIMO雷达成像算法研究[D].长沙:国防科学技术大学,2010,17-18.
    [178]朱宇涛,郁文贤,粟毅.一种基于MIMO技术的ISAR成像方法[J].电子学报,2009,37(9):1885-1894.
    [179] Yutao Zhu, Yi Su, Wenxian Yu. An ISAR Imaging Method Based on MIMO Technique[J].IEEE Transactions on Geoscience and Remote Sensing,2010,48(8):3290-3299.
    [180]顾福飞,池龙,张群,等.基于压缩感知的稀疏阵列MIMO雷达成像方法[J].电子与信息学报,2011,33(10):2452-2457.
    [181] Yin W, Ren P. A multiple antenna spectrum sensing scheme based on space and time diversityin cognitiveradios[J]. IEICE Transactions on Communications2011; E94-B(05):1254-1264.
    [182] Lei Song, N. B. Mandayam, Z. Gajic. Analysis of an up/down power control algorithm for theCDMA reverse link under fading[J]. IEEE Journal on Selected Areas in Communications2001;19(2):277-286.
    [183] G. Stuber. Principles of Mobile Communication, Second Edition[M]. Norwell MA, USA:Kluwer Academic Publishers,2002,99-100.
    [184] S. Ariyavisitakul. SIR based power control in a CDMA system[C]. Proceedings of IEEEGLOBECOM. Orlando, USA,1992,868-873.
    [185] Theodore S. Rappaport.无线通信原理与应用[M].(蔡涛).北京:电子工业出版社,1999,76-77.
    [186] Yvo L. C. de Jong, Maikel H. J. L. Koelen, Matti H. A. J. Herben. A building-transmissionmodel for improved propagation prediction in urban microcells[J]. IEEE Transactions onVehicular. Technology,2004,53(2):490-501.
    [187] A. Nosratinia, T. E. Hunter, A. Hedayat. Cooperative Communication in Wireless Networks[J].IEEE Communications Magazine,2004,42(10):74-80.
    [188] M. Mohajer, G. Z. Rafi, S. Safavi-Naeini. MIMO antenna design and optimization for mobileapplications[C]. Antennas and Propagation Society International Symposium. Charleston,USA,2009,1-4.
    [189] ETSI. TS102991v1.2.1. Digital Video Broad-casting (DVB): Implementation Guidelines fora second generation digital cable transmission system (DVB-C2)[S]. ETSI,2010.
    [190] A. P. Kannu, P. Schniter. On communication over unknown sparse frequency-selectiveblock-fading channels[J]. IEEE Transactions on Information Theory,2011,57(10):6619-6632.
    [191] M. Morelli, G. Imbarlina, M. Moretti. Estimation of residual carrier and sampling frequencyoffsets in OFDM-SDMA uplink transmissions[J]. IEEE Transactions on WirelessCommunications,2010,9(2):734-744.
    [192] M. Simon, J. Smith. Carrier synchronization and detection of QASK signal sets[J]. IEEETransactions on Communications,1974,22(2):98-106.
    [193] T. Pollet, M. Van Bladel, M. Moeneclaey. BER sensitivity of OFDM systems to carrierfrequency offset and wiener phase noise[J]. IEEE Transactions on Communications,1995,43(234):191-193.
    [194] U. Dusgupta. Evaluation of timing recovery schemes for asymmetrical digital subscriber line(ADSL)[C]. IEEE International Conference on Communications. Anchorage, AK,2003,2008-2012.
    [195] Zhefeng Song, Keli Zhang, Yong Liang Guan. Joint bit-loading and power-allocation forOFDM systems based on statistical frequency-domain fading model[C]. Vehicular TechnologyConference. Vancouver, BC, Canada,2002.724-728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700