用户名: 密码: 验证码:
相控诊断超声成像波束控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声波在生物体中传播时,组织特性差异导致回波信号的幅度、相位、时间等参量发生改变。通过对回波信号的转换、重建或反演处理,诊断超声成像技术可获得待测生物组织结构信息。作为一种无创诊断手段,诊断超声成像技术已成为医学临床诊断不可或缺的常规诊断技术之一。
     相控诊断超声成像技术采用电子聚焦与扫描技术,在整个视场范围内均可获得具有良好的时间特性与空间特性的聚焦波束,经相控波束形成重建声像图具有分辨率高、动态范围大、几何失真小等特点。因此,与传统超声成像技术相比,相控诊断超声成像技术可显著提高成像质量。本文从诊断超声数据处理前端入手,针对相控诊断超声成像中的波束设计及实现技术进行了深入研究,提出了三种不同复杂度的波束形成算法,提高成像空间分辨率、时间分辨率与均匀性,最后给出了一种48通道高集成度、可编程的、可满足波束形成算法研究与新兴超声临床应用研究的相控诊断超声成像系统设计方案,解决了其中的主要关键技术并进行了验证。本文主要内容包括以下几个方面:
     (1)对超声成像理论基础进行了论述,根据波动方程给出了不同形状换能器单频连续波辐射声场与脉冲激励声场计算模型,并对影响辐射声场特性的因素及改善方法进行了分析。在此基础上,给出了相控脉冲回波成像模型,仿真分析表明根据接收回波信号可以完全重构由散射介质引起的声场变化,通过改善声场分布特征可显著提高成像质量。
     (2)全面分析了相位控制精度、聚焦控制与波束指向性控制对于提高成像动态范围与空间分辨率的关系,并据此提出了一种可成倍提高成像时间分辨率的实时波束形成算法。该方法采用4并行接收波束使得成像帧频提高4倍,同时通过抑制发射波束旁瓣幅度与控制主瓣宽度获得高质量的图像。仿真结果表明采用该方法成像对比度明显优于常规延时累加波束形成算法。
     (3)提出了一种基于子空间法的低复杂度稳健自适应波束形成算法。该方法首先采用Toeplitz矩阵预处理结合特征值重构法提高采样协方差矩阵估计精度,然后采用特征子空间波束形成法实现孔径权值的自适应计算。针对点散射目标与囊肿目标仿真实验表明,该方法不仅可有效解决回波信号相干干扰问题,避免了传统空域平滑算法导致的有效孔径损失,而且可实现侧向分辨率与对比度的同时提高。
     (4)研究了非线性最小二乘支持向量回归算法在波束形成中的应用。该方法采用二次代价函数取代传统最小方差无失真响应波束形成算法中的线性约束条件,显著提高存在模型失配时波束形成器的稳健性与干扰抑制能力,采用高斯核函数则使得算法的泛化能力得以扩展,然后,推导了解的快速迭代求解方法,使得算法的实时运行得以实现。最后,基于奇异性准则提出了一种可有效削减解的规模的稀疏化算法。仿真结果表明该算法在导向矢量失配、复杂多干扰与样本快拍数受限等情况下,不仅可保持良好的主瓣指向性,而且旁瓣幅度明显低于传统自适应波束形成算法。
     (5)采用模块化设计思想与可重构逻辑设计技术,设计了一套高性能、高集成度的、可满足波束形成算法研究与新兴超声临床应用技术研究需要的相控超声成像平台。该平台可产生48独立通道、脉冲宽度与脉冲数可调的发射脉冲与实现48路回波信号的12bit精度50MHz采样。在发射时,采用两级可变延时控制结构,在较低系统工作频率下使发射脉冲延时控制精度达1.25ns;在接收时,采用基于最小均方误差的分数时延多相滤波技术提高接收相位控制精度与实现逐点动态聚焦。此外,对于相控诊断超声波束形成中的发射脉冲设计技术、扫描控制技术、多通道同步数据采集技术、波束形成器设计与实现技术进行了详尽阐述。
     作为相控阵列成像技术基础研究的一部分,本文研究成果可为多种新兴成像技术的研究提供技术支撑。此外,本文研究还可为开发商业化的高性能医学影像系统提供理论依据和实践参考。
For ultrasound propagating through the organism, the character divergence ofbiological tissues results in the parameter variation of returned sound waves, such asamplitude, phase, and time. The returned waves are recorded, transformed, or be reverseprocessed to retrieve the tissue information. Thus, the images of the biological tissuescan be obtained. Because of its noninvasive, medical ultrasound imaging technology hasalready been widely accepted as one of the most important diagnostic methods inclinical.
     Phased array ultrasound imaging technology uses electronic focusing and scanningtechnologies to form beams with improved spatial and time characteristics in the wholemeasure area, which results reconstructed images with enhanced spatial resolution,extended detection dynamic range, and reduced geometry distortion. Thus, the imagingquality can be greatly improved compared with traditional ultrasound imaging methods.In this dissertation, the beamforming algorithms and its implementation details arethoroughly studied and analyzed. We also proposed three beamforming approaches,with different computation complexity, to improve the spatial resolution, time resolutionand uniformity of the images. Finally, a highly integrated, programmable array medicalultrasound imaging architecture consisting48independent channels, which can meet therequirements of medium-level ultrasound machines while providing a flexible platformfor supporting the development of new algorithms and emerging clinical applications ispresented. In summary, the main contributions of this dissertation are as follows:
     (1) The theory of ultrasound imaging and the model for calculating the field profilefrom arbitrarily shaped transducers under continuous wave and pulsed excitation arediscussed. The factors affecting the pressure fields and the improving methods are alsopresented. Finally, the imaging model based on phased pulse-echo fields is given. Thesimulation results show that the filed profile changes that were induced by scatterslocated in the front of transducer can be reconstructed by the returned waves, andenhanced image quality can be obtained by improving the directivity of the pulse-echofields.
     (2) The relationship between imaging dynamic range, spatial resolution and phasecontrol accuracy, focusing methods, beam directivity are discussed. A real-timebeamforming approach which can increase the fame-rate without scarifying imagingquality is proposed. This method uses1/4th transmit beams combined with four parallelreceive beams to increase the frame-rate by a factor of four. Mainlobe width controllingand sidelobes suppressing are also used to improve spatial resolution. Simulation resultsdemonstrate that improved imaging quality can be obtained comparing with traditionaldelay-and-sum bamforming methods.
     (3) A low computation complexity subspace-based adaptive bemaformingalgorithm is presented. In this method, Toeplitz matrix preprocessing and eigenvaluesreconstruction are employed to get a good estimation of array covariance matrix, whichis then employed in minimum variance (MV) weights calculation. Simulations on pointtargets and cyst demonstrate that the proposed bemaforming method can effectivelyimprove the performance of the beamformer in coherent interference environment. Theaperture loss results from spatial smoothing used by traditional beamformer can beavoided. Thus, the lateral resolution and contrast of beamforming images can besimultaneously improved.
     (4) The LS-SVM algorithm is extended for solving robust beamforming problems.In this approach, a squared-loss function is used to replace the conventional linearlyconstrained minimum variance cost function, which could significantly increaserobustness against mismatch problems and provide additional control over the sidelobelevel. Then, Gaussian kernels function is applied to the array observations to improvethe generalization capacity. Finally, a recursive regression procedure is presented to findthe solutions on real-time. Model reduction to reduce the final size of the beamformerwas also presented in the proposed approach. The test results show that the proposedbeamforming method significantly outperforms many other recently proposed linearrobust beamforming techniques in terms of signal distortion in the desired signal andnoise reduction in scenarios with DOA mismatch, limited observation samples, andnumerous interferences.
     (5) A programmable, highly integrated, phased array medical imaging architecture,which can support the development of new algorithms and emerging clinicalapplications is presented. This system can provide48independent transmit pulses. The pulse width and the number of transmit pulse can also be adjusted. The sample accuracyof the system is12bit and the sample rate can reach to50MHz. A two level variabletime delay technology is used to increase phase control accuracy of the transmit pulse to1.25ns at low system clock frequency. A fractional time delay polyphase filter based onleast square error is also provided to improve receving time resolution and realizedynamic focus. In addition, the plan of transmit pulse, the technology of scancontrolling, the method of mult-channel data synchronous sampling, and the design ofbeamformer are also discaussed with detail.
     As one part of phased array imaging technology, the research results in thisdissertation may lay a foundation for the development of beamforming algorithms andproviding some suggestions for the design of clinical applications from theoretical andpractical angle.
引文
[1]郭万学,周永昌.超声学[M].北京:科学技术文献出版社,2006,15-20
    [2] H. Van Trees. Optimum array processing[M]. New York: Wiley Online Library,2002,7-10
    [3]林轶翰,陈思平.医学超声影像技术及展望[J].医疗装备,2006,19(06):15-18
    [4]陆兆龄.医学诊断超声的发展趋势[J].应用声学,2008,27(4):3-7
    [5] C. M. Rumack, S. R. Wilson, J. W. Charboneau, et al. Diagnostic ultrasound,2-Volume Set[M].Elsevier Science,2011
    [6] D. Guenther, W. Walker. Optimal contrast resolution beamforming[J]. IEEE UltrasonicsSymposium,2007,37-41
    [7] C. C. Sung, H. I. Yang, J. H. Jeng. Calculation of spatial impulse response for arraytransducer[J]. Japanese Journal of Applied Physics Part1-Regular Papers BriefCommunications&Review Papers,2005,44(10):7680-7689
    [8] B. Madore, P. J. White, K. Thomenius, et al. Accelerated focused ultrasound Imaging.[J]. IEEETransactions on Ultrasonics Ferroelectrics and Frequency Control,2009,56(12):2612-2623
    [9]周琦,李志军,李旭东.超声相控阵成像技术与应用[J].兵器材料科学与工程,2002,25(3):34-37
    [10]燕会明,宋文爱,陈以方.超声相控阵成像方法研究[J].无损检测,2009,33(1):26-28
    [11]李衍.超声相控阵技术第一部分基本概念[J].无损探伤,2007,31(4):27-31
    [12] B. D. Steinberg. Digital beamforming in ultrasound[J]. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control,1992,39(6):716-721
    [13] J. Lu, H. Zou, J.F. Greenleaf. Biomedical ultrasound beamforming[J]. Ultrasound in medicine&biology,1994,20(5):403-428
    [14]吕庆贵.超声相控阵成像技术研究[D].中北大学,2009,2-8
    [15]钟志民,梅德松.超声相控阵技术的发展及应用[J].无损检测,2002,26(2):25-27
    [16]单宝华,喻言,欧进萍.超声相控阵检测技术及其应用[J].无损检测,2004,28(5):21-24
    [17]孙平.高频医学超声成像系统的研究与设计[D].武汉大学,2009,3-8
    [18]王华,单宝华,欧进萍.基于FPGA的超声相控阵系统接收波形合成结构[J].哈尔滨工业大学学报,2009,41(2):127-130
    [19]王华,单宝华,王鑫.超声相控阵实时检测系统的研制[J].哈尔滨工业大学学报,2008,40(5):104-107
    [20]燕会明,宋文爱.超声相控阵B扫描成像系统研究[J].计量技术,2008,07:25-27
    [21] C. Hu, L. Zhang, J. M. Cannata, et al. Development of a64channel ultrasonic high frequencylinear array imaging system[J]. Ultrasonics,2011,51(8):953-959
    [22]李衍.超声相控阵技术-工业应用实例[J].无损探伤,2008,32(3):34-39
    [23] M. Lu, M. Wan, F. Xu, et al. Focused beam control for ultrasound surgery withspherical-section phased array: Sound field calculation and genetic optimization algorithm[J].IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2005,52(8):1270-1290
    [24] H. Hoilund-Kaupang, S-E Masoy. Transmit beamforming for optimal second-harmonicgeneration[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2011,58(8):1559-1569
    [25] K. B. Ocheltree, L. A. Frizzell. Sound field calculation for rectangular sources[J]. IEEETransactions on Ultrasonics Ferroelectrics and Frequency Control,1989,36(2):242-248
    [26] P. Wu, T. Stepinski. Spatial impulse response method for predicting pulse-echo fields from alinear array with cylindrically concave surface[J]. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control,1999,46(5):1283-1297
    [27]刘贵栋,沈毅,王艳.医学超声谐波成像技术研究进展[J].哈尔滨工业大学学报,2004,36(5):40-43
    [28] L. G. Ullate, J. L. San Emeterio. A new algorithm to calculate the transient near-field ofultrasonic phased arrays[J]. IEEE Transactions on Ultrasonics Ferroelectrics and FrequencyControl,1992,39(6):745-753
    [29] A. Trucco, F. Bertora. Harmonic beamforming: Performance analysis and imaging results[J].IEEE Transactions on Instrumentation and Measurement,2006,55(6):1965-1974
    [30]吴俊,赵志军,赵改萍.实时三维超声成像诊断胎儿畸形的临床应用研究[J].当代医学,2010,16(36):97-99
    [31] T. Kundu, D. Placko, E K Rahani, et al. Ultrasonic field modeling: A comparison of analytical,semi-analytical, and numerical techniques[J]. IEEE Transactions on Ultrasonics Ferroelectricsand Frequency Control,2010,57(12):2795-2807
    [32] I. Trots, A. Nowicki, M. Lewandowski. Synthetic transmit aperture in ultrasound imaging[J].Archives of Acoustics,2009,34(4):685-695
    [33] I. Trots, A. Nowicki, M. Lewandowski, et al. Multi-element synthetic transmit aperture inmedical ultrasound imaging[J]. Archives of Acoustics,2010,35(4):687-699
    [34] J. H. Chang, T-K Song. A new synthetic aperture focusing method to suppress the diffraction ofultrasound[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2011,58(2):327-337
    [35] H. Taki, T. Sato. Improved spatial resolution in a three-dimensional acoustic medical imagingsystem based on a hybrid method using a synthetic aperture technique[J]. Japanese Journal ofApplied Physics Part1-Regular Papers Brief Communications&Review Papers,2007,46(7B):4827-4833
    [36] J. A, Jensen, O. Holm, L. Jerisen, et al. Ultrasound research scanner for real-time syntheticaperture data acquisition[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and FrequencyControl,2005,52(5):881-891
    [37] Y. Tasinkevych, I. Trots, A. Nowicki, et al. Modified synthetic transmit aperture algorithm forultrasound imaging[J]. Ultrasonics,2012,52(2):333-342
    [38] S. Banerjee, T. Kundu D. Placko. Ultrasonic field modeling in multilayered fluid structuresusing the distributed point source method technique[J]. Journal of Applied Mechanics,Transactions ASME,2006,73(4):598-609
    [39] D. A. Guenther, W. F. Walker. Optimal apodization design for medical ultrasound usingconstrained least squares-Part I: Theory[J]. IEEE Transactions on Ultrasonics Ferroelectricsand Frequency Control,2007,54(2):332-342
    [40] J. E. Kirkebo, A. Austeng. Improved beamforming using curved sparse2D arrays inultrasound[J]. Ultrasonics,2007,46(2):119-128
    [41] J. C. Ma, Y. Shen, B. k. Su. Research evolution of ultrasound beamforming technology[J].Chinese journal of medical instrumentation,2005,29(6):443-438
    [42] A. Kassem, M. Sawan, M. Hamad, et al. Toward a miniaturized generation of ultrasonic-baseddevices[J]. Journal of Circuits Systems and Computers,2007,16(6):1027-1044
    [43] M. I. Fuller, K. Ranganathan, S. Zhou, et al. Experimental system prototype of a portablelow-cost, C-scan ultrasound imaging device[J]. IEEE Transactions on Biomedical Engineering,2008,55(2):519-530
    [44] K.J. Satoh, Tada Y Tamura. Three-dimensional ultrasonic imaging operation using FPGA[J].IEICE Electronics Express,2009,6(2):84-89
    [45] I. O. Wygant, N. S. Jamal, H. J. Lee, et al. An integrated circuit with transmit beamformingflip-chip bonded to a2-D CMUT array for3-D ultrasound imaging[J]. IEEE Transactions onUltrasonics Ferroelectrics and Frequency Control,2009,56(10):2145-2156
    [46] X. Chen, T. Zhou, S. Chen, et al. Development of an ultrasound beamforming research platformbased on SonixRP system[J]. The Journal of the Acoustical Society of America,2012,131(4):3363-3363
    [47] D. A. Guenther, W. F. Walker. Optimal apodization design for medical ultrasound usingconstrained least squares-Part II: Simulation results[J]. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control,2007,54(2):343-358
    [48]T. L. Szabo. Diagnostic Ultrasound imaging: inside out[M]. Califonia: Elsevier Academic Press,2004,103-110
    [49] E. Fishman, D. Magid, D. Ney, et al. Three-dimensional imaging[J]. Radiology,1991,181(2):321-337
    [50] K. E. Thomenius. Evolution of ultrasound beamformers[C]. IEEE Ultrasounics Symposium,San Antonio,1996,2:1615-1622
    [51] R. J. Mailloux, I. Ebrary. Phased array antenna handbook[M]. Artech House, Boston,2005,134-147
    [52] P. R. Stepanishen. Transient radiation from pistons in an infinite planar baffle[J]. The Journal ofthe Acoustical Society of America,1971,49:1629-1634
    [53]S. W. Smith, H. G. Pavy, O. T. Von Ramm. High-speed ultrasound volumetric imaging system. I.Transducer design and beam steering[J]. IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control,1991,38(2):100-108
    [54] P. A.Magnin, O. Von Ramm, F. Thurstone. Delay quantization error in phased array images[J].IEEE Transactions on Sonics Ultrasonics,1981,28(9),305-310
    [55] K. Ranganathan, W. F. Walker. A novel beamformer design method for medical ultrasound. PartI: Theory[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2003,50(1):15-24
    [56] K. Ranganathan, W. F. Walker. A novel beamformer design method for medical ultrasound. PartII: Simulation results[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and FrequencyControl,2003,50(1):25-39
    [57] J. Li, P. Stoica. Robust adaptive beamforming[M]. New Jersey: Wiley Online Library,2006,57-84
    [58] J. F. Synnevag, A. Austeng, S. Holm. Adaptive beamforming applied to medical ultrasoundimaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2007,54(8):1606-1613
    [59] J-F. Synnevag, A. Austeng, S. Holm. Benefits of minimum-variance beamforming in medicalultrasound imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2009,56(9):1868-1879
    [60] C-I. C. Nilsen, I. Hafizovic. Beamspace adaptive beamforming for ultrasound imaging[J]. IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,2009,56(10):2187-2197
    [61] B. M. Asl, A. Mahloojifar. Eigenspace-based minimum variance beamforming applied tomedical ultrasound imaging [J]. IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control,2010,57(11):2381-2390
    [62]张晓辉,张凯,邱文静.超声诊断仪中数字波束形成的设计[J].现代生物医学进展,2009,9(1):128-130
    [63]齐雁,谭冠政,范必双.基于FPGA的医学超声成像数字波束合成器设计[J].计算机测量与控制,2010,18(4):896-899
    [64]颜海,庄圣贤,杨硕,等.基于FPGA圆阵超声自适应波束形成的设计[J].现代电子技术,2008,17(9):67-69
    [65]郑驰超,彭虎基于编码发射与自适应波束形成的超声成像[J].电子与信息学报,2010,32(4):959-962
    [66]邓明晰.超声换能器声场的理论分析[J].声学技术,1995,14(3):109-112
    [67] J. Capon. High-resolution frequency-wavenumber spectrum analysis[J]. Proceedings of theIEEE,1969,57(8):1408-1418
    [68] L. Xu, H. Li, J. Cao, et al. Influence of phased array pattern on beam directivity[J].International Journal of Innovative Computing Information and Control,2006,2(2):449-456
    [69] J. A. Jensen, N. B. Svendsen. Calculation of pressure fields from arbitrarily shaped, apodized,and excited ultrasound transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control,1992,39(2):262-267
    [70] T. J. Teo. An improved approximation for the spatial impulse response of a rectangulartransducer[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,1998,45(1):76-83
    [71] C. H. Seo, J. T. Yen. Evaluating the robustness of dual apodization with cross-correlation[J].IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2009,56(2):291-303
    [72] Yamamoto M.T Azuma S-i Umemura. Beamforming design to suppress response from strongreflectors[J]. Japanese Journal of Applied Physics,2009,48(7):
    [73]韩秀甫,滕永平,吴迪,等.超声换能器暂态声场的理论分析与计算[J].安庆师范学院学报(自然科学版),2004,03:27-30
    [74]彭应秋,李坚,李秋峰,等.脉冲波声场的数值计算与测试研究[J].测试技术学报,2004,18(2):3-6
    [75]徐圆飞,徐春广,肖定国,等.超声换能器脉冲波声场数值计算与测试[J].航空学报,2008,29(6):300-304
    [76]姚旭,郭建中.线阵阵元间距和宽度对波束指向性的影响[J].陕西师范大学学报(自然科学版),2010,38(1):52-56
    [77]韩伟,张丕状.尺寸和发射频率对换能器声场影响仿真分析[J].计算机仿真,2011,28(1):384-387
    [78]王文博,张秉森.关于医学诊断超声成像的机理与建模探讨[J].中国医学物理学杂志,2005,22(6):29-32
    [79]王世全,黄勇军,王月兵.聚焦超声声场中的散射体成像方法[J].声学技术,2010,19(4):33-35
    [80]蔡鹏武.超声相控阵检测仪的关键技术研究与应用[D].南京航空航天大学,2009,48-60
    [81]蔡荣东.高集成度超声相控阵检测系统相关技术的研究[D].天津大学,2009,25-53
    [82] M. Shen, Q. Zhang, D. Li, et al. Adaptive sparse representation beamformer for high-frame-rateultrasound imaging instrument[J]. IEEE Transactions on Instrumentation and Measurement,2012,61(5):1323-1333
    [83]万敏,王海涛,程继隆,等.超声相控阵声束控制特性分析[J].无损检测,2009,33(11):81-83
    [84] F. Vignon, M. R. Burcher. Capon beamforming in medical ultrasound imaging with focusedbeams[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2008,55(3):619-628
    [85] E. S. Ebbini, C. A. Cain. Multiple-focus ultrasound phased-array pattern synthesis: optimaldriving-signal distributions for hyperthermia[J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,1989,36(5):540-548
    [86]刘晨,祖庆夕,平云轩.超声数字式相控阵换能器动态聚焦系统研制[J].应用声学,2000,19(6):14-18
    [87] J. S. Hwang, T. K. Song. A study of the display pixel-based focusing method in ultrasoundimaging[J]. Ultrasonic Imaging,2001,23(1):1-18
    [88] C. Fritsch, M. Parrilla, A. Ibanez, et al. The progressive focusing correction technique forultrasound beamforming[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and FrequencyControl,2006,53(10):1820-1831
    [89] J. Yang, K. S. Tan, W. S. Gan, et al. Beamwidth control in parametric acoustic array[J].Japanese Journal of Applied Physics Part1-Regular Papers Brief Communications&ReviewPapers,2005,44(9A):6817-6819
    [90]赵霞,王召巴.超声相控阵声束时空控制仿真研究[J].科技情报开发与经济,2006,06:162-163
    [91] S. Curletto, M. Palmese, A. Trucco. On the optimization of the transmitted beam incontrast-enhanced ultrasound medical imaging[J]. IEEE Transactions on Instrumentation andMeasurement,2007,56(4):1239-1248
    [92] C. K. Abbey, N. Q. Nguyen, M. F. Insana. Optimal beamforming in ultrasound using the idealobserver[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,2010,57(8):1782-1796
    [93] Z. Torbatian, R. Adamson, M. Bance, et al. A Split-aperture transmit beamforming techniquewith phase coherence grating lobe suppression[J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,2010,57(11):2588-2595
    [94] J. S. Ha, W. F. Walker J. A. Hossack. Determination of an optimal image frame interval forframe-to-frame ultrasound image motion tracking[J] IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,2005,52(3):386-396
    [95] H. Hasegawa, H. Kanai. High-frame-rate echocardiography using diverging transmit beams andparallel receive beamforming[J]. Journal of Medical Ultrasonics,2011,38(3):129-140
    [96] C. Ji, K. Liangmong. High frame rate ultrasound coded excitation[C]. IEEE Engineering inMedicine and Biology Society. Conference, shanghai,2005,2:1842-1845
    [97] T. Hergum, T. Bjastad, K. Kristoffersen, et al. Parallel beamforming using synthetic transmitbeams[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2007,54(2):271-280
    [98] J. J. Dahl, G. F. Pinton, M. L. Palmeri, et al. A parallel tracking method for acoustic radiationforce impulse imaging[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and FrequencyControl,2007,54(2):301-312
    [99] L. Weng, J. M. Reid, P. M. Shankar, et al. Ultrasound speckle analysis based on the Kdistribution[J]. The Journal of the Acoustical Society of America,1991,89(2992
    [100] J. Mann, W. Walker. A constrained adaptive beamformer for medical ultrasound: Initialresults[J]. IEEE Ultrasonics Symposium,2002,2:1807-1810
    [101] B. M. Asl, A. Mahloojifar. Minimum variance beamforming combined with adaptivecoherence weighting applied to medical ultrasound imaging[J]. IEEE Transactions onUltrasonics, Ferroelectrics and Frequency Control,2009,56(9):1923-1931
    [102] J. Liu, K S. Kim, M. F. Insana. SNR comparisons of beamforming strategies[J]. IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,2007,54(5):1010-1017
    [103] D. M. Boroson. Sample size considerations for adaptive arrays[J]. IEEE Transactions onAerospace and Electronic Systems,1980,16(4):446-451
    [104] B. D. Carlson. Covariance matrix estimation errors and diagonal loading in adaptive arrays[J].IEEE Transactions on Aerospace and Electronic Systems,1988,24(4):397-401
    [105] M. W. Ganz, R. L. Moses, S. L. Wilson. Convergence of the SMI and the diagonally loadedSMI algorithms with weak interference[J]. IEEE Transactions on Antennas and Propagation,1990,38(3):394-399
    [106] J. Li, P. Stoica, Z. Wang. On robust Capon beamforming and diagonal loading[J]. IEEETransactions on Signal Processing,2003,51(7):1702-1715
    [107] R. G.Lorenz, S. P. Boyd. Robust minimum variance beamforming[J]. IEEE Transactions onSignal Processing,2005,53(5):1684-1696
    [108] L. Du, J. Li, P. Stoica. Fully automatic computation of diagonal loading levels for robustadaptive beamforming[J]. IEEE Transactions on Aerospace and Electronic Systems,2010,46(1):449-458
    [109] S. A. Vorobyov, A. B. Gershman, Z. Q. Luo. Robust adaptive beamforming using worst-caseperformance optimization: A solution to the signal mismatch problem[J]. IEEE Transactionson Signal Processing,2003,51(2):313-324
    [110] Z. L. Yu, W. Ser, M. H. Er, et al. Robust adaptive beamformers based on worst-caseoptimization and constraints on magnitude response[J]. IEEE Transactions on SignalProcessing,2009,57(7):2615-2628
    [111] C. C. Lee, J. H. Lee. Eigenspace-based adaptive array beamforming with robust capabilities[J].IEEE Transactions on Antennas and Propagation,1997,45(12):1711-1716
    [112] S. J. Yu, J. H. Lee. The statistical performance of eigenspace-based adaptive arraybeamformers[J]. IEEE Transactions on Antennas and Propagation,1996,44(5):665
    [113] J. L. Yu, C. C. Yeh. Generalized eigenspace-based beamformers[J]. IEEE Transactions onSignal Processing,1995,43(11):2453-2461
    [114] A. C. Chang, C. T. Chiang, Y. H. Chen. A generalized eigenspace-based beamformer withrobust capabilities[J]. IEEE International Conference on Phased Array Systems andTechnology,2000,553-556
    [115] T. J. Shan, M. Wax, T. Kailath. On spatial smoothing for direction-of-arrival estimation ofcoherent signals[J]. IEEE Transactions on Acoustics, Speech and Signal Processing,1985,33(4):806-811
    [116] C. C. Yeh, W. D. Wang. Coherent interference suppression by an antenna array of arbitrarygeometry[J]. IEEE Transactions on Antennas and Propagation,1989,37(10):1317-1322
    [117]隋伟伟,景小荣,周围,等.基于时间平滑和Toeplitz矩阵重构的复相干信号DoA估计[J].计算机应用,2011,31(12):71-73
    [118] Z. S. Wang, J. Li, R. B. Wu. Time-delay-and time-reversal-based robust capon beamformersfor ultrasound imaging[J]. IEEE Transactions on Medical Imaging,2005,24(10):1308-1322
    [119] A. Agarwal, Y. M. Yoo, F. K. Schneider, et al. Adaptive field-of-view imaging for efficientreceive beamforming in medical ultrasound imaging systems[J]. Ultrasonics,2008,48(5):384-393
    [120] D. A. Guenther, W. F. Walker. Robust finite impulse response beamforming applied to medicalultrasound[J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control,2009,56(6):1168-1188
    [121] S. Mehidzadeh, A. Austeng, T. Johansen, et al. Eigenspace based minimum variancebeamforming applied to ultrasound imaging of acoustically hard tissues[J]. IEEE Transactionson Medical Imaging,2012,31
    [122] S. Mehdizadeh, A. Austeng, T. F. Johansen, et al. Minimum variance beamforming applied toultrasound imaging with a partially shaded aperture[J]. IEEE Transactions on Ultrasonics,Ferroelectrics and Frequency Control,2012,59(4):683-693
    [123] S. M. Sakhaei. Optimum beamforming for sidelobe reduction in ultrasound Imaging[J]. IEEETransactions on Ultrasonics, Ferroelectrics and Frequency Control,2012,59(4):799-805
    [124] F. Vincent, O. Besson. Steering vector errors and diagonal loading[J]. IEEE Proceedings onRadar Sonar and Navigation,2004,151(6):337-343
    [125] J. Gu, P. J. Wolfe. Robust adaptive beamforming using variable loading[J]. IEEE Workshop onSensors Array and Multichannel Processing,2006,1-5
    [126] M. Martínez-Ramón, J. L. Rojo-álvarez, G. Camps-Valls, et al. Kernel antenna arrayprocessing[J]. IEEE Transactions on Antennas and Propagation,2007,55(3):642-650
    [127] J. A. K. Suykens, J. De. Brabanter, L Lukas, et al. Weighted least squares support vectormachines: robustness and sparse approximation[J]. Neurocomputing,2002,48(1-4):85-105
    [128] W. Chu, C. J. Ong, S. S. Keerthi. An improved conjugate gradient scheme to the solution ofleast squares SVM[J]. IEEE Transactions on Neural Networks,2005,16(2):498-501
    [129] M. M. Adankon, M. Cheriet. Model selection for the LS-SVM[J]. Application to handwritingrecognition. Pattern Recognition,2009,42(12):3264-3270
    [130] Van Vaerenbergh S.J Via I Santamana. A sliding-window kernel RLS algorithm and itsapplication to nonlinear channel identification[C]. ICASSP2006Proceedings,2006,5:789-792
    [131] K. Slavakis, S. Theodoridis, I. Yamada. Online kernel-based classification using adaptiveprojection algorithms[J]. IEEE Transactions on Signal Processing,2008,56(7):2781-2796
    [132] J. Platt. A resource-allocating network for function interpolation[J]. Neural computation,1991,3(2):213-225
    [133] W. Liu, J. C. Principe, S. Haykin. Kernel adaptive filtering: a comprehensive introduction[M].New Jersey: Wiley Publishing,2010
    [134] A. Hassanien, Vorobyov, S. A. Wong, K. M. Robust adaptive beamforming using sequentialquadratic programming: An iterative solution to the mismatch problem[J]. IEEE SignalProcess. Lett.2008,15,733–736.
    [135] Y. Selen, R. Abrahamsson, P. Stoica. Automatic robust adaptive beamforming via ridgeregression[J]. Signal Process.2008,88(1)33-49.
    [136] M. Karaman, A. Atalar H Koymen. VLSI circuits for adaptive digital beamforming inultrasound imaging[J]. IEEE Transactions on Medical Imaging,1993,12(4):711-720
    [137] I. Kim, H. Kim, F. Griggio, et al. CMOS ultrasound transceiver chip for high-resolutionultrasonic imaging systems[J]. IEEE Transactions on Biomedical Circuits and Systems,2009,3(5):293-303
    [138] H. S. Bilge. Delta-sigma subarray beamforming for ultrasound imaging[J]. Turkish Journal ofElectrical Engineering and Computer Sciences,2010,18(6):1003-1018
    [139] J. Camacho, O. Martinez, M Parrilla, et al. A strict-time distributed architecture for digitalbeamforming of ultrasound Signals[J]. IEEE Transactions on Instrumentation andMeasurement,2010,59(10):2716-2723
    [140] F. K. Schneider, A. Agarwal, Y. M. Yoo, et al. A fully pogrammable cmputing achitecture formdical utrasound mchines[J]. IEEE Transactions on Information Technology in Biomedicine,2010,14(2):538-540
    [141] C. C. P Cheung, A. C. H Yu, N. Salimi, et al. Multi-cannel pre-beamformed data acquisitionsystem for research on advanced ultrasound imaging methods[J]. IEEE Transactions onUltrasonics Ferroelectrics and Frequency Control,2012,59(2):243-253
    [142] T I. Inc. Fully-Integrated,8-channel analog fond-end for ultrasound12-Bit,50MSPS,122mW/Channel[SOBOS421D]. www.ti.com, March4,2010
    [143] Xilinx Inc. Virtex-6family overview. www.xilinx.com[DS150], January28,2010.
    [144] T.I. Inc. TMS320C6455fixed-point digital signal processor[SPRS276]. www.ti.com,February4,2011
    [145]鲍晓宇,施克仁,陈以方,等.超声相控阵系统中高精度相控发射的实现[J].清华大学学报(自然科学版),2004,44(2):10-13
    [146]骆英,王伟,王自平,等.基于FPGA的超声相控阵相控发射系统的研究[J].仪表技术与传感器,2010,10:55-57
    [147]王伟.超声相控阵可控强度发射系统相关技术的研究[D].江苏大学,2010,41-54
    [148]郭伟,潘仲明,杜金榜,等.多通道高速实时数据采集与处理平台的设计[J].计算机测量与控制,2009,08:195-198
    [149]黄进燕.多路高精度数据采样系统设计及性能分析[J].无线电工程,2010,40(3):22-24
    [150]范占春,李会勇,何子述.基于分数时延的宽带数字阵列波束形成[J].雷达科学与技术,2008,6(6):56-59
    [151]朱雷鸣,宋万杰,吴顺君.用于阵列处理的多通道数据采集系统[J].现代雷达,2009,31(3):77-80
    [152]徐青.多通道雷达系统阵列误差校正方法研究[D].西安电子科技大学,2011,71-85
    [153] I. C. S. Inc. Low skew,1-To-8differential-to-LVDS cloack distribution chip[85408BG].www.icst.com/products/hiperclocks.html, April25,2005
    [154]邱兆坤,王伟,马云,等.一种新的高分辨率ADC有效位数测试方法[J].国防科技大学学报,2004,26(4):1:5
    [155] H. Y. Sohn, J Kang, J. Cho,.etl. Time-sharing bilinear delay interpolation for ultrasounddynamic receive beamformer[J]. Electronics Letters,2011,47(2):89-93
    [156]吴高奎,严济鸿,何子述,等.基于Farrow结构的分数时延滤波器[J].雷达科学与技术,2010,8(3):81-84
    [157]韦文,李宁,汤俊,等.基于分数时延的宽带自适应波束形成[J].清华大学学报(自然科学版),2011,51(7):118-122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700