用户名: 密码: 验证码:
RF MEMS移相器和太赫兹波导滤波器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
RF MEMS(射频微机械)技术的出现为微波器件的设计和加工提供了新途径。RF MEMS器件具有可集成、低功耗、高线性度以及小型化等优异性能,在民用和军事领域都有着非常广阔的应用前景。为兼顾RF MEMS可动与固定器件,本文针对RF MEMS移相器和基于MEMS工艺的太赫兹波导滤波器进行性能优化和工艺实现两方面的研究,主要研究内容和取得的创新成果如下:
     (1)通过分析串联MAM电容的分布式移相器中电磁波传输的不连续性,提取寄生参数,得到等效电路模型。仿真结果的拟合度表明,所建立的电路模型能精确反映器件性能,较目前常用模型准确度得到了极大提高。
     提出传输线分解的建模思想,将RF MEMS器件分解为典型结构,将这些典型结构看作不同结构的传输线分别建模,级联获得器件等效电路模型。验证结果表明,应用该思想建立的电路模型在较宽频段内均能反映分布式移相器性能变化规律。这种方法将复杂的三维电磁场分析转化为传输线问题进行处理,简单易行,而且由于RF MEMS器件中基本结构的一致性,所得典型结构的电路模型具备通用性。
     (2)提出了以分布式移相器物理长度为优化目标的设计方法,并研究如何得到工艺依赖性小的设计。基于此,设计、加工和测试了一种X波段五位分布式移相器。解决了结构层残余应力、MEMS梁锚点可靠性和工艺精度等问题,突破牺牲层、结构层和介质层制备等关键工艺步骤,形成了可用于制作包含悬空梁结构的RF MEMS器件的表面微加工工艺流程。同文献报道的MEMS分布式移相器相比,所得移相器具有工艺难度小、尺寸小以及下拉电压低的特点。
     (3)提出了一种弯折型分布式移相器,通过在共用地线的弯折CPW上加载MEMS桥,大幅度减小了器件长度,得到紧凑结构,从而确保了工艺一致性。同时,本文提出非周期性MEMS分布式移相器结构,将不同相移量的单元级联,增加了设计自由度,并减少了MEMS梁的数目。利用所提出的结构进行周期性和非周期性弯折型五位分布式移相器的设计仿真,性能理想,面积分别为5.36mm*4.72mm和4.8mm*3.75mm。
     (4)针对多位分布式移相器的特殊性,全面分析了相移误差来源。提出并证明了影响多位分布式移相器相移精度的关键因素是在相移状态的切换过程中位与位之间失配。并提出了多位分布式移相器相移量不同位的最优排列顺序,改善移相精度。
     提出了一种多偏置分布式移相器结构,通过移相单元离散控制避免了因位与位之间的失配引起的多次反射,也缓解了回波损耗和小型化之间的矛盾。设计结果表明,这种结构的分布式移相器相移精度得到明显改善,同时回波损耗和插入损耗也得到改善。同时本文将多偏置结构和非周期结构结合起来,大幅度减小了多位移相器的MEMS梁数目,得到只有16个MEMS梁的五位分布式移相器。提出一种单电压控制多个MEMS梁的分布式移相器结构,直流偏置焊盘可以减少3-4倍,减轻了封装时互联线的寄生效应以及引起的性能恶化。
     (5)研究RF MEMS移相器的另外一种类型---开关线型移相器,采用单刀双掷开关和单刀四掷开关得到五位开关线型移相器紧凑结构,分析MEMS开关的电路模型以及开关和外围电路连接时金丝焊线的影响,通过加工和测试得到了较好的测试结果。
     (6)提出应用MEMS加工技术制作太赫兹并联电感耦合波导带通滤波器的方法。立足于现有工艺条件,通过分析加工因素对滤波器电磁性能的影响,将工艺和设计参数相互折中达到优化设计的目的,避免因工艺原因造成的器件性能急剧恶化。进行MEMS深刻蚀(ICP)、溅射电镀金属、键合等关键工艺步骤研究,解决了膜片陡直度、金属厚度以及粗糙度等问题,提出滤波器工艺流程。通过加工和测试最终得到插入损耗小、可靠性好、可集成的THz滤波器,中心频率140GHz和170GHz处功率衰减小于1dB。
The appearance of RF MEMS technology provides a new way to design andfabricate microwave devices. With high performances including integrability, low loss,high linearity and miniature, RF MEMS devices have broad prospects in applying bothfor civil use and for military use. In the dissertation, taking account of both movable andfixed devices, RF MEMS Phase Shifters and Terahertz Waveguide Filters are studied insome aspects of performance optimization and process realization. The main researchesand innovative achievements are as follows.
     (1) Extracting parasitic parameters by analyzing the discontinued of distributedMEMS phase shifter with MAM capacitor, equivalent-circuit models are presented. Thefitting degree of simulation results shows that, compared with existingequivalent-circuit model, the model’s accuracy was improved greatly, which couldreflect the performances accurately.
     A modeling idea of transmission line decomposition is advanced, that is, RFMEMSdevice is divided into some typical structures, which can be considered as differenttransmission lines and be modeled respectively to get equivalent circuit model of thedevice by cascading. The verification results indicate that the equivalent-circuit modelobtained by the idea could reflect the device performance over a wide frequency band.This method turns the complex three-dimensional electromagnetic field analysis into thetransmission line problem,which is easier and more applicable. With the similarity ofbasic structures of RF MEMS devices, the obtained circuit models of typical structureshave versatility.
     (2) The design method to optimize the physic length of MEMS distributed phaseshifters is presented. The researches are carried out on how to achieve designs with lowdependence on processing. Based on those, an X-band5-bit distributed phase shifterwas designed, processed and tested. After solving problems including the residual stressof the structural layer, the reliability of MEMS beam anchor and process accuracy, andbreaking through critical processing steps like the sacrificial layer, the structure layer and the dielectric layer, the formed surface micromachining process could be used to fabr icate RF MEMS devices that contain suspended beam structure. Compared with MEMSdistributed phase shifters reported in the literature, the fabricated phase shifter hascharacteristics of easier process, smaller size and lower actuated voltage.
     (3) A novel meander distributed phase shifter is advanced. By loading MEMSbridges on meander CPW lines making full use of common ground plane, the length ofdevices are greatly reduced to get a compact structure, thus ensuring processconsistency. Besides, aperiodic distributed phase shifters are advanced, in which unitcells with different phase shifts was cascaded, design flexibility was added and thenumber of MEMS bridges was reduced. Making use of the proposed structures, periodicand aperiodic5-bit distributed phase shifters are designed and simulated to achievesatisfactory performances and in the area of5.36mm*4.72mm and4.8mm*3.75mm.
     (4) Aimed to the particularity of multi-bit MEMS distributed phase shifters,sources of phase error are investigated comprehensively. The key factor influencing thephase error of phase shifters is proposed and verified, which is mismatch betweenadjacent bits in the phase states switching process. An optimal arrangement of bits withdifferent phase shifts for multi-bit MEMS distributed phase shifters is put forward toimprove phase error.
     A novel distributed phase shifter with more biased pads is proposed, by controllingthe phase shifter from the unit cell level, multiple reflection of the signal resulted frommismatch between bits is avoided. The contradiction of miniaturization and return lossis also alleviated to some extent. The design results show that phase error of distributedphase shifters using the structure was improved. The return loss and insertion loss arealso improved.Combining the structure of more biased pads with aperiodic structure, thenumber of MEMS bridges in distributed phase shifter is decreased sharply and5-bitphase shifter with only16MEMS bridges is obtained. The structure of distributed phaseshifter in which single bias control many MEMS bridges is given. So bias pads can bereduced three or four times and the interconnection parasitic effects and performancedeterioration in package are alleviated.
     (5) Another type of RF MEMS phase shifters---switched-line phase shifters areresearched. A compact5-bit phase shifter is designed which adopts SP2T and SP4T. Thecircuit model of MEMS switches and the effects of the bonding wire connectedswitches and peripheral circuits are analyzed. Good measurements results are got after processing and testing.
     (6) The method of fabricating Terahertz iris band-pass filter by adopting MEMStechnology is presented. Based on the existing process conditions, through analyzing theinfluence of process factors on electromagnetic performace of filters, the process anddesigning parameters are mutually compromised to obtain optimized design. Sharpdeterioration of device performance due to process factors is avoided. Meanwhile, somecritical processing steps like MEMS ICP etching, electroplating gold and bonding andso on were researched, thus solving the problems like iris sidewall angle, metalthickness and roughness. The micromachining process of the filters is proposed.Ultimately the integratable THz filters of small insertion loss and high reliability isobtained by fabrication and test,whose power attenuation are below1dB at the centerfrequency140GHz and170GHz.
引文
[1] C. T. C. Nguyen, L. P. B. Katehi, G. M. Rebeiz. Micromachined devices for wirelesscommunications (invited)[J]. Proceedings of IEEE,1998,86(8):1756-1768.
    [2] J. L. Hilbert. RF-MEMS for Wireless Communications[J]. Communications Magazine,2008,46(8):68-74
    [3] K. Van Caekenberghe. RF MEMS on the Radar[J]. IEEE Microwave Magazine,2009,10(6):99-116
    [4] J. J. Maciel, J. F. Slocum, J. K. Smith, et al. MEMS Electronically Steerable Antennas for FireControl Radars[J]. Aerospace and Electronic Systems Magazine,2007,22(11):17-20
    [5] C. T. C. Nguyen, MEMS technology for timing and frequency control[J]. IEEE Transactions onUltrasonics, Ferroelectrics and Frequency Control,2007,54(2):251-270
    [6] W. T. Hsu.Vibrating RF MEMS for Timing and Frequency References[C], Proceedings of IEEEMTT-S IMS,2006,672-675.
    [7] J. J. Yao. RF MEMS from a device perspective[J]. Journal of Micromechanics andMicroengineering,10(2000), R9-R38.
    [8] J. M. Bustillo, R. T. Howe, R. S. Muller. Surface micromachining for microelectromechanicalsystems[J]. Proceedings of the IEEE,1998,86(8):1552-1574
    [9] G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, Bulk micromachining of silicon[J]. Proceedings ofthe IEEE,1998,86(8):1536-1551
    [10] W. Menz. LIGA and related technologies for industrial application[C]. The8th InternationalConference on Solid-State Sensors and Actuators,1995and Eurosensors IX.. Transducers '95.,Stockholm,1995,552-555
    [11] A. O. Adan, T. Naka, A. Kagisawa, et al. SOI as a mainstream IC technology[C]. SOIConference,1998,9-12
    [12] K. E. Petersen. Silicon as a mechanical material[J]. Proceedings of the IEEE,1982,420-457
    [13] G. M. Rebeiz, K. Entesari, I. C. Reines, et al. Tuning in to the RF MEMS Rebeiz[J]. MicrowaveMagazine,2009,10(6):55-72
    [14] G. M. Rebeiz, J. B. Muldavin. RF MEMS switches and switch circuits[J]. IEEE MicrowaveMagazine,2001,2(4):59-71
    [15] K. E. Petersen. Micro-mechanical membrane switches on silicon[J]. IBM J. Res, Dev.,1979,23(4):376-385
    [16] R. J. Roark, W. C. Young. Formulas for stress and strain[M]. New York: McGraw-Hill,1989
    [17] G. M. Rebeiz. RF MEMS theory, design, and technology[M]. New York: IEEE Press,2003,6-11,297-299
    [18] M. Daneshmand, S. Fouladi, R. R. Mansour, et al. Thermally Actuated Latching RF MEMSSwitch and Its Characteristics[J]. IEEE Transactions on Microwave Theory and Techniques,2009,57(12):3229-3238
    [19]郭永献,贾建援,张秀艳. MEMS电磁驱动微器件的失稳特性研究.中国机械工程,2008,16:1976-1979
    [20] C. L. Goldsmith, J. Randall, S. Eshelman, et al. Characteristics of micromachined switches atmicrowave frequencies[C]. IEEE MTT-S International Microwave Symposium Digest,1996,1141-1144
    [21] R. Al-Dahleh, R. R. Mansour. High-Capacitance-Ratio Warped-Beam CapacitiveMEMS SwitchDesigns[J]. Microelectromechanical Systems,2010,19(3):538-547
    [22] R. Stefanini, M. Chatras, P. Blondy, et al. Miniature MEMS Switches for RF Applications [J].Journal of Microelectromechanical Systems,2011,20(6):1324-1335
    [23] D. Yamane, W.Sun, H.Seita, et al. A Ku-band Dual-SPDT RF-MEMS Switch by Double-SideSOI Bulk Micromachining[J]. Journal of Microelectromechanical Systems,2011,20(5):1211-1221
    [24] O. Aharon, L. Gal, Y. Nemirovsky. Hybrid RF-MEMS Switches Realized in SOI Wafers byBulk Micromachining[J]. Journal of Microelectromechanical Systems,2010,19(5):1162-1174
    [25] B. Lakshminarayanan, D. Mercier, G. M. Rebeiz. High-Reliability Miniature RF-MEMSSwitched Capacitors[J]. IEEE Transactions on Microwave Theory and Techniques,2008,56(4):971-981
    [26] C. D. Patel, G. M. Rebeiz. RF MEMS Metal-Contact Switches With mN-Contact and RestoringForces and Low Process Sensitivity[J]. IEEE Transactions on Microwave Theory andTechniques,2011,59(5):1230-1237
    [27] N. Tavassolian, G. Papaioannou, J. Papapolymerou. Dielectric Charging in Capacitive RFMEMS Switches: The Effect of Extended Durations of Electric Stress [J]. IEEE Microwave andWireless Components Letters,2011,21(11):592-594
    [28] R. Mahameed, G. M. Rebeiz. RF MEMS Capacitive Switches for Wide Temperature RangeApplications Using a Standard Thin-Film Process[J]. IEEE Transactions on Microwave Theoryand Techniques,2011,59(7):1746-1752
    [29] R. Mahameed, G. M. Rebeiz. A High-Power Temperature-Stable Electrostatic RF MEMSCapacitive Switch Based on a Thermal Buckle-Beam Design[J]. Journal ofMicroelectromechanical Systems,2010,19(4):816-826
    [30] A. Ziaei, T. Dean, Y. Mancuso. Lifetime characterization of capacitive power RF MEMSswitches[C]. European Gallium Arsenide and Other Semiconductor Application Symposium,Paris,2005,509-512
    [31] S. B. Gong, H. Shen, N. S. Barker. Study of Broadband Cryogenic DC-Contact RF MEMSSwitches[J]. IEEE Transactions on Microwave Theory and Techniques,2009,57(12):3442-3449
    [32] A. Stehle, C. Siegel, V. Ziegler, et al. High-power handling capability of low complexityRF-MEMS switch in Ku-band[J]. Electronics Letters,2007,43(24):1367-1368
    [33] M. Daneshmand, R. R. Mansour. RF MEMS Satellite Switch Matrices[J]. Microwave Magazine,2011,12(5):92-109
    [34] J. Lee, C. H. Je, S. W. Kang, et al. A Low-Loss Single-Pole Six-Throw Switch Based onCompact RF MEMS Switches[J]. IEEE Transactions on Microwave Theory and Techniques,2005,53(11):3335-3344
    [35]黄继伟,王志功.单刀双掷RF MEMS开关的研究与设计[J].半导体学报,2007,28(4):604-609
    [36] A. A. Fomani, R. R. Mansour. Monolithically Integrated Multiport RF MEMS SwitchMatrices[J]. IEEE Transactions on Microwave Theory and Techniques,2009,57(12):3434-3441
    [37] C. Tu, J. F. Bao, Y. J. Du, et al. An Improved Design Method for Asymmetric RF MEMSTunable Filter Utilizing Admittance Matrix[C]. Microwave and Millimeter Wave Technology(ICMMT), Chengdu,2010,1766–1769
    [38] I. C. Reines, A. R. Brown, G. M. Rebeiz.1.6-2.4GHz RF MEMS tunable3-pole suspendedcombline filter[C]. IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA,2008,133-136
    [39] A. Grichener, B. Lakshminarayanan, G. M. Rebeiz. High-Q RF MEMS capacitor withdigital/analog tuning capabilities[C]. IEEE MTT-S International Microwave Symposium Digest,Atlanta, GA,2008,1283-1286
    [40] D. Sanchez-Escuderos, M. Ferrando-Bataller, M.Baquero-Escudero, et al. ReconfigurableSlot-Array Antenna With RF-MEMS[J]. IEEE Antennas and Wireless Propagation Letters,2011,10:721-725
    [41] A. Grau, J. Romeu, M. J. Lee, et al. A Dual-Linearly-Polarized MEMS-Reconfigurable Antennafor Narrowband MIMO Communication Systems[J]. IEEE Transactions on Antennas andPropagation,2010,58(1):4-17
    [42] J. Papapolymerou, K. L. Lange, C. L. Goldsmith, et al. Reconfigurable Double-Stub TunersUsing MEMS Switches for Intelligent RF Front-Ends[J]. IEEE Transactions on MicrowaveTheory and Techniques,2003,51(1):271-278
    [43] F. Domingue, S. Fouladi, A. B. Kouki, et al. Design Methodology and Optimization ofDistributed MEMS Matching Networks for Low-Microwave-Frequency Applications[J]. IEEETransactions on Microwave Theory and Techniques,2009,57(12):3030-3041
    [44] K.V. Caekenberghe, T. Vaha-Heikkila. An Analog RF MEMS Slotline True-Time-Delay PhaseShifter[J]. IEEE Transactions on Microwave Theory and Techniques,2008,56(9):2151-2159
    [45] W. C. Tang, T. C. H. Nguyen, R. T. Howe. Laterally Driven Polysilicon ResonantMicrostructures Micro Electro Mechanical Systems[C]. An Investigation of Micro Structures,Sensors, Actuators, Machines and Robots, Piscataway, NJ,1989,53-59
    [46] J. R. Clark, W. T. Hsu, M. A. Abdelmoneum, et al. High-Q UHF MicromechanicalRadial-Contour Mode Disk Resonators[J]. Journal of Microelectromechanical Systems,2005,14(6):1298-1310
    [47] M. U. Demirci, C. T. C. Nguyen. Higher-Mode Free-Free Beam MicromechanicalResonators[C]. IEEE International Frequency Control Symposium and PDA Exhibition Jointlywith the17th European Frequency and Time Forum, Florida,2003,810-818
    [48] L. Khine, M. Palaniapan. High-Q bulk-mode SOI square resonators with straight-beam anchors.Journal of Micromechanics and Microengineering,2008,19(1):15017-15026
    [49] Y. W. Lin, S. S. Li, Z. Y Ren, et al. Low Phase Noise Array-Composite MicromechanicalWine-Glass Disk Oscillator[C]. IEEE International Electron Devices Meeting IEDM TechnicalDigest.,2005,278-281
    [50] S. Wang, S. A. Chandorkar, A. B. Graham, et al. Encapsulated mechanically coupledfully-differential breathe-mode ring filters with ultra-narrow bandwidth Solid-State Sensors[C].Actuators and Microsystems Conference (TRANSDUCERS), Beijing,2011,942-945
    [51] S. T. Todd, X. T. Huang, J. E. Bowers, et al. Fabrication, Modeling, and Characterization ofHigh-Aspect-Ratio Coplanar Waveguide[J]. IEEE Transactions on Microwave Theory andTechniques,2010,58(12):3790-3800
    [52]顾磊.高性能MEMS射频无源器件与三维硅微机械加工技术[D].上海:中国科学院研究生院(上海微系统与信息技术研究所),2007,12-46
    [53] T. B. Oogarah, M. Daneshmand, R. R. Mansour, et al. Novel low-temperature variable inductorsusing porous anodic alumina Microwaves[J], IET Microwave Antennas&Propagation,2011,5(11):1274-1279
    [54] S. Chang, S. Sivoththaman. A Tunable RF MEMS Inductor on Silicon Incorporating anAmorphous Silicon Bimorph in a Low-Temperature[J]. IEEE Electron Device Letters,2006,27(11):905-907
    [55] S. b. Gong, H. Shen, N. S. Barker. A broadband, four-bit, Ka-band MMIC phase shifter[J].IEEE Transactions on Microwave Theory and Techniques,2011,59(4):894-900
    [56] G. M. Rebeiz, G. L Tan, J. S Hayden. RF MEMS phase shifters: Design and applications[J].IEEE Microwave Magazine,2002,3(2):72-81
    [57] A. Malczewski, S. Eshelman, B. Pillans, et al. X-Band RF MEMS phase shifters for phasedarray applications[J]. IEEE Microwave Wireless Components Letters,9(12),1999,517-519
    [58] M. Kim, J. B. Hacker, R. E. Mihailovich, et al. A DC-to-40GHz four-bit RF MEMS true-timedelay network[J]. IEEE Microwave Wireless Components Letter,11,2011,56-58
    [59] R. E. Mihailovich, J. B. Hacker, J. F. DeNatale, et al. Low-loss2and4-bit TTDMEMS phaseshifter based on SP4T switches[J]. IEEE Transactions on Microwave Theory and Techniques,2003,51(1):297-304
    [60] B. Pillans, S. Eshelman, A. Malczewski, et al. Ka-band RF MEMS phase shifters[J]. IEEEMicrowave Microwave and Guided Wave Letters,1999,9(12):520-522
    [61] J. F. DeNatale. Personal communications: DARPA reports[R]. Washington DC: RockwellScientific,2002
    [62] J. Zhu, Y. W. Yu, C. Chen, et al. A compact5-bit switched-line digital MEMS phase shifter[C].In Proc.1st IEEE International Conferenceon Nano/Micro Engineered and Molecular Systems,Zhuhai,2006,623-626
    [63] M. A. Morton, J. A. Papapolymerou. Packaged MEMS-based5-bit X-BandHigh-Pass/Low-Pass phase shifter[J]. IEEE Transactions on Microwave Theory and Techniques,2008,56(9):2025-2031
    [64] G. L. Tan, R. E. Mihailovich, J. B. Hacker, et al. A4-Bit Miniature X-Band MEMS PhaseShifter Using Switched-LC Networks[C]. IEEE MTT-S International Microwave SymposiumDigest,2003,1477-1480
    [65] S. B. Gong, S. Hui, N. S. Barker. A60-GHz2-bit Switched-Line Phase Shifter Using SP4TRF-MEMS Switches[J]. IEEE Transactions on Microwave Theory and Techniques,2011,59(4):894-900
    [66] S. Barker, G. Rebeiz. Distributed MEMS true-time delay phase shifters and wide-bandswitches[J]. IEEE Transactions on Microwave Theory and Techniques,1998,46(11):1881-1889
    [67] P. Farinelli, E. Chiuppesi, F. Di Maggio, et al. Development of different K-band MEMS PhaseShifter Designs for Satellite COTM Terminals[C]. Microwave Integrated Circuits Conference,2009, European,515-518
    [68]许洪杰.有源相控阵前端关键技术研究[D],成都:电子科技大学,2007,14-15
    [69] K. Topalli, O. A. Civi, S. Demir, et al. A Monolithic Phased Array Using3-bit Distributed RFMEMS Phase Shifters[J]. IEEE Transactions on Microwave Theory and Techniques,2008,56(2):270-277
    [70] C. Guclu, C. Cetintepe, O. A. Civi, et al.35GHz Phased Array Antenna using DMTL PhaseShifters[C]. Microwave Symposium (MMS), Mediterranean,2010,114-117
    [71] J. S. Hayden, G. M. Rebeiz. A low-loss Ka-band distributed MEMS2-bit phase shifter usingmetal-air-metal capacitors[C]. IEEE MTT-S International Microwave Symposium Digest, Seattle,2002,337-340
    [72] J. S. Hayden, A. Malczewski, J. Kleber, et al.2and4-bit DC-18GHz microstrip MEMSdistributed phase shifters[C]. IEEE MTT-S International Microwave Symposium Digest,2001,219-222
    [73] Y. Liu, A. Borgioli, A. S. Nagra, et al. K-band3-bit low-loss distributed MEMS phase shifter[J].IEEE Microwave Guided Wave Letter,2000,10(10):415-417
    [74] H. T. Kim, J. H. Park, Y. K. Park, et al. V-band low-loss and low-voltage distributed MEMSdigital phase shifter using metal-air-metal capacitors[C]. IEEE MTT-S International MicrowaveSymposium Digest, seattle, WA,2002,341-344
    [75] J. J. Hung, L. Dussopt, G. M. Rebeiz. Distributed2-and3-Bit W-Band MEMS Phase Shifters onGlass Substrates[J]. IEEE Transactions on Microwave Theory and Techniques,2004,52(2):600-606
    [76] M. KIM, J. B. Hacker, R. E. Mihailovich, et al. A DC-to-40GHz four-bit RF MEMS true-timedelay network[J]. IEEE Microwave Wireless Components Letters,2003,51(1):305-308
    [77] B. Lakshminarayanan, T. M. Weller. Optimization and implementation of impedance-matchedtrue-time-delay phase shifters on quartz substrate[J]. IEEE Transactions on Microwave Theoryand Techniques,2007,55(2):335-342
    [78] N. Somjit, G. Stemme, J. Oberhammer. Deep-Reactive-Ion-Etched Wafer-Scale-TransferredAll-Silicon Dielectric-Block Millimeter-Wave MEMS Phase Shifters[J]. Journal ofMicroelectromechanical Systems,2010,19(1):120-128
    [79] N. Somjit, G. Stemme, J. Oberhammer. Binary-Coded4.25-bit W-Band monocrystalline–SiliconMEMS Multistage Dielectric-Block Phase Shifters[J]. IEEE Transactions on Microwave Theoryand Techniques,2009,57(11):2834-2840
    [80] N. Somjit, G. Stemme, J. Oberhammer. Phase Error and Nonlinearity Investigation ofMillimeter-Wave MEMS7-Stage Dielectric-Block Phase Shifters[C]. European MicrowaveIntegrated Circuits Conference, Rome,2009,519-522
    [81] K. Hettak, G. A. Morin, M. G. Stubbs. A Novel Miniature CPW Topology of a Highpass/Low-pass T-Network Phase Shifter at30GHz[C]. European Microwave Conference, Rome,2009,1140-1143
    [82] F. Domingue, A.A. Fomani, A. B. Kouki, et al. Distributed phase shifter with enhancedvariability and impedance matching[C]. Proceedings of the38th European MicrowaveConference, A-msterdam,2008:108-111
    [83] G. McFeetors, M. Okoniewski. Distributed MEMS Analog Phase Shifter With EnhancedTuning[J]. IEEE Microwave and Wireless Components Letters,2006,16(1):34-36
    [84] S. Afrang, Y. M. Burhanuddin. Distributed transmission line phase shifter using MEMSswitches and inductors. Microsystem Technologies,2008,14:1173-1183
    [85] K. Tang, Q. Wu, G. H. Yang. RF characteristics investigation of MEMS phase shifter with CPWdiscontinuities. International Conference on Microwave and Millimeter Wave Technology,Nanjing,2008,1393-1396
    [86] J. P. Carrier, R. Fritschi, P. Crespo, et al. Modeling of Periodic Distributed MEMS-Applicationto the Design of Variable True-Time Delay Lines[J]. IEEE Transactions on Microwave Theoryand Techniques,2006,54(1):383-392
    [87] G. H. Yang, Q. Wu, J. H. Fu, et al. Modeling Approach for Distributed RF MEMS PhaseShifter based on IA-BP Neural Network[C]. IEEE Conference on Microwave and MillimeterWave Technology (ICMMT), Chengdu,2010,1063-1066
    [88] G. H. Yang, Q. Wu, J. H. Fu, et al. Modeling Technique for Down-state of RF MEMS PhaseShifter Based on Artificial Neural[C]. IEEE Conference on Industrial Informatics, INDIN,2008,176-180
    [89] J. S. Hayden, G. M. Rebeiz.2-bit MEMS distributed X band phase shifters. IEEE Microwaveand Guided wave Letter.2000,10(12):540-542
    [90] J. S. Hayden, G. M. Rebeiz. Very low-loss distributed X band and Ka-band MEMS phaseshifters using metal-air-metal capacitors[J]. IEEE Transactions on Microwave Theory andTechniques,2003,(51):309-314
    [91] G. Bartolucci, S. Catoni, F. Giacomozzi, et al. Realisation of distributed RF MEMS phaseshifter with very low number of switches[J]. Electronic Letters,2007,43(23):1290-1292
    [92] V. Janardhana, J. S. Roy, R. G.Kulkarni. Analysis of surface Micro Machined RF MEMS phaseshiftes[J]. IEEE Aerospace and Electro Systems Magazine,2008,23(5):32-35
    [93] P. Goel, K. J. Vinoy. A low cost approach for the fabrication of microwave phase shifter onlaminates[J]. Microsystem Technologies,2011,(17):1653-1660
    [94] B. Lakshminarayanan, T. M. Weller. Design and Modeling of4-bit Slow-Wave MEMS PhaseShifters[J]. IEEE Transactions on Microwave Theory and Techniques,2006,54(1):120-127.
    [95] X. Rottenberg, I. D. Wolf, B. K. J. C. Nauwelaers, et al. Analytical Model of the DC Actuationof Electrostatic MEMS Devices With Distributed Dielectric Charging and NonplanarElectrodes[J]. Journal of Microelectromechanical Systems,2007,16(5):1243-1253
    [96] P. Shanthraj, O. Rezvanian, M. A. Zikry. Electrothermomechanical Finite-Element Modeling ofMetal Microcontacts in MEMS[J]. Journal of Microelectromechanical Systems,2011,20(2):371-382
    [97] M. M. Shalaby, Z. D. Wang, L. L. W. Chow, et al. Robust Design of RF-MEMS CantileverSwitches Using Contact Physics Modeling[J]. IEEE Transactions on Industrial Electronics,2009,56(4):1012-1021
    [98] S. Melle, D. D. Conto, D. Dubuc, et al. Reliability Modeling of Capacitive RF MEMS[J]. IEEETransactions on Microwave Theory and Techniques,2005,53(11):3482-3488
    [99] Y. J. Lee, D. S. Filipovic. ANN Based Electromagnetic Models for the Design of RF MEMSSwitches[J]. IEEE Microwave and Wireless Components Letters,2005,15(11):823-825
    [100] V. Puyal, D. Dragomirescu, C. Villeneuve, et al. Frequency Scalable Model for MEMSCapacitive Shunt Switches at Millimeter-Wave Frequencies[J]. IEEE Transactions on MicrowaveTheory and Techniques,2009,57(11):2824-2833
    [101] J. Iannacci, R. Gaddi, A. Gnudi. Experimental Validation of Mixed Electromechanical andElectromagnetic Modeling of RF-MEMS Devices Within a Standard IC SimulationEnvironment[J]. Journal of Microelectromechanical Systems,2010,19(3):526-537
    [102] S. Halder, C. Palego, Z. Peng, et al. Compact RF Model for Transient Characteristics ofMEMS Capacitive Switches[J]. IEEE Transactions on Microwave Theory and Techniques,2009,57(1):237-242
    [103] H. H. Hsu, D. Peroulis. A CAD Model for Creep Behavior of RF-MEMS Varactors andCircuits[J]. IEEE Transactions on Microwave Theory and Techniques,2011,59(7):1761-1768
    [104] J. H. Xu, W. Z. Yuan, J. B. Xie, et al. A Hybrid System-Level Modeling and SimulationMethodology for Structurally ComplexMicroelectromechanical Systems[J]. Journal ofMicroelectromechanical Systems,2011,20(2):538-548
    [105] B. Lakshminarayana, T. Weller. MEMS phase shifters using cascaded slow-wave structures forimproved impedance matching and/orphase shift[C]. IEEE MTT-S International MicrowaveSymposium Digest,2004,725-728
    [106] C. Palego, Z. Peng, J. C. M. Hwang, et al. Compact Ka-Band Phase Shifters Using MEMSCapacitive Switches[C]. European Microwave Conference, Rome,2009,1864-1867
    [107] A. S. Nagra, R. A. York. Distributed Analog Phase Shifters with Low Insertion Loss[J]. IEEETransactions on Microwave Theory and Techniques,1999,47(9):1705-1711
    [108] A. Ketabi, M. J. Navardi. Optimization of Variable-Capacitance Micromotor Using GeneticAlgorithm[J]. Journal of Microelectromechanical Systems,2011,20(2):497-504
    [109] S. J. Park, C. Patel, I. Reines, et al. High-Q RF-MEMS4–6-GHz Tunable Evanescent-ModeCavity Filter[J]. IEEE Transactions on Microwave Theory and Techniques,2008,56(10):2348-2355
    [110] X. Shang, M. Ke, Y. Wang, et al. Micromachined W-band waveguide and filter with twoembedded H-plane bends[J]. IET Microwaves, Antennas&Propagation,2011,5(3):334-339.
    [111]刘盛纲,钟任斌.太赫兹科学技术及其应用的新发展[J].电子科技大学学报,2009,38(5):481-486
    [112] V. M. Lubecke, K. Mizuno, G. M. Rebeiz. Micromachining for Terahertz Applications[J]. IEEETransactions on Microwave Theory and Techniques,2002,46(11):1821-1831
    [113] X. H. Zhao, J. F. Bao, G. C. Shan, et al. D-Band Micromachined Silicon RectangularWaveguide Filter[J]. IEEE Microwave and Wireless Components Letters,22(5):230-232
    [114]郑新,刘超.太赫兹技术的发展及在雷达和通讯系统中的应用[J].微波学报,2010,26(6):1-6
    [115] M. Z. Lu, W. Z. Li, E. R. Brown. High-order THz bandpass filters achieved by multilayercomplementary metamaterial structures[C].35th International Conference on Infrared Millimeterand Terahertz Waves, Rome,2010,1-2
    [116] L. Q. Bui, D. Ball, T. Itoh. Broad-band millimeter-wave e-plane bandpass filter[J]. IEEETransactions on Microwave Theory and Techniques,1984,32(12):1655-1658
    [117] F. Sammoura, Y. Cai, C. Y. Chi, et al. A Micromachined W-Band Iris Filter[C]. The13thInternational Conference on Solid-State Sensors, Actuators and Microsystems, Digest ofTechnical Papers. TRANSDUCERS '05., Seoul,2005,1067-1070
    [118] F. Sammoura, Y. K. Firas, L. Lin. Micromachined plastic W-band bandpass filters[J]. PhysicalA: Sensors and Actuators,2008,147(1):47-51
    [119] F. Sammoura, L. Lin. A Plastic W-Band MEMS Tunable Filter[C]. IEEE MTT-S InternationalMicrowave Symposium Digest,2006,136-139
    [120] A. Ismail, M. S. Razalli, M. A. Mahdi, et al. Micromachined W-band integrated rectangularwaveguide filter utilising SU-8[C]. APMC2007, Microwave Conference, Asia-Pacific, Bangkok,2007,1-4
    [121] S. Song, K. SeokSeo. A W-Band Air-Cavity Filter Integrated on a Thin-Film Substrate[J].IEEE Microwave and Wireless Components Letters,2009,19(4):200-202
    [122] N. I. Dib, W. P. Jr. Harokopus, P. B. Katehi, et al. Study of a novel planar transmission line[C].IEEE MTT-S International Microwave Symposium Digest,1991,623-626
    [123] S. V. Robertson, L. P. B. Katehi, G. M. Rebeiz. W-band microshield low-pass filters[C]. IEEEMTT-S International, Microwave Symposium Digest,1994,625-628
    [124] T. M.Weller, L. P.Katehi, Rebeiz, Gabriel M. A250-GHz Microshield Bandpass Filter[J]. IEEEMicrowave and Guided Wave Letters,1995,5(5):153-155
    [125] S. V. Robertson, L. P. B. Katehi, G. M. Rebeiz. Micromachined W-Band Filters[J]. IEEETransactions on Microwave Theory and Techniques,1996,44(4):598-606
    [126] P. Blondy, D. Cros, S. Verdeyme, et al. Micromachined Ka and W-Band Filters For SpaceRadiometric Applications[C].31st European Microwave Conference, London,2001,1-4
    [127]李炜.硅基微波MEMS移相器的优化设计与性能分析[D].上海:华东师范大学,2004,28-33
    [128] J. Oberhammer, G. Stemme. Low-Voltage High-Isolation DC-to-RF MEMS Switch Based onan S-shaped Film Actuator[J]. IEEE Transactions on Electron Devices,2004,51(1):149-155
    [129] S. D.Lee, B.C. Jun, S.-D.Kim, et al. A Novel Pull-Up Type RF MEMS SwitchWith LowActuation Voltage[J]. IEEE Microwave and Wireless Components Letters,2005,15(12):856-858
    [130]胡光伟,刘泽文,侯智昊等.一种低驱动电压的SP4T RF MEMS开关传感技术学报[J],2008,4:656-659
    [131] X. D. Zou, K. L. Chen, H. L. Zhang, et al. Design and simulation of4-bit l0-14GHz RFMEMS tunable filter[C]. In Proc.4th IEEE International Conference on Nano/Micro Engineeredand Molecular Systems, Shenzhen,2009,21-24
    [132] K. Entesari, G. M. Rebeiz. A differential4-bit6.5-10GHz RF MEMS tunable filter[J]. IEEETransactions on Microwave Theory and Techniques,2005,53(3):1103-1110
    [133] S. J. Park, K. Y. Lee, G. M. Rebeiz. Low-loss5.15-5.70-GHz RF MEMS switchable filter forwireless LAN applications[J]. IEEE Transactions on Microwave Theory and Techniques,2006,54(11):3931-3939
    [134] M. H. Mao, R. B. Wu, C. H. Chen. Characterization of coplanar waveguide open endcapacitance theory and experiment[J]. IEEE Transactions on Microwave Theory and Techniques,1994,42:1016-1024
    [135] K. Beilenhoff, H. Klingbeil, W. Heinrich, et al. Open and short circuits in coplanar MMIC[J].IEEE Transactions on Microwave Theory and Techniques,1993,41(9):1534-1537
    [136] S. Pranonsatit, A. S Holmes, S. Lucyszyn. Microwave modeling of radio frequencymicroelectromechanical rotary switches[J]. IET Microwaves, Antennas&Propagation,2011,5(3):255-261
    [137] S. Gevorgian, L. J. P. Linner, E. L. Kollberg. CAD Models for Shielded Multilayered CPW[J].IEEE Trans. Microwave Theory Tech,1995,43(4):772-779
    [138] N. I. Dib, L. P. B. Katehi.Impedance Calculation for the Microshield Line[J]. IEEE MicrowaveGuided Wave Letters,1992,2(10):406-408
    [139] K.-K. M. Cheng, I. D. Robertson. Study of Microshield Lines with Practical Cavity SidewallProfiles[J]. IEEE Transactions on Microwave Theory and Techniques,1995,3(12):2689-2694
    [140] T. Kitazawa, T. Itoh. Propagation Characteristics of Coplanar-Type Transmission Lines withLossy Media[J]. IEEE Transactions on Microwave Theory and Techniques,1991,39(10):1694-1700
    [141] R. N. Simons, G. E. Ponchak. Modeling of Some CoplanarWaveguide Discontinuities[J]. IEEETransactions on Microwave Theory and Techniques,1988,36(12):1796-1803
    [142] L. Wiemer, R. H. Jansen. Determinationof Coupling Capacitance of Underpasses, Air Bridgesand Crossings in MICs and MMICs[J]. Electronics Letters,1987,23(7):344-346
    [143] T. M. Weller, R. M. Henderson, S. V. Robertson, et al. Optimization of MM-wave distributionnetworks using silicon-based CPW[C]. Microwave Symposium Digest,1998IEEE MTT-SInternational,1998,537-540
    [144] A. A. Omar, Y. L. Chow, L. Roy, et al. Effects of air-bridges and mitering on coplanarwaveguide90degrees bends: theory and experiment[C]. IEEE MTT-S International MicrowaveSymposium Digest,1993,823-826
    [145] R. N. Simons. Coplanar Waveguide Circuits, Components, and Systems. New York: WileyOnline Library,2001,203-230
    [146] A. C. W. Lu, W. Fan, L. L. Wai, et al. Modeling and Characterization of Wire Bonding for RFApplications[C].52nd Electronic Components and Technology Conference Proceedings, SanDiego, CA,2002,905-909
    [147] T. T. Arnborg, T. Johansson.3D Characterization of RF Power Microelectronic TestStructures[C]. Proceedings of the1999International Conference on ICMTS1999,131-134
    [148] J. Y. Chuang, S. P. Tseng, J. A. Yeh. Radio Frequency Characterization of Bonding WireInterconnections in A Molded Chip[C].54th Electronic Components and Technology ConferenceProceedings,2004,392-399
    [149] RadentMEMS. RMSW220D SPDT DC to40GHz, RF-MEMS datasheet[EB/OL].http://www.radantmems.com/radantmems.data/Library/Radant-Datasheet220HP_2.0.pdf, August10,2012
    [150] RadentMEMS. RMSW240SP4T, DC-20GHz, RF-MEMS datasheet[EB/OL].http://www.radantmems.com/radantmems.data/Library/Radant-Datasheet240_2.0.pdf, August10,2012
    [151]清华大学微带电路编写组.微带电路.北京:人民邮电出版社,1976,8-9
    [152] X. Shang, M. Ke, Y. Wang, et al. MicromachinedW-band waveguide and filter with twoembedded H-plane bends[J]. IET Microwaves, Antennas&Propagation,2011,5(3):334-339
    [153] D. G. Swanson. Narrow-Band Microwave Filter Design[J]. IEEE Microwave Magazine,2007,8(5):105-114
    [154] S. Bale, J. Everard. High-Q X-Band Distributed Bragg ResonatorUtilizing an AperiodicAlumina Plate Arrangement Frequency Control Symposium[C]. IEEE International2009Jointwith the22nd European Frequency and Time forum,2009,232-236
    [155] R. K. Mongia, P. Bhartia. Accurate Conductor Q-Factor of Dielectric Resonator Placed in anMIC Environment[J]. IEEE Transactions on Microwave Theory and Techniques,1993,41(3):445-449
    [156] D. Oloumi, A. Kordzadeh, A. A. L. Neyestanak. Size Reduction and Bandwidth Enhancementof a Waveguide Bandpass Filter Using Fractal-Shaped Irises[J]. IEEE Antennas and WirelessPropagation Letters,2009,8:1214-1217.
    [157] J. H. Lee, N. Kidera, G. DeJean, et al. A V-Band Front-End With3-D Integrated CavityFilters/Duplexers and Antenna in LTCC Technologies[J]. IEEE Transactions on MicrowaveTheory and Techniques,2006,54(7):2925-2936.
    [158] Y. M. Shin, L. R. Barnett, D. Gamzina, et al. Terahertz vacuum electronic circuits fabricated byUV lithographic molding and deep reactive ion etching[J]. Applied Physics Letters,2009,95(18):181505-181505

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700