用户名: 密码: 验证码:
非制冷红外焦平面探测器测试及验证成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非制冷红外焦平面探测器的诞生及发展是红外技术领域一次革命性的突破,它具有体积小、功耗低、成本低、可靠性高的特点,其衍生的非制冷红外热像技术具有广泛的应用前景,因此非制冷红外焦平面探测器及其应用技术正成为各国研究的热点。
     本课题对非制冷红外焦平面探测器的测试验证技术进行了深入的研究,完成了微测辐射热计和非制冷红外焦平面探测器的测试验证技术的系统化设计,突破了测试验证技术中的各种关键技术,研制了的高速、高精度的红外焦平面探测器测试系统,同时基于项目组自主研发的320×240非制冷红外焦平面探测器,设计和开发了多功能、高性能的红外热成像仪并实现了验证成像。论文主要的研究内容和成果综述如下:
     (1)在微测辐射热计测试技术方面,深入研究了微测辐射热计的传感机理,建立了微测辐射热计的光学、热学和电学的数学模型。基于数学模型提炼了微测辐射热计的关键指标,提出了通过锁相放大技术(LOCK-INAMP)测试微测辐射热计响应电压和噪声电压的方法,克服了微测辐射热计微弱信号提取的技术难题。在热学性能参数的测试方面采用了I-V测试热导的方法,发现了通过减小偏置电流的手段,可忽略有效热导和总热导误差的技术问题,同时提出了变频锁相放大技术测试响应时间的方法。对比测试结果与仿真结果数据,确认了该测试方法的准确性和有效性。
     (2)非制冷红外焦平面探测器测试技术方面,研制了非制冷红外焦平面探测器测试系统,细阐述了该测试系统的组成结构、板级系统工作原理,各模块参数指标以及关键技术的解决方案,并利用标准探测器进行验证测试,主要指标测试精度可≤1%。在测试系统中,低噪声偏置电压源模块采用了网络反馈控制结构和数字电位器技术,解决了电压源的低噪声、高精度调节以及宽温度适应性的技术难题。同时,测试系统的数据采集部分还采用了PCIE总线技术和DMA的工作模式,解决了多规格、大规模、高帧频的红外图像实时采集的技术难题,克服了采集过程中由于CPU响应速度原因带来的数据丢失问题。
     (3)非制冷红外焦平面探测器验证成像技术方面,研制了基于国产320×240非制冷红外焦平面探测器的热成像仪系统,系统采用了最新的FPGA+ARM的硬件结构,并实现了参数标定和实时成像一体化的集成设计理念。在图像算法设计中,本文提出了一种改进的神经网络非均匀性校正算法,克服了传统神经网络算法目标退化和伪像的不足。在图像增强算法中,本文采用了改进的二叉堆算法,本算法大大提高了图像增强算法的效率,克服了由于探测器状态变化而导致拉伸畸变的问题。为了更好地修饰细节,本文还提出了基于梯度信息自适应权值调整的红外图像细节增强(DDE)算法技术,通过去除噪,计算图像梯度信息,修正此梯度信息,计算灰度统计权值,细节图像直方图均衡达到图像细节增强的效果。通过测试,该热成像系统的NETD达到98mK。
The invention and development of the uncooled IRFPA (Infrared focal plane array)is a massive innovation of the infrared technology field. It has the advantages such assmall volume, low power consumption, low cost, and superior reliability. For the brightfuture, so many worldwide developments of the uncooled IRFPA and its applicationtechnologies are under progress.
     In this dissertation, the testing and verification technologies for uncooled IRFPAhave been described in details. The fully parametric test system for the microbolometerand uncooled IRFPA detectors have been established, a variety of key technologies wasbroken through, and a high-speed, high-precision test bench adapt to the differentspecific uncooled IRFPA detectors was designed and realized. Meanwhile amulti-function, high-performance infrared thermal imaging system based on320×240uncooled IRFPA detectors was designed and realized. The research contents and resultsin this dissertation are summarized as follows:
     (1) For microbolometer testing techniques: Microbolometer working mechanismwas deeply researched, and the microbolometer optical, thermal and electricalmathematical model was established. Based on the mathematical model, the keyparameters of microbolometer was refined, and the lock-in amplifier (LOCK-IN AMP)technique was applied to test the microbolometer response and noise, Through this way,the technical problems of small signal extraction were overcome. For testing thermalparameters of microbolometer, a method was introduced for thermal conductivity testbased on I-V measurement, and it was found that the effective thermal conductivity andtotal thermal conductivity error can be ignored by reducing the bias current, while thefrequency-conversion lock-in amplifier technology was used to test the thermal timeconstant. Through the comparion between the test results and the simulation results, theaccuracy and validity of the test method can be confirmed.
     (2) For uncooled IRFPA detector test techniques: A test bench for uncooled IRFPAdetector has been developed, in this paper, the test bench is reported from design toverification, such as the structure of the composition, working principles, board level system design details, the parameter of each module and the key technology solutions,according to the results of a standard detector test, the error could be less than1%. Inthis bench, the bias voltage source module was designed by network feedback controlstructure and the digital potentiometer technology, in order to meet low-noise,high-precision adjustment and wide temperature adaptability requirements. Meanwhilein the acquisition module of the bench, PCIE bus technology and DMA mode is used tosolve the multi-specifications, large-scale, real-time acquisition of high frame rateinfrared image acquisition problem, and the data loss problem during the acquisitionprocess due to the CPU speed limitation was overcome.
     (3) For uncooled IRFPA imaging techniques: An imaging system based on320×240uncooled IRFPA was designed, the system uses the latest hardware structureof FPGA+ARM, correction parameter calculation and real-time imaging function wereintegrated by the integration design concept. In the nonuniformity correction algorithmpart, an improved neural networks NUC algorithm is introduced. The edge detectiontechnique is applied to the neural network algorithm, to overcome the lack of smearingand target degradation in traditional neural network algorithm. The improved binaryheap algorithm was also applied to calculate the enhancement parameters for theimaging enhancement, it can greatly improves the calculation efficiency, and couldsolve the imaging enhancement distortion problem due to the detector working statechanges. At last, a new infrared image digital detail enhancement(DDE) technologybased on gradient information weight adaptive adjustment was introduced, by the stepof removing noise, calculating image gradient information, correcting this gradientinformation, calculating detail image histogram for image enhancement was applied forimaging detail enhancement. By the test, NETD of the thermal imaging system is98mK.
引文
[1] George J. Zissis. The infrared and electro-optical systems handbook: sources of radiation[M].Bellingham: SPIE Press,1993,3-5
    [2]苏君红,郑为建.红外线的二百年从科学探索到技术创新[J].红外技术,2001,23(1):2-3
    [3]方家熊.高级红外光电工程导论[M].上海:中科院上海技术物理研究所教育中心,2002,13-17
    [4]朱惜辰.红外探测器的进展[J].红外技术,1999,21(6):12-15
    [5] Joseph S. The infrared and electro-optical systems handbook: infrared detectors[M].Bellingham: SPIE Press,1993,50-51
    [6]陈继述,胡燮荣,徐平茂.红外探测器[M].北京:国防工业出版社,1986,125-128
    [7] J.S.Shie,P.K.Weng. Design considerations of metal-film bolometer with micromachined floatingmembrane[J].Sensors and Actuators, A:physical,1992,33(3):183-189
    [8] A.Tanaka, S.Matsumoto, N.Tsukamoto.Silicon IC process compatible bolometer infrared focalplane array[C]. Proceedings of SPIE-The International Society for Optical Engineering,Stockholm,1995,2:632-635
    [9] L.Brunetti. Thin-film bolometer for high-frequency metrology[J].Sensors and Actuators,A:Physical,1992,32(1-3):423-427
    [10] H.Jerominek, F.Picard, D.Vincent. Vanadium oxide films for optical switching and detection[J]. Optical Engineering,1993,32(9):2092-2099
    [11] V.G.Malyarov, I.A.Khrebtov, Yu.V.Kulikov, et al. Comparative investigations of bolometricproperties of thin-film structures based on vanadium dioxide and amorphous hydratedsilicon[C]. Proceedings of SPIE-The International Society for Optical Engineering, Moscow,1999,3819:136-142
    [12] C.Vedel, J.L.Martin, J.L.Ouvrier Buffet. Amorphous silicon based uncooled microbolometerIRFPA[C]. Proceedings of SPIE-The International Society for Optical Engineering, Orlando,3698:276-283
    [13]邵式平.热释电效应及其应用[M].北京:兵器工业出版社,1994.1-7
    [14] H.R.Beratan, et al. Low-cost uncooled ferroelectric detector [C]. Proceedings of SPIE-TheInternational Society for Optical Engineering, San Diego,1994,2274:147-156
    [15] J.F.Belcher, et al. Uncooled monolithic ferroelectric IRFPA technology[C]. Proceedings ofSPIE-The International Society for Optical Engineering.1998, San Diego,3436:611-622
    [16] C.M Hanson, H.R.Beratan, J.M.Belcher. Uncooled infrared imaging using thin filmferroelectrics[C]. Proceedings of SPIE-The International Society for Optical Engineering,San Jose,2001,4288:2980-303
    [17] C.M.Hanson, H.R.Beratan. Thin film ferroelectrics breakthrough [C]. Proceedings of SPIE-The International Society for Optical Engineering, Orlando,2002,4721:91-98
    [18]刘卫国,金娜.集成非制冷热成像探测阵列[M].北京:国防工业出版社,2004.40-62
    [19]刘恩科,朱秉升,罗晋生.半导体物理学(第4版)[M].北京:国防工业出版社,1994.286-294
    [20] N.Teranishi. Thermoelelctric uncooled infrared focal plane arrays [J].Semiconductors andSemimetals,1997,47:203-218
    [21] T.Kanno, M.Saga, S.Matsumoto,et al. Uncooled infrared focal plane array having128×128thermopile detector elements [C]. Proceedings of SPIE-The International Society for OpticalEngineering, San Diego,1994,2269:450-459
    [22] R.A.Wood. Monolithic silicon microbolometer arrays [J]. Semiconductors and Semimetals.1997,47:45-119
    [23] R.A.Wood. Uncooled thermal imaging with monolithic silicon focal planes [C]. Proceedingsof SPIE-The International Society for Optical Engineering, San Diego,1993,2020:322-329
    [24] R.A.Wood, C.J.Han, P.W.Kruse. Integrated uncooled infrared detector imaging array [C].Technical Digest-IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Island,1992,132-135
    [25] B.Cole, R.Horning, B.Johnson, et al. High performance infrared detector arrays using thin filmmicrostructures [C]. IEEE International Symposium on Applications of Ferroelectrics,USA,1994,653-656
    [26] B.Cole, S.Weeres, R.Hi gashi, et al. Honeywell resistor array development and futuredirections [C]. Proceedings of the1999Technologies for Synthetic Environments, Orlando,1999,3697:188-196
    [27] P.E.Howard, C.J.Han, J.E.Clarke, et a1. Advances in microbolometer focal plane technology atBoeing [C]. Infrared Detectors and Focal Plane Arrays V, Orlando,1998,3379:7-57
    [28] P.E.Howard, J.E.Clarke, W.J.Parrish, et a1. Advanced high-preformace320240VOxmicrobolometer uncooled IR focal plane [C]. Proceedings of the1999Infrared Technologyand Applications XXV, Orlando,1999,3698:13l-136
    [29] P.E.Howard, J.E.Clarke, A.C.Lonescu,et a1.DRS U6000640480VOx uncooled IR focal plane
    [C]. Proceedings of SPIE-The International Society for Optical Engineering,Orlando,2002,4721:48-55
    [30] C.J.Han, C.G,Howard, P.E.Howard, et al. Progress in DRS production line for uncooled focalplane arrays [C]. Proceedings of SPIE-The International Society for Optical Engineering,Orlando,2004,5406:483-490
    [31] C.Li, C.J.Han, G.D.Skidmore, et al. DRS uncooled VOx infrared detector development andproduction status [C]. Proceedings of SPIE-The International Society for Optical Engineering,Orlando,2010,7660:76600V
    [32] C.C.Li, C.J.Han, G.D.Skidmore. Overview of DRS uncooled VOx infrared detectordevelopment [J]. Optical Engineering,50(6):16~17
    [33] W.Radford, D.Murphy, A.Finch, et al. Sensitivity improvements in uncooled microbolometerFPAs [J]. Proceedings of the1999Infrared Technology and Applications XXV,1999,3698:119-130
    [34] D.Murphy, M.Ray, R.Wyles, et a1. High sensitivity(25um pitch) microbolometer FPAs andapplication development [C]. Proceedings of SPIE-The International Society for OpticalEngineering, Orlando,2001,4369:222-234
    [35] D.Murphy, M.Ray, J.Wyles, et a1. Performance improvements for VOx microbolometer FPAs
    [C]. Proceedings of SPIE-The International Society for Optical Engineering, Orlando,2004,5406:531-540
    [36] S.H.Black, R. Kraft, A.Medranom, et al. Advances in high rate uncooled detector fabrication atRaytheon [C]. Proceedings of SPIE-The International Society for Optical Engineering,Orlando,2010,7660
    [37] S.H. Black, T.Sessler, E.Gordon, et al. Uncooled detector development at Raytheon [C].Proceedings of SPIE-The International Society for Optical Engineering, Orlando,2011,8012
    [38] K.Grealish, T.Kacir, B.Backer, et al. An advanced infrared thermal imaging module formilitary and commercial applications [C]. Proceedings of SPIE-The International Society forOptical Engineering, Orlando,2005,5796:186-192
    [39] R.Blackwell, D. Lacroix, T.Bach, et al.17μm microbolometer FPA technology at BAEsystems [C]. Proceedings of SPIE-The International Society for OpticalEngineering, Orlando,2009,7298:72980P
    [40] R.Blackwell, D. Lacroix, T.Bach, et al.17μm pixel640×480microbolometer FPAdevelopment at BAE Systems [C]. Proceedings of SPIE-The International Society for OpticalEngineering, Orlando,2007,6542:65421U
    [41] W.J.Parrish, J.T.Woodway, Methods for Cords and Circuit for Correcting Temperature-InducedErrors in Microbolometer Focal Plane Array [P]. USA, Patent,1997, PatentNumber:5756999
    [42] C.Trouilleau,A.Crastes, O.Legras,et a1.35pm pitch at ULIS,a breakthrough [C].Proceedingsof SPIE-The International Society for Optical Engineering, Orlando,2005,5783:578-585
    [43] W.J.Parrish, J.T.Woolaway. Methods for Cords and Circuit for CorrectingTemperature-Induced Errors in Microbolometer Focal Plane Array [P]. USA, Patent,1998,Patent Number:6028309
    [44] C.S.Kaufman, R.S.Carson, W.B.Homback. Method and apparatus for temperaturecompensation of an uncooled focal plane array [P]. USA, Patent,2002, Patent Number:6891160
    [45] J.L.Tissot,C.Trouilleau, B.Fieque, et a1. Uncooled microbolometer detector: Recentdevelopments at Ullis [C].Infrared Photoelectronics, Warsaw,2005,5957:1-12
    [46] J.L.Tissot, M.Vilain, O.Legras, et al. TEC-less operation of384x288/25um uncooledinfrared detector [C].Optical Design and Engineering III, Glasgow,2008,7100:710029-6
    [47] F.Simoens, M.Tchagaspanian, A.Arnaud, et a1.New architecture for TECless operation ofuncooled microbolometers developed at LETI [C]. Infrared Materials, Devices, andApplications, Beijing,2007,6835:683502-5
    [48] A. Durand, J.L Tissot, P. Robert, et al. VGA17μm development for compact, low powersystems [C]. Proceedings of SPIE-The International Society for Optical Engineering,Orlando,2011,8012
    [49] T.D.Pope, H.Jerominek, C.Alain, et al. Commercial and custom160120,2561, and5123pixelbolometric FPAs [C]. Proceedings of SPIE-The International Society for Optical Engineering,Orlando,2002,4721:64-74
    [50] A.Tanaka, S.Matsumoto, N.Tsukamoto, et al. Infrared focal plane array incorporating siliconIC process compatible bolometer [J]. IEEE Transactions on Electron Devices,1996,43(11):1844-1850
    [51] Y.Tanaka, A.Tanaka, K.Iida, et al. Performance of320240uncooled bolometer-type infraredfocal plane arrays [C]. Proceedings of SPIE-The International Society for OpticalEngineering, Orlando,2003,5074:414-424
    [52] PHAM L,TJHEN W,YE C,et a1.Surface micromachined pyroelecteic infrared imaging arraywith vertically integrated signal processing circuitry [J].IEEE Trans on Ultra Ferr and FreqCont,1994,41(4):552-555
    [53] R.W.Whatmore, F.W.Ainger. Pyroelectric Ceramic material for uncooled I.R. dectors
    [C].Advanced Infrared Sensor Technology, Geneva,1983,395:261-266
    [54] R.W.Whatmore, S.B.Stringfellow, N.M.Shorrocks. Ferroelectric materials for uncooledthermal imaging [C].Proceedings of SPIE-The International Society for Optical Engineering,San Diego,1993,2020:391-402
    [56]程瑶.混合式IRFPA读出电路参数测试系统[J].红外与激光工程,2006,35(2):249-252
    [57]胡旭,潘银松,张文普,等.基于PCI的ROIC测试用数据采集系统[J].红外技术,2002,24(5):30-33
    [58]郑裕峰,王永纲,周忠辉.用于IRFPA测试的高性能数据采集系统[J].数据采集与处理,2008,23(3):362-366
    [59]陈西曲,刘卫华.一种低成本模块化的非致冷红外焦平面性能测试平台[J].武汉工业学院学报,2009,28(1):37-41
    [60] John D. Vincent. Fundamentals of Infrared Detector Operation and Testing[M]. Goleta. AWiley-Interscience Publication1990,47:3-23
    [61] P.W.Kruse. Principles of uncooled infrared focal plane arrays[J]. Semiconductors andSemimetals,1997,47:17-40
    [62] P.W.Kruse. Uncooled infrared focal plane arrays[C]. IEEE International Symposium onApplications of Ferroelectrics, University Park,1994,643-646
    [63] C.M.Hanson. Uncooled IR detector performance limits and barriers[C].Proceedings of SPIE-The International Society for Optical Engineering, Orlando,2000,4028:2-11
    [64] Mather J C.Bolometer noise:nonequilibrium theory [J], Appled Optics,1982,43(6)1125-1129
    [65]刘卫国,金娜.集成非制冷热成像探测阵列[M].北京:国防工业出版社,2004,236-283
    [66] C.D.Motchenbacher. Low Noise Electronic Design[M], Wiley,New York,1973
    [67] F.N.Hooge.1/f noise is no surface effect[M]. Physics Letters A,1969,29:139-140
    [68] F.N.Hooge.1/f noise sources[J].IEEE Trans on Electron Devices,1994,41(11):1926-1935
    [69] F.N.Hooge.On expressions for1/f noise in mobility[J].Physica B,1982,114:391-392
    [70] R.H.M.Clevers.1/f noise and number fluctuation[J]. Journal of Applied Physics,1986,17160:3794-3796
    [71] M.J.Kirton, M.J.Uren. Noise in solid-state microstructures:a new perspective on individualdefects, interface states and low-frequency noise[J].Advances in Physics,1989,38(4):367-468
    [72]吕坚.非制冷红外焦平面读出电路的研究[D].成都:电子科技大学,2009,38-58
    [73]蒋亚东,杨晓瑜,吕坚,王涛.真空封装的非制冷红外焦平面阵列器件[P].中国,发明专利专利号:ZL200610055701.02008,03
    [74] Stanford Research Systems. Revision1.8. MODEL SR850DSP Lock-In Amplifier
    [Specification]. California. Stanford Research Systems.2007
    [75] S.C.H.Wang. Flux modulation conversion factors for infrared detector responsivitymeasurements[J]. APPLIED OPTICS,1992,31(16):2795-2797
    [76] S.Sedky, P. Fiorini, M. Caymax, A, et al. IR bolometers made of polycrystalline silicongermanium [J]. Sensor and Actuators A: Physical,1998,66:193–199
    [77] M. H. Unewisse, S.J.Passmore, K. C. Liddiard, et al. Performance of uncooled semiconductorfilm bolometer infrared detectors [C]. Proceedings of SPIE-The International Society forOptical Engineering, San Diego,1994,2269:43-52
    [78] T. Ichihara, Y. Watabe, Y. Honda, et al. High performance amorphous Si1-xCx:H thermistorbolometer based on micro-machined structure[C]. Proceedings of the1997InternationalConference on Solid-State Sensors and Actuators. Part2, Chicago,1997,2:1253-1256.
    [79] M.Almasri, D.P.Butler, Z.Celik-Butler. Self-supporting uncooled infrared microbolometerswith low thermal mass[J]. Journal of Microelectromechanical Systems,2001,10:469-476
    [80] A.Ahmed, R.N.Tait. Noise behavior of amorphous GexSi1-xOy for microbolometerapplications[J]. Infrared Physics and Technology,2005,46:468-472
    [81] P.W.Kruse. Uncooled Thermal Imaging Arrays, Systems, and Applications[M]. Bellingham,WA: SPIE,2001
    [82] H. Jerominek, T. D. Pope, C. Alain, et al.128128pixel uncooled bolometric FPA for IRdetection and imaging[C]. Proceedings of SPIE-The International Society for OpticalEngineering, San Diego,1998,2426:585-592
    [83] E. Iborra, M. Clement, L. V. Herrero, et al. IR uncooled bolometers based on amorphousGexSi1-xOy on silicon micromachined structures[J]. Journal of MicroelectromechanicalSystems,2002,11(3):322-329
    [84] A. H. Z. Ahmed and R.N.Tait. Fabrication of a self-absorbing, self-supported complementarymetal-oxide-semiconductor compatible micromachined bolometer[J]. Journal of VacuumScience and Technology A: Vacuum, Surfaces and Films,2004,22:842-846
    [85] A. D. Parsons and D. J. Pedder. Thin-film infrared absorber structures for advanced thermaldetectors[J]. J. Vac. Sci. Technol. A, Condens. Matter,1988,6:1686-1689
    [86]国家质量技术监督. GB/T17444-2008.红外焦平面阵列特性参数测试技术规范[S].中华人民共和国,2008
    [87] ADI. AD8606. Precision Low Noise, CMOS Rail-to-Rail, Input/Output Operational Amplifiers
    [Specification]. ADI Data Sheet (REV.F).2007
    [88] ADI. ADN2850. Nonvolatile Memory, Dual1024-Position Programmable Resistors. DataSheet(REV.B)[Specification]. ADI Data Sheet.2002
    [89]王吉龙.基于模糊PID的温度控制系统[J].电子工程师,2008,34(5):77-80
    [90]张华.一种微型高精度PWM温度控制器的设计[J].光学与光电技术,2004,2(2):29-31
    [91]李涛,王圆妹.基于PWM的模糊PID温度控制系统研究[J].自动化技术与应用,2008,27(10):32-34
    [92] ULIS. UL03041384×288LWIR UNCOOLED MICROBOLOMETER DETECTORTECHNICAL SPECIFICATION [Specification], ULIS.2004
    [93] P.M.Narendra, N.A.Foss. Shutterless Fixed Pattern Noise Correction for Infrared Imaging [C].Proceedings of SPIE-The International Society for Optical Engineering, Washington,1981,282:44-51
    [94] A.F.Milton, F.R.Barone, M.R.Kruer. Influence of Nonuniformity on Infrared Focal Plane ArrayPerformance[J]. Optical Engineering,1985,24(5):855-863
    [95] Stanek, Clay; Ewing, Larry; Moore, Doug. Considerations and algorithm development forscene-based nonuniformity correction (NUC) in dynamic infrared projectors [C]. Proceedingsof SPIE-The International Society for Optical Engineering, Orlando,1999,3697379-390
    [96] Olson, E.M.; Murrer, R.L.. Non-uniformity correction of a resistor array infrared sceneprojector [C]. Proceedings of SPIE-The International Society for OpticalEngineering, Orlando,1999,3697403-413
    [97] J.M.Mooney, F.D.Shepherd, W.S.Ewing, et al. Responsivity nonuniformity limitedperformance of infrared staring cameras[J]. Optical Engineering,1989,28(11):1151-116120
    [98] G.D.Boreman. Compensation for Gain Nonuniformity and Nonlinearity in HgCdTe InfraredCharge-Coupled-Device Focal Planes[J]. Optical Engineering,1987,26(10):981-98
    [99] G.V.Poropat. Nonlinear compensation for responsivity nonuniformities in cadmium mercurytelluride focal plane detector arrays; For use in the8to12.mu Spectral Region[J].. OpticalEngineering,1989,28(8):887-896
    [100] D.A.Scribner, K.A.Sarkady, M.R.Kruer, et al. Adaptive nonuniformity correction for IRfocal-plane arrays using neural networks[C], Proceedings of SPIE-The International Societyfor Optical Engineering, San Diego,1991,1541:100-109
    [101] J. Hirsch, C.A.Curcio. The spatial resolution capacity of human foveal retina. VisionResearch [J].1989,29(9):1095-1101.
    [102] Narayanan, Balaji, Hardie, Russell C, et al. Nonuniformity Correction of Infrared ImagingArrays by Analog Techniques [J]. Applied Optics,2005,44(17):3482-3491
    [103] Elouardi,A, Bouaziz,S, A smart sensor-based vision system: Implementation andevaluation[J]. Journal of Physics D: Applied Physics,2006,39(8):1694-1705
    [104] M.A.Massie, J.P.Curzan, C.H.King. Demonstrated Neuromorphic Infrared Hybrid FocalPlane and a Vision of the Future [C]. Proceedings of SPIE-The International Society forOptical Engineering, San Diego,1994,2269:303-315
    [105] Brinkworth,Russell S.A, Shoemaker, Patrick A, et al. Characterization of a neuromorphicmotion detection chip based on insect visual system [C]. ISSNIP2009-Proceedings of20095th International Conference on Intelligent Sensors, Sensor Networks and InformationProcessing, Melbourne,2009,289-294
    [106] W.F.O'Neil. Dither Image Scanner with Compensation for Individual Detector Response andGainCorrection[P]. USA,Patent,1996,Patent Number:5514865
    [107] S.R.Horman, K.C.Hepfer, C.Kenneth,et al. Uniformity Compensation forHigh-Quantum-Efficiency Focal Plane Arraysp [C]. Proceedings of SPIE-The InternationalSociety for Optical Engineering,1996,2744:154-164
    [108] J.Hynecek, R.J.Austin. Digital Nonuniformity Correction for Image Sensors[P]. USA,Patent,1999, Patent Number:6522355B1
    [109] M.Schulz, L.Caldwell. Nonuniformity correction and correctability of infrared focal planearrays[J]. Infrared Physics&Technology,1995,36:763-777
    [110] R.Z.Wang, P.Y.Chen, P.Tsien. An Improved Nonuniformity Correction Algorithm forInfraredFocal Plane Arrays Which is Easy to Implement[J]. Infrared Physics&Technology,1998,39:15-21
    [111]石岩凝视红外成像信息处理系统图像预处理方法与系统软件研究[D]武汉:华中科技大学,2005.46-48
    [112] R.C.Hardie, M.M.Hayat, E.Armstrong, et al. Scene-Based Nonuniformity Correction UsingVideo Sequences and Registration[J]. Applied Optics,2000,39(8):1241-1250
    [113] B.M.Ratliff, M.M.Hayat, R.C.Hardie. An algebraic algorithm for nonuniformity correction infocal-plane arrays[J]. Journal of the Optical Society of America A,2002,19:1737-1747
    [114] T.Sauer, Y.Xu. On multivariate Lagrange interpolation[J]. Math.Comp,1995,64(211):1147-1170
    [115] J.Hynecek, R.J.Austin. Digital Nonuniformity Correction for Image Sensors [P]. USA, PatentNo.6522355B1.1999,
    [116] S.X.Xing, J.J.Zhang, L.J.Sun, et al. Two-point non-uniformity correction based on LMS[C].Proceedings of SPIE-The International Society for Optical Engineering, Beijing,2005,130-136
    [117] B.Zhou, Y.Z.Wang. Y.Y.Ye, et al. Realize multi-point method for real-time correction ofnonuniformity of uncooled IRFPA[C]. Proceedings of SPIE-The International Society forOptical Engineering, Beijing,2005,368-375
    [118] J.X.Zhou, L.P.Wang, B. Liu. Analysis of the cause for the ununiformity of infrared image[J].Infrared and laser engineering,1997,26(3):199-205
    [119] R.Chen, X.Q.Tan. Study on Non-uniformity Correction of Infrared image[J]. Infraredtechnology,2002,24(1):189-193
    [120]周慧鑫,殷世民,刘上乾,等.红外焦平面器件盲元检测及补偿算法[J].光子学报,2004,33(5):598-600
    [121]范心田.非制冷红外焦平面成像系统畸变校正及盲元补偿[D].长春:中国科学院长春光学精密机械与物理研究,2004,20-50
    [122]张小军,赵亦工.红外焦平面非均匀校正的综合处理算法[J].红外技术,2003,25(6):34-40
    [123]冈萨雷斯.数字图像处理[M].电子工业出版社,2001,115-130
    [124] Altera. Cyclone Ⅲ Device Handbook, Volume1[technique surpport], California. Altera.2010
    [125] Altera. Configuration Handbook Volume1[technique surpport], California. Altera.2010
    [126]胡学良,张春,王志华. JTAG技术的发展和应用综述[J].微电子学,2005,35(6):624-628
    [127] Integrated Silicon Solution, Inc. IS61LV51216Data Sheet [Specification], Boston. ISSI.2005
    [128] UNISONIC. Reversible motor driver BA6208/BA6208F [Specification], Taiwan.UNISONIC.2005
    [129] J. X. Zhou, L. P. Wang, B. Liu, Analysis of the cause for the uniformity of infrared image [J],Infrared and laser engineering,26(3),28-331997
    [130] A.Lengwenus, P.Erichsena. MTF measurement of infrared optical systems[C]. Proceedings ofSPIE-The International Society for Optical Engineering, Berlin,2009,7781:123-125
    [131] W.Dong, R.K.Zhou. Analysis on influence of illumination in MTF measurement withininfrared spectral bands[C].2nd International Symposium on Advanced Optical Manufacturingand Testing Technologies: Optical Test and Measurement Technology and Equipment, Xian,2006,6150I:180-200

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700