用户名: 密码: 验证码:
中国农业土壤中铜和镍的生态阈值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用基于中国土壤的铜和镍的毒理学数据,通过大量的理论研究和计算分析,验证了铜和镍的毒性预测模型种间外推的可行性,建立了土壤中铜和镍的两种毒性阈值EC50和EC10的量化关系。基于物种敏感性分布法并结合铜和镍的毒性预测模型,利用BurⅢ分布拟合了中国土壤中铜和镍的物种敏感性分布曲线,并利用铜和镍的物种敏感性分布曲线推导了能够保护95%物种的铜以及镍的HC5浓度值,利用淋洗—老化因子对其校正获得老化HC5值,即铜、以及镍的生态阈值。探讨了土壤性质对铜和镍的生态阈值的影响并建立了基于土壤性质的铜和镍的生态阈值预测模型。同时提出了基于外源添加铜、以及镍的预测无效应总浓度(PNECtotal)的量化表达,对我国现行的铜和镍的土壤环境质量标准提出修订建议。
Theoretical research and computational analysis were carried out based on toxicity data for copper and nickel from Chinese soil. The results provided quantitative evidence to support cross-species extrapolation of copper and nickel toxicity prediction models and obtained the quantitative equations of EC10and EC50for copper and nickel. The species sensitivity distribution (SSD) curves for copper and nickel were fitted with Bur Ⅲ based on toxicity data. Also the toxicity prediction models for copper and nickel were utilized to normalize toxicity data. The5%hazardous concentration for copper and nickel were derived from the SSD curves and the agedHC5, i.e. the ecological thresholds for copper and nickel in soil were obtained by correcting the HC5values with leaching-aging factors. The effects of soil properties on the magnitude of agedHC5values for copper and nickel were studied and the predictive models for agedHC5based on soil properties were developed. The equations for calculating predicted no effect concentration values based on total copper and nickel were established and the recommendation for updating the Chinese current soil environmental quality standards were proposed.
引文
1.王友保,刘登义.Cu、As及其复合污染对小麦生理生态指标的影响[J].应用生态学报,2001,12(5):773-776.
    2.林义章,徐磊.铜污染对高等植物的生理毒害作用研究[J].中国生态农业学报,2007,15(1):201-204.
    3. Leep N W. Copper. Effect of heavy metal pollution on plants. Vol Ⅰ:Effects of trace metal on plant function [M]. London and New Jersey:Applied Science Publishers,1981,111-143.
    4.蒋家焕,卢礼斌.重金属污染对水稻生长发育和稻米品质影响研究现状[J].福建稻米科技,2003,20(4):35-37.
    5. Ma Y B, Hooda P S. Chromium, cobalt and nickel. In Trace Elements in Soils, Hooda P S Ed, Wiley-Blackwell:New York,2010:461-480.
    6. Still E R Williams R J P. Potential methods for selective accumulation of nickel (Ⅱ) ions by plants [J]. Journal of Inorganic Biochemistry,1980,13(1):35-40.
    7. Lee S C, Cheng H L, Chang J T.Allozyme variation in the large scale Mullet Liza macrolepis (Perciformes:Mugilidae) from coastal water of western Taiwan [J]. Zoo Logical Studies,1996, (39):46-57.
    8. Sharma C P. Plant Micronutrients:Roles, Responses, and Amelioration of Deficiencies [M]. Science Publishers, Enfield, NH,2006.
    9.孔繁翔.环境生物学.高等教育出版社,北京,2002.
    10. Weng L P, Lexmond T M, Wolthoorn A, et al. Phytotoxicity and bioavailability of nickel: chemical speciation and bioaccumulation [J]. Environmental Toxicology and Chemistry,2003, 22:2180-2187.
    11. Rooney C P, Zhao F J, McGrath S P. Soil factors controlling the expression of copper toxicity to plants in a wide range of European soils [J]. Environmental Toxicology and Chemistry, 2006,25:726-732.
    12. Rooney C P, Zhao F J, McGrath S P. Phytotoxicity of nickel in a range of European soils: influence of soil properties, Ni solubility and speciation [J]. Environmental Pollution,2007, 145:596-605.
    13. Warne M S, Heemsbergen D A, Stevens D, et al. Modeling the toxicity of copper and zinc salts to wheat in 14 soils [J]. Environmental Toxicology and Chemistry,2008,27:786-792.
    14. Li X F, Sun J W, Qiao M, et al. Copper toxicity thresholds in Chinese soils based on substrate-induced nitrification assay [J]. Environmental Toxicology and Chemistry,2010,29: 294-300.
    15. Li B, Ma Y B, McLaughlin, M J, et al. Influences of soil properties and leaching on copper toxicity to barley root elongation. Environmental Toxicology and Chemistry,2010,29(4): 835-842.
    16. Li B, Zhang H T, Ma Y B, et al. Influences of soil properties and leaching on nickel toxicity to barley root elongation [J]. Ecotoxicology Environmental and Safety,2010,74(3):459-466.
    17. Alexander M. Aging, bioavailability, and overestimation of risk from environmental pollutants [J].Environmental Science and Technology,2000,34(20):4259-4265.
    18. Ma Y B, Lombi E, Oliver I W, et al. Long-term aging of copper added to soils [J]. Environmental Science and Technology,2006,40(20):6310-6317.
    19. Ma Y B, Lombi E, Oliver I W, et al. Short-term natural attenuation of copper in soils:effects of time, temperature, and soil characteristics [J]. Environmental Toxicology and Chemistry, 2006,25(3):652-658.
    20. Oorts K, Ghesquiere U, Smolders E. Leaching and aging decrease nickel toxicity to soil microbial processes in soils freshly spiked with nickel chloride [J]. Environmental Toxicology and Chemistry,2007,26(6):1130-1138.
    21.周泽义.中国蔬菜重金属污染及控制[J].资源生态环境网络研究动态,1999,10(3):21-27.
    22.孙波,周生路,赵其国.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学报,2003,22(2):248-251.
    23.姜理英,杨肖娥,叶海波,等.炼铜厂对周边土壤和作物体内重金属含量及其空间分布的影响[J].浙江大学学报(农业与生命科学版),2001,28:689-693.
    24.卢树昌,高悦.天津市郊区果园土壤重金属铜积累状况调查分析[J].天津农业科学,2009,15:41-44.
    25.郑喜坤,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    26. Luo L, Ma Y B, Zhang S Z, et al. An inventory of trace element inputs to agricultural soils in China [J]. Journal of Environmental Management,2009,90(8):2524-2530.
    27.谷洁,高华,李鸣雷,等.养殖业废弃物对环境的污染及肥料化资源利用[J].西北农业学报,2004,13(1):132-135.
    28.刘荣乐,李书田,王秀斌,等.我国商品有机肥料和有机废弃物中重金属的含量状况与分析[J].农业环境科学学报,2005,24(2):392-397.
    29.张树清,张夫道,刘秀梅,等.规模化养殖畜禽粪主要有害成分测定分析研究[J].植物营养与肥料学报,2005,11(6):822-829.
    30.廖晓勇,陈同斌,武斌,等.典型矿业城市的土壤重金属分布特征与复合污染评价—以“镍都”金昌市为例[J].地理研究,2006,25(5):843-851.
    31.杨国义,罗薇,张天彬,等.珠江三角洲典型区域农业土壤中镍的含量分布特征[J].生态环境,2007,16(3):818-821.
    32. USEPA (United States Environmental Protect ion Agency). Soil Screening Guidance:User's Guide Office of Solid Waste and Emergency Response, Washington, DC,1996.
    33. USEPA (United States Environmental Protection Agency). Guidance for Developing Ecological Soil Screening Levels. Office of Solid Waste and Emergency Response, Washington, DC,2003.
    34. VROM (Ministry of Housing, Spatial Planning and Environment). Annexes circular on target values and intervention values for soil remediation[R]. The Hague,2000.
    35. EA (Environment Agency). The contaminated land exposure assessment (CLEA) model: Technical basis and algorithms, Department for Environment, food and rural affairs[S]. The Environmental Agency, Publication CLR 10, ISBN 1-857-05749-X,2002.
    36. EA (Environment Agency). Soil Guideline Values. http://www.environment-agency.gov.uk/research/planning,2011.
    37. CCME (Canadian Council of Ministers of the Environment). A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines [S]. Winnipeg,1996.
    38. CCME (Canadian Council of Ministers of the Environment). A Protocol for the Derivation of Environmental and Human Health Soil Quality Guidelines [S]. Winnipeg,2006.
    39.周启星,罗义,祝凌燕.环境基准值的科学研究与我国环境标准的修订[J].农业环境科学学报,2007,26(1):1-5.
    40.张红振,骆永明,夏家淇,等.基于风险的土壤环境质量标准国际比较与启示[J].环境科学,2011,32(3):795-802.
    41.张红振.土壤中重金属的自由态离子浓度测定、作物富集预测和环境基准研究[D].南京:中国科学院南京土壤研究所,2010,12-13.
    42. CCME (Canadian Council of Ministers of the Environment). Canadian Environmental Quality Guidelines Summary Table. http://st~ts.ccme.ca/?chems=all&chapters=all,2011.
    43. Stephen Johnson. Guidelines for Screening Contaminated Soils. http://sanaterre.com/guidelines/index.html,2011.
    44. Ministry of the Environment, Government of Japan. Environmental Quality Standards for Soil Pollution. http://www.env.go.jp/en/water/soil/sp.html,2011.
    45. USEPA (United States Environmental Protection Agency). Ecological soil screening levels. http://www.epa.gov/ecotox/ecossl,2011.
    46.中国环境保护局,国家技术监督局.GB15618-1995.土壤环境质量标准[S].北京:国家环境保护局,1995.
    47. Van Tilborg W J M A. Further look at zinc refuted. Rozendaal[M]. The Netherlands:VTBC. 1996,45.
    48. Gezondheidsraad. Ecotoxicologische risico-evaluatie van stoffen[S]. The Hague, The Netherlands. Publication 1988/28,1988.
    49. Slijkerman D M E, Van Gestel C A M, Van Stralen N M. Conceptueel kader voor de afleiding van ecotoxicologische risicogrenzen voor essentiele metalen. Amsterdam, The Netherlands: Instituut voor Ecologische Wetenschappen, Afdeling Dieroecologie, Report D00020,2000.
    50. USEPA (United States Environmental Protection Agency). Framework for Metals Risk Assessment. EPA 120/R-07/001. http://www.epa.gov/osa/metalsframework/pdfs/metals~risk~assessment~5597 final.pdf,2007.
    51.张红振,骆永明,章海波,等.基于人体血铅指标的区域土壤环境铅基准值[C].第四届国家环境与健康论坛论文集,2009,328-338.
    52. McLaughlin M J, Parker D R, Clarke J M. Metals and micronutrients~Food safety issues[J]. Field Crops Research,1999,60:143-163.
    53.吴燕玉,王新,梁仁禄,等Cd, Pb, Cu, Zn, As复合污染在农田生态系统的迁移动态研究[J].环境科学学报,1998,18(4):407-414.
    54.王新,吴燕玉.不同作物对重金属复合污染物吸收特性的研究[J].农业环境保护,1998, 17(5):193-196.
    55. Sauve S, Hendershot W, Allen H E. Solid-solution partitioning of metals in contaminated soils:Dependence on pH, total metal burden, and organic matter (TOC) [J]. Environmental Science and Technology,2000,34(7):1125-1131.
    56. Janssen R P T, Posthuma L, Baerselman R, et al. Equilibrium partitioning of heavy metals in Dutch field soils I. Relationship between metal partition coefficients and soil characteristics [J]. Environmental Toxicology and Chemistry,1997,16(12):2479-2488.
    57. Brus D J, DeGruijter J J, Walvoort D J J, et al. Mapping the Probability of Exceeding Critical Thresholds for Cadmium Concentrations in Soils in the Netherlands [J]. Journal of Environment al Quality,2002,31:1875-1884.
    58.张红振,骆永明,章海波,等.土壤环境质量指导值与标准研究V:镉在土壤-作物系统中的富集规律与农产品质量安全[J].土壤学报,2010,47(4):628-638.
    59. Lyndall J, Fuchsman P, Bock M, et al. Probabilistic risk evaluation for triclosan in surface water, sediments, and aquatic biota tissues [J]. Integrated Environmental Assessment and Management,2010,6(3):419-440.
    60. Chaperon S, Sauve S. Toxicity interactions of cadium, copper, and lead on soil urease and dehydrogenase activity in relation to chemical speciation [J]. Ecotoxicology and Environmental Safety,2008,70:1-9.
    61. Stephenson G L, Solomon K R, Hale B, et al. In Environmental Toxicology and Risk Assessment:modeling and risk assessment [M]//Dwyer F J, Doane T R, Hinman M L. American Society for Testing and Materials [C]. Philadelphia, PA,1997,474-489.
    62. OECD (Organization for Economic Co~operation and Development). Guideline for the Testing of Chemicals:Terrestrial Plant Test, No.208 and No.207 (draft documents) [S]. Paris, France,2003.
    63.李波,马义兵,刘继芳,等.西红柿铜毒害的土壤主控因子和预测模型研究[J].土壤学报,2010,47(4):665-673.
    64. Thakali S, Allen H E, Di Toro D M, et al. A terrestrial biotic ligand model 1 development and application to Cu and Ni toxicity to barley root elongation in soils [J]. Environmental Science and Technology,2006a,40:7085-7093.
    65. Thakali S, Allen H E, Di Toro D M, et al. A terrestrial biotic ligand model 2 Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil[J]. Environmental Science and Technology,2006b,40:7094-7100.
    66. Lock K, De Schamphelaere K A C, Becaus S, et al. Development and validation of an acute biotic ligand model (BLM) predicting cobalt toxicity in soil to the potworm Enchytraeus albidus. Soil Biology and Biochemistry,2006,38:1924-1932.
    67.罗小三,周东美,李连祯,等.水、沉积物和土壤中重金属生物有效性/毒性的生物配体模型研究进展[J].土壤学报,2008,45(3):535-543.
    68.李波,马义兵,刘继芳,等.西红柿铜毒害的土壤主控因子和预测模型研究[J].土壤学报,2010,47(4):665-673.
    69.李波.外源重金属铜、镍的植物毒害及预测模型研究[D].北京:中国农业科学院,2010, 25-42.
    70. Newman M C, Ownby D R, Mezin L C A. Applying species-sensitivity distributions in ecological risk assessment:Assumptions of distribution type and sufficient numbers of species [J].Environmental Toxicology and Chemistry,2000,19(2):508-515.
    71. Selck H, Riemann B, Christoffersen K, et al. Comparing Sensitivity of Ecotoxicological Effect Endpoints between Laboratory and Field [J]. Ecotoxicology and Environmental Safety,2002,52:97-112.
    72. Kooijman S A L M. A safety factor for LC50 values allowing for differences in sensitivity among species [J]. Water Research,1987,21:269-276.
    73. Posthuma L, Traas T P, Suter G W. General introduction to species sensitivity distributions [M] //Posthuma L, Traas T P, Suter G W. Species Sensitivity Distributions in Ecotoxicology [C]. Boca Raton, FL, USA:Lewis,2002,3-9.
    74. Van Straalen N M. Theory of ecological risk assessment based on species sensitivity distributions [M]//Posthuma L, Traas T P, Suter G W. Species Sensitivity Distributions in Ecotoxicology [C]. Boca Raton, FL, USA:Lewis.2002,37-48.
    75. Shao Q. Estimation for hazardous concentrations based on NOEC toxicity data:An alternative approach [J]. Environmetrics,2000,11:583-595.
    76.金小伟,雷炳莉,许宜平,等.水生态基准方法学概述及建立我国水生态基准的探讨[J].生态毒理学报,2009,4(5):609-616.
    77.雷炳莉,黄圣彪,王子健.生态风险评价理论和方法[J].化学进展,2009,21(2/3):350-358.
    78. Jan A, Robert D, Ursula K, et al. Environmental risk assessment of existing chemicals [J] Environmental science and pollution research,1994,1(2):117-123.
    79. Jeroen P, Christa C, Frank S. Comparison of soil clean~up standards for trace elements between countries:why do they differ? [J]. Soils Sediments,2006,6(3):173-181.
    80.周启星,安婧,何康信.我国土壤环境基准研究与展望[J].农业环境科学学报,2011,30(1):1-6.
    81.王绛辉,陈凯,马义兵,等.土壤环境质量标准的有关问题探讨[J].山东农业科学,2007,5:131-134.
    82.温晓倩,梁成华,姜彬慧,等.我国土壤环境质量标准存在问题及修订建议[J].广东农业科学,2010,(3):89-94.
    83.吕晓南,孟赐福,麻万诸,等.土壤质量及其演变[J].浙江农业学报,2004,16(2):105-109.
    84.王国庆,骆永明,宋静,等.土壤环境质量指导值与标准研究11-国际动态及中国的修订考虑[J].土壤学报,2005,42(4):666-673.
    85.周国华,秦绪文,董岩翔.土壤环境质量标准的制定原则与方法[J].地质通报,2005,24(8):721-727.
    86.中国环境监测总站.中国土壤元素背景值[M].北京,中国环境出版社,1990,86-87.
    87.袁建新,王云.我国《土壤环境质量标准》现存问题与建议[J].中国环境监测,2000,16(5):41-44.
    88. Giller K E, Witter E, McGrath S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soil:a review [J]. Soil Biology and Biochemistry,1998,30: 1389-1414.
    89. Lofts S, Spurgeon D J, Svendsen C, et al. Deriving soil critical limits for Cu, Zn, Cd, and Pb: A method based on free ion concentrations [J]. Environmental Science and Technology,2004, 38:3623-3631.
    90.万洪富,周建民,陈能场,等.我国酸性土壤地区土壤环境质量标准实践中的修改建议—以铅、镍和镉的标准研究为例[J].土壤,2009,41(2):192-195.
    91.夏家淇,骆永明.关于土壤污染的概念及其三类评价指标体系的探讨[J].生态与农村环境学报,2006,22(1):87-90.
    92.章海波,骆永明,李志博,等.土壤环境质量指导值与标准研究Ⅲ-污染土壤的生态风险评估[J].土壤学报,2007,44(2):338-349.
    93. Carlon C (Ed.). Derivation methods of soil screening values in Europe:A review and evaluation of national procedures towards harmonization [M]. European Commission, Joint Research Centre, Ispra, EUR 22805-EN,2007,36.
    94. Chen M F. Review of risk based guidance and modeling approaches in the UK and USA [M]. Proceeding of the 3rd International Conference on Soil Pollution and Remediation.2008, 198-208.
    95.赵其国,骆永明,滕应.中国土壤保护宏观战略思考[J].土壤学报,2009,46(6):1140-1145.
    96.骆永明.污染土壤修复技术研究现状与趋势[J].化学进展,2009,21(2P3):558-565.
    97.刘晶,滕彦国,崔艳芳,等.土壤重金属污染生态风险评价方法综述[J].环境监测管理与技术,2007,19(3):6-11.
    98.方晰,金文芬,李开志,等.长沙市韶山路沿线不同绿地土壤重金属含量及其潜在生态风险[J].水土保持学报,2010,24(3):64-70.
    99.何佳,郑一新,丁宏伟,等.滇池湖滨蔬菜种植区土壤污染物生态风险评价[J].环境科学导刊,2010,29(2):75-78.
    100.李丽和,曹云者,李秀金,等.典型石油化工污染场地多环芳烃土壤指导值的获取与风险评价[J].环境科学研究,2007,20(1):30-35.
    101.韦东普.应用发光细菌法测定我国土壤中铜、镍毒性的研究[D].北京:中国农业科学院,2010,75-76.
    102.仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策[J].农业环境保护,2001,20(4):270-272.
    103. Ma Y B, McLaughlin M J, Zhu Y G, et al. Final Report for Metals in Asia [R]. Beijing,2009.
    104. Struijs J, Van de Meent D, Peijnenburg W J G M, et al. Added risk approach to derive maximum permissible concentrations for heavy metals:How to take into account the natural background levels [J]. Ecotoxicology and Environmental Safety,1997,37:112-118.
    105. Suter II G W. Applicability of indicator monitoring to ecological risk assessment [J]. Ecological Indicators,2001,1(2):101-112.
    106. Ginocchio R, Rodriguez P H, Badilla-ohlbaum R, et al. Effect of soil copper content and pH on copper uptake of selected vegetables grown under controlled conditions [J]. Environmental Toxicology and Chemistry,2002,21:1736-1744.
    107. Smolders E, Buekers J, Oliver I, et al. Soil properties affecting toxicity of zinc to soil microbial properties in laboratory-spiked and field-contaminated soils [J]. Environmental Toxicology and Chemistry,2004,23:2633-2640.
    108. Wheeler J R, Grist E P M, Leung K M Y, et al. Species sensitivity distributions:data and model choice [J]. Marine Pollution Bulletin,2002,45:192-202.
    109. Van Straalen N M. Threshold models for species sensitivity distributions applied to aquatic risk assessment for zinc [J]. Environmental Toxicology and Pharmacology,2002,11(3-4): 167-172.
    110. Maltby L, Brock T C M, Van den Brink P J. Fungicide risk assessment for aquatic ecosystems: Importance of inter specific variation, toxic mode of action, and exposure regime [J]. Environmental Science&Technology,2009,43(19):7556-7563.
    111. Hose G C, Van den Brink P J. Confirming the species-sensitivity distribution concept for Endosulfan using laboratory, mescom, and field data [J]. Archives of Environmental Contamination and Toxicology,2004,47:511-520.
    112. Guerit I, Bocquene G, James A, et al. Environmental risk assessment:a critical approach of the European TGD in an in situ application [J]. Ecotoxicology and Environmental Safety, 2008,71(1):291-300.
    113. Yan Z G, Xie D L, Xu M, et al. The report of Bioavailability Assessment of Nickel in Typical Chinese Soils:Earthworm Toxicity Testing [R]. Beijing,2011.
    114.张洪涛,李波,刘继芳,等.西红柿镍毒害的土壤主控因子和预测模型研究[J].生态毒理学报,2009,4(4):569-576.
    115. Duboudin, Ciffroy P, Magaud H. Effects of data manipulation and statistical methods on species sensitivity distributions [J]. Envrionmental Toxicology and Chemistry,2004,23(2): 489-499.
    116. Wang B, Yu G, Huang J, et al. Development of species sensitivity distributions and estimation of HC5 of organochlorine pesticides with five statistical approaches [J]. Ecotoxicology,2008,17(8):716-724.
    117.王印.基于物种敏感性分布(SsD)的生态风险评价方法及其应用研究[硕士论文].北京,北京大学,2009.
    118. Smolders E, Oorts K, Van Sprang P, et al. Toxicity of trace metals in soil as affected by soil type and aging after contamination:calibrated bioavailability models to set ecological soil standards [J]. Environmental Toxicology and Chemistry,2009,28,1633-1642.
    119. Aldenberg T, Slob W. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data [J]. Ecotoxicology and Environmental Safety,1993,25(1): 48-63.
    120. EU (European Union). Draft Risk Assessment Report for Nickel and Nickel Compounds. Section 3.1:Terrestrial Effects Assessment [R]. Draft of May 11, EU, Brussels,2006.
    121. Schlekat C E, Genderen E V, Schamphelaere K A C D, et al. Cross-species extrapolation of chronic nickel Biotic Ligand Models [J]. Science of Total Environment,2010,408(24): 6148-6157.
    122. Sprang P A V, Verdonck F A M, Assche F V. Environmental risk assessment of zinc in European freshwaters:A critical appraisal [J]. Science of the Total Environment,2009, 407(20):5373-5391.
    123.刘景春,李裕红,晋宏.铜污染对辣椒产量、累积及叶片膜保护酶活性的影响[J].福建农业学报,2003,18(4):254-257.
    124.杨定清,傅绍清,青长乐.镍的作物效应及临界值研究[J].四川环境,1994,13(1):19-23.
    125.涂从.紫色土中镍植物毒性的研究[J].中国环境科学,1996,16(6):456-460.
    126.尹升华,杨定清.土壤中镍对蔬菜生长的影响及镍的临界值研究[J].农业环境保护,1992,11(2):88-90.
    127.张艳丽.Cu、Pb胁迫对小麦种子萌发及幼苗生长的影响[硕士学位论文].成都,四川师范大学,2008.
    128.李惠英,陈素英,王豁.铜锌对土壤—植物系统的生态效应及临界含量[J].农村生态环境(学报),1994,10(2):22-24.
    129.徐明岗,纳明亮,张建新,等.红壤中Cu、Zn、Pb污染对蔬菜根伸长的抑制效应[J].中国环境科学,2008,28(2):153-157.
    130.张建新,纳明亮,徐明岗.土壤Cu Zn Pb污染对蔬菜根伸长的抑制及毒性效应[J].农业环境科学学报2007,26(3):945-949.
    131.王小庆.韦东普,黄占斌,等.物种敏感性分布在土壤中镍生态阈值建立中的应用研究[J].农业环境科学学报,2012,31(1):92-99.
    132. Qin R J, Chen F X. Amelioration of aluminum toxicity in red soil through use of barnyard and green manure [J]. Communications in Soil Science and Plant Analysis,2005, 36(13-14):1875-1889
    133. Li B, Liu Y, Ma Y B, et al. Comparison of phytotoxicity of copper and nickel in soils with different Chinese plant species [J]. Environmental Toxicology and Chemistry (in review), 2012.
    134. Radix P, Leonard M, Papantoniou C, et al. Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals [J]. Ecotoxicology and Environmental Safety,2000,47(2):186-194.
    135. Organization for Economic Cooperation and Development. Report of the OECD Workshop on Statistical Analysis of Aquatic Toxicity Data, OECD Environmental Health and Safety Publications Series on Testing and Assessment:ENV/MV/CHEM (98) 18,1998, Paris.
    136. Bos R, Huijbregts M, Peijnenburg W. Soil type-specific environmental quality standards for zinc in Dutch soil [J]. Integrated Environmental Assessment and Management,2005,1(3): 252-258.
    137. Christensen E R, Nybolm N. Ecotoxicological assays with algae:Weibull dose-response curves [J]. Environmental Science and Technology,1985,18:713-718.
    138. Haanstra L, Doelman P, Voshaar J H O. The use of sigmoidal dose response curves in soil ecotoxicological research [J]. Plant Soil,1985,84(2):293-297.
    139. Doelman P, Haanstra L. Short-and long-term effects of heavy metals on phosphatase activity in soils:An ecological dose response model approach [J]. Biology and Fertility of Soils,1989, 8(3):235-241.
    140. Christensen E R, Kusk K O, Nyholm N. Dose-response regression for algal growth and similar continuous endpoints:calculation of effective concentrations [J]. Environmental Toxicology and Chemistry,2009,28(4):826-835.
    141. Michel A, Johnson R D, Duke S O, et al. Dose-response relationships between herbicides with different modes of action and growth of Lemna paucicostata-An improved ecotoxicological method [J]. Environmental Toxicology and Chemistry,2004,2(4): 1074-1079.
    142. Oorts K, Bronckaers H, Smolders E. Discrepancy of the microbial response to elevated Cu between freshly spiked and long-term contaminated soils. [J]. Environmental Toxicology and Chemistry,2006,25:845-853.
    143. Zarcinas B A, McLaughlin M J, Smart M K. The effect of acid digestion technique on the performance of nebulisation systems used in inductively coupled plasma spectrometry. Commun. Soil Sci. Plant Anal.1996,27:1331-1354.
    144.张彦雄,李丹,张佐玉,等.两种土壤阳离子交换量测定方法的比较[J].贵州林业科技,2010,38(2):46-50.
    145. Lock k, Janssen C. Influence of aging on copper bioavailability in soils [J]. Environmental Toxicology and Chemistry,2003,22 (5):1162-1166.
    146. ISO (International Organisation for Standardisation) 2004. Working draft, Water Quality Guidance document on the statistical analysis of ecotoxicity data, March 2004. ISO/CD20281.
    147. International Council on Mining and Metals 2007. Metals Environmental Risk Assessment Guidance, Fact sheet 3:Effects Assessment-Data compilation, selection and derivation of PNEC values for the risk assessment of different environmental compartments (water, STP, soil,sediment). http://www.icmm.com/page/1185/metals-environmental-risk-assessment-guidance-merag
    148. Doelman P. and Haanstra L. Short- and long-term effects of heavy metals on phosphatase activity in soils:An ecological dose response model approach [J]. Biology and Fertility of Soils,1989,8,235-241.
    149. CSIRO (Commonwealth Scientific and Industrial Research Organization) 2008. A flexible approach to species protection. http://www.cmis.csiro.au/envir/burrlioz/.
    150.郭平.长春市土壤重金属污染机理与防治对策研究[D].吉林大学,长春,2005.
    151.路克国.生物有机肥的土壤学效应及其对红富士苹果根系吸收镉、铜的影响[硕士学位论文].山东农业大学,泰安,2003.
    152.丁园,宗良纲,舒红英,等.土壤铜镉的植物可利用性评估模型[J].环境科学与技术,2011,34(2):188-192.
    153.张永娥,王瑞良,靳绍菊.土壤微量元素含量及其影响因素的研究[J].土壤肥料,2005(5):25-37.
    154. Conesa H M, Robinson B H, Schulin R, et al. Growth of Lygeum spartum in acid mine tailings:response of plants developed from seedlings, rhizomes and at field conditions [J]. Environmental Pollution,2007,145(3):700-707.
    155. Deng H, Yea Z H, Wong M H. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China [J]. Environmental Pollution,2004,132(1):29-40.
    156. Ju X T, Kou C L, Christie P, et al. Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain[J]. Environmental Pollution,2007,145(2):497-506.
    157.钟晓兰,周生路,黄明丽,等.土壤重金属的形态分布特征及其影响因素[J].生态环境学报,2009,18(4):1266-1273.
    158.郝汉舟,靳孟贵,李瑞敏,等.耕地十壤铜、镉、锌形态及生物有效性研究[J].生态环境学报,2010,19(1):92-96.
    159.中国环境监测总站.中国土壤元素背景值[M].中国环境科学出版社,北京,1990.
    160. McLaughlin M J, Lofts S, Warne M S J, et al. Derivation of ecologically based soil standards for trace elements [M]. In:Merrington G, Schoeters Ⅰ (eds) Soil Quality Standards for Trace Elements [C]. CRC Press, Boca Raton, Florida,2011,7-80.
    161. Hamon R E, McLaughlin M J, Gilkes R J. et al. Geochemical indices allow estimation of heavy metal background concentrations in soils [J]. Global Biogeochemical Cycles,2004,18, 1-6.
    162. Zhao F J, McGrath S P, Merrington G. Estimates of ambient background concentrations of trace metals in soils for risk assessment [J]. Environmental Pollution,2007,148,221-229.
    163.李玉浸,高怀友.中国主要农业土壤污染元素背景值图集[M].天津教育出版社,天津,2006.
    164.扶惠华,王煌,田廷亮.镍在植物生命活动中的作用.植物生理学通讯,1996,32(1):45-49.
    165. Ma Y B, Lombi E, McLaughlin M J, et al. Aging of nickel added to soils predicted by soil pH and time (to be submitted to Environ. Sci. Technol.).
    166. Li X F, Sun J W, Huang Y Z, et al. Copper toxicity thresholds in Chinese soils based on substrate-induced nitrification assay [J]. Environmental Toxicology and Chemistry,2010,29, (2):294-300.
    167. University of Leuven. Ni PERA research project on the "development of a predictive model of bioavailability and toxicity of Nickel in soils:microbial toxicity"[R]. Belgium,2005.
    168. Fendorf S, LaForce M J, Li G. Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead [J]. Journal of Environmental Quality,2004,33(6):2049-2055.
    169. Dan T, Hale B, Johnson D, et al. Toxicity thresholds for oat (Avena sativa L.) grown in Ni-impacted agricultural soils near Port Colborne, Ontario, Canada [J]. Canadian Journal of Soil Science,2008,88(3):389-398.
    170.叶云山.铜对蔬菜的毒害效应及土壤铜临界值研究[硕士学位论文].福建农林大学,福州,2009.
    171.孙权.粮-菜轮作系统铜污染的作物和十壤微生物生态效应及诊断指标[D].浙江大学, 杭州,2008.
    172.王卫红,吴刚,游植,等.赤红壤施用Cu、Zn对菜心生长和吸收Cu/Zn的影响[J].华南农业大学学报,1996,18(2):66-71.
    173.袁霞.铜对小白菜生长和保护酶活性的影响[硕士学位论文].西北农林科技大学,杨凌,2008.
    174.黄永杰,杨集辉,杨红飞,等.铜胁迫对水花生生长和土壤酶活性的影[J].土壤学报,2009,46(3):494-500.
    175.戴灵鹏,柯文山,陈建军,等.重金属铜对红菜苔(Brassica campestris L. var. purpurea Baileysh)的生态毒理效应[J].湖北大学学报(自然科学版),2004,26(2):160-163.
    176.依艳丽,刘珊珊,张大庚,等.棕壤中铜对茄子产量及果实中铜积累量的影响[J].北方园艺,2010(5):47-49.
    177.李丹,袁涛,郭广勇,等.我国不同土壤铜的生物可利用性及影响因素[J].环境科学与技术,2007,30(8):6-9.
    178.康立娟,谢忠雷.镍对玉米和水稻污染效应及累积规律的研究[J].农业环境科学学报,2008,27(6):2315-2318.
    179.马建军,于凤鸣,朱京涛,等.潮土施镍对小白菜的生物效应及其临界值研究[J].安全与环境学报,2006,6(3):64-67.
    180.马建军,朱京涛,于凤鸣,等.褐土施Ni对小白菜的生物效应及临界值的研究[J].生态与农村环境学报,2006,22(1):75-79.
    181.马建军,丁凤鸣,朱京涛,等.栗钙土施镍对小白菜的生物效应及其临界值[J].河北农业大学学报,2007,30(1):8-12.
    182.马建军,朱京涛,张淑侠,等.棕壤小白菜施镍生物效应及临界值[J].土壤,2006,38(4):494-498.
    183.马建军.土壤镍污染对小麦幼苗生长及生理生化指标的影响[J].河北职业技术师范学院学报,2000,14(3):17-20.
    184.罗丹,胡欣欣,郑海锋,等.镍对蔬菜毒害临界值的研究[J].生态环境学报,2010,19(3):584-589.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700