用户名: 密码: 验证码:
崩岗侵蚀区先锋植物类芦对环境胁迫的生理生态学响应机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类芦是南方崩岗侵蚀区优良的水土保持草种,能快速覆盖裸露山体,成为优势种群。它不仅能在贫瘠和干旱的恶劣环境下生存,而且能形成强大的根网,固土护坡效果极为显著。类芦能在养分贫瘠和干旱的立地上表现出旺盛生命力,是长期适应恶劣生存环境的结果,是长期进化过程中形成的特殊适应性,可能存在着独特的觅寻环境养分和水分机制,有着特殊的生态学意义,但目前国内对类芦适应贫瘠养分和干旱环境的内在机制还了解很少。
     有鉴于此,本文根据胁迫植物学的原理和方法,以南方崩岗侵蚀区广泛分布的类芦为研究对象,利用自主设计的环境养分和水分胁迫模拟装置,通过不同的养分和水分胁迫试验,研究养分和水分胁迫条件下类芦的形态学和生理学特征变化,分析类芦在不同环境胁迫条件下形态学和生理学特征的差异,探讨类芦对环境土壤养分和水分的吸收利用策略,挖掘类芦这种特殊生物学特性的生态学适应意义,为揭示类芦适应贫瘠和干旱崩岗侵蚀区土壤的内在机制提供科学依据。主要研究结果如下:
     (1)干旱胁迫对类芦地上部分生长有较大影响。干旱胁迫初期不同干旱处理对类芦分蘖和叶片数量影响较大。与充足供水处理相比,中度和轻度干旱胁迫处理类芦分蘖和叶片数量明显较多(p<0.05),但株高生长能力明显减弱。在重度干旱胁迫条件下类芦叶片长度生长明显受阻,但叶片宽度生长较快。随干旱胁迫时间的延长,类芦株高、分蘖能力、叶片数量及最大叶宽生长没有受到明显抑制,但叶片的伸长能力受阻。
     (2)干旱胁迫对类芦根系有较大影响,不同处理类芦根系总长度、表面积、平均直径、根系生物量存在明显差异。随干旱胁迫程度的增加,根体积、根平均直径减小;而类芦根系总长度、根表面积、根系生物量、根冠比均比充足供水处理大;在中度干旱胁迫条件下类芦的根系长度、根表面积、根系生物量、地上部生物量、根冠比最大。类芦根系在环境胁迫条件下增强延伸能力、扩大与土壤接触面积可能是其对干旱逆境的形态学响应机制之一。(3)干旱胁迫对类芦光合特性有较大影响。在中度和轻度干旱胁迫条件下类芦叶绿素含量增加,叶绿素a/b比值下降,叶绿素荧光参数F0、Fm、Fv提高,Fv/Fm、Fv/F0下降。类芦叶片的胞间CO2浓度随干旱程度加重而逐渐增加,表现为上午缓慢上升、下午快速上升,16:00达到最大值。净光合速率、气孔导度、蒸腾速率日变化均表现为“单峰型”,为先升后降,12:00达到高峰,日均值随干旱程度加重而逐渐下降。在中度和轻度干旱胁迫下类芦WUE提高,重度干旱处理WUE稍有下降,说明类芦具有较强的耐干旱能力。
     (4)不同干旱胁迫处理类芦叶片的生理学指标存在明显差异。干旱胁迫对类芦叶片保护酶活性影响较大,供水充足处理类芦叶片的POD、SOD和CAT活性明显高于轻度胁迫、中度胁迫和重度胁迫处理。从叶片膜系统来看,干旱胁迫越严重,类芦叶片的MDA含量越高,而当水分供应充足时,其MDA含量同样呈升高趋势;叶片相对电导率随胁迫强度的增强逐渐增加。干旱胁迫对类芦叶片可溶性蛋白和芦根系分泌酸性物质的影响表现为随干旱胁迫加剧而有所降低。
     (5)不同P素胁迫对类芦生物量分配格局及根系形态指标有明显影响。中度P胁迫处理类芦根系总长度、总表面积和总体积明显大于其它处理,中度P胁迫有利于类芦根长、表面积及体积的增长,但不利于根直径生长。P素胁迫对类芦秆、叶、根和生物积累量的影响均表现出随P胁迫程度的加剧呈上升趋势,然后逐渐下降。
     (6)不同N胁迫处理的类芦根系总长度、表面积、根体积和根系生物量存在差异明显。不同N胁迫下根长、根表面、根体积、根系生物量随N胁迫程度增加而逐渐减小。在N素极度匮乏逆境中,类芦生长缓慢,但根系生物量分配比例比地上部分高,这可能是类芦抵抗环境N胁迫的一种形态学机制之一。
     (7)不同K胁迫处理类芦生物量分配格局及根系形态指标存在明显差异。不供K处理类芦根系总长度、总表面积和总体积均明显大于其它处理。随供K量的减少,类芦根系平均直径、全株生物量呈递减趋势,根冠比呈增加趋势。
     (8)不同P胁迫处理类芦叶片生理学指标存在明显差异。P胁迫一定程度上增强了类芦叶片保护酶活性,与正常供P处理相比,P胁迫处理类芦叶片POD、SOD和CAT活性均明显增强(p<0.05),但随P胁迫程度的加剧,各种酶活性均降低。从叶片膜系统来看,随P胁迫程度加剧,类芦叶片MDA含量和相对电导率逐渐上升,而当P胁迫达到一定程度时,两者呈降低趋势。在中度P胁迫类芦叶片可溶性蛋白和根系分泌酸性物质含量明显高于其它处理。
     (9)N胁迫对类芦叶片生理学指标有明显影响。N胁迫对类芦叶片保护酶活性影响明显,正常供N、轻度N胁迫、中度N胁迫处理类芦叶片POD、SOD和CAT活性逐渐增强,但随N胁迫程度的加剧,重度N胁迫和不供N处理保护酶活性依次降低。从叶片膜系统来看,随N胁迫程度的加剧,类芦叶片MDA含量和相对电导率逐渐上升,而当N胁迫达一定程度时,两者均呈降低趋势。重度N胁迫和中度N胁迫处理类芦叶片可溶性蛋白和根系分泌酸性物质含量均明显高于其它处理(p<0.05)。
     (10)不同K胁迫处理类芦叶片生理学指标存在明显差异。K胁迫一定程度上可增强类芦叶片保护酶活性,中度K胁迫类芦叶片POD、SOD和CAT活性较高,正常供K处理中各种酶活性最低,明显低于其它K胁迫处理(p<0.05)。从类芦叶片膜系统来看,中度K胁迫处理的MDA含量最高,而叶片相对电导率则随K胁迫程度的加剧呈升高趋势。类芦叶片可溶性蛋白和根系分泌酸性物质含量随K胁迫程度的加剧而表现出先升高后下降趋势。
     综合以上研究结果,崩岗侵蚀区先锋植物类芦对环境水分胁迫的响应策略为:当环境土壤田间持水量小于40%形成干旱胁迫时,一方面,芦类的分蘖数量增加,通过增加叶片数量与宽度、减小叶片长度,以减少土壤水分的散失速度。另一方面,干旱胁迫条件下类芦体内叶片胞间CO:浓度、叶绿素、MDA含量和相对电导率显著增加,一定程度上提高了类芦体内的水分利用效率。随干旱胁迫强度的加剧,叶片可溶性蛋白和根系分泌酸性物质含量呈现先增加后降低趋势,但根系生物量呈上升趋势,根冠比不断增加,主要通过根系表面积的扩增以及根系向外延伸,加大根系与土壤的接触面积,增强对环境土壤水分的主动寻觅能力,以维持植株正常生长对水分的需求,这可能是芦类能在极其干旱的环境中正常生长的主要原因。
     类芦对P素胁迫、N素胁迫和K素胁迫在一定程度上表现出相似的响应策略,其对环境养分胁迫的响应机制为:当土壤含P量、含N量、含K量分别小于0.50mmol·L-1、3.75mmol·L-1、3.0mmol·L-1形成中度或重度养分胁迫时,类芦叶片POD、SOD和CAT酶活性增强,叶片可溶性蛋白和根系分泌酸性物质含量有所增加,类芦秆、叶、根和全株生物积累量也随之增加,根冠比增大,根系总长度、总表面积和体积明显增加,从而提高了类芦根系在养分胁迫逆境中的主动寻觅养分的能力。但类芦根系的这种主动响应机制只能维持一小段时间,随养分胁迫时间的延长,类芦叶片酶活性及其数量降低,生长变缓,因此类芦对环境贫瘠养分的适应有一定限度。
Neyraudia reynaudiana is a pioneer Plant for water and soil conservation in the southern collapsing hill area. They can recovery rapidly in the bare soil and then become dominance species. Neyraudia reynaudiana can survive and grow in nutrient deficiency and drought soil, which show it may possesses specific mechanisms to find the nutrient and moisture in poor soil. However, the adaption mechanism of Neyraudia reynaudiana to nutrients deficiency and drought condition is still not determined clearly.
     For these reasons, the morphological and physiological characteristics of Neyraudia reynaudiana were determined under nutrient and drought stress based on the method of Stress Botany. The differences between the morphological and physiological features were analyzed in different stress treatments. The strategy to find the nutrients and moisture in poor soil was discussed for Neyraudia reynaudiana, which would be benefit for understanding its adaption mechanism to nutrients and drought stress. The main results were as follows:
     (1) There was significant effect on the growth of Neyraudia reynaudiana among the different water stress treatments. In the early stage of drought stress, the moisture content in the soil had a greater effect on the number of tillers and leaves of Neyraudia reynaudiana. Compared with adequate water supply treatment, the numbers of tillers and leaf of Neyraudia reynaudiana were significantly more both in moderate and slight water stress treatment, however, the growths of their height were significantly reduced (p<0.05). The growth of leaf length was weaned in the severe drought stress treatment, however, the growth of its leaf width was speeded. AS the drought stress goes, the growth of its height, tiller ability, leaf number and maximum leaf width were inhibited, however, leaf elongation ability weakened significantly.
     (2) There was significantly difference in total root length, root surface area, root average diameter, root biomass of Neyraudia reynaudiana among different drought stress treatments, however, not in the root volume. As the drought stress increased, the volume and diameter of roots reduced gradually in different drought stress. Compared with the adequate water treatment, the total length, surface area, biomass of roots, and root-shoot ratio were high significantly under different drought stres. The total length, surface area, biomass of roots, aboveground biomass, root-shoot ratio were the highest under moderate drought stress. Neyraudia reynaudiana had strong drought-tolerant because of large root system with root length and root surface area. The root characters of elongation growth and enlargement root-soil interface of Neyraudia reynaudiana may be one of morphology response mechanisms to drought stress.
     (3) The effects of drought stress on photosynthetic characteristics of Neyraudia reynaudiana were significantly different.. Chlorophyll content of Neyraudia reynaudiana increased and chlorophyll a/b was decrease under moderate and slight drought stress. Chlorophyll fluorescence parameters F0, Fm, Fv increased and Fv/Fm, Fv/F0decreased under drought stress. The average intercellular CO2content increased as the drought stress increasing. They increase slowly in the morning and rapidly increase in the afternoon to maximum at16:00. The diurnal variation curves of net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr) were increasing, and then decreasing, a single-peak at12:00. Pn, Gs, and Tr decreased as drought stress increasing. The WUE of Neyraudia reynaudiana increased under moderate and slight drought stress, and decreased slightly under heavy drought stress. Therefore, Neyraudia reynaudiana had strong drought-resistant capacity.
     (4) In the different drought stress treatments, there were significantly differences among the physiological process of Neyraudia reynaudiana. The effects of drought stress on protection enzymes of Neyraudia reynaudiana were significant. The activities of POD, SOD and CAT in leaves of Neyraudia reynaudiana under adequate water supply treatment were significantly higher than the slight, moderate and severe stress. From the leaf membrane system, the more serious the drought stress, the higher MDA content of Neyraudia reynaudiana.The MDA content showed the increasing trend under adequate water supply. The relative Conductivity of leaf gradually increased with increasing of drought stress. The effects of drought stress on the leaf soluble proteins and secrete acidic substances in roots of Neyraudia reynaudiana were showed as follows: their contents were decreased with increasing of drought stress.
     (5) Among the different low phosphorus stress treatments, there were significant effects on biomass distribution pattern and root morphology indicators of Neyraudia reynaudiana. The total root length, total root surface area and total root volume of Neyraudia reynaudiana were significantly higher than other treatments under moderate stress. The moderate stress was more benefit for growth of root length, root surface area and root volume, however, not conducive to root diameter growth. The effects on stalks, leaves, roots, and biomass accumulation of Neyraudia reynaudiana under the low phosphorus stress showed an upward trend with increase of phosphorus stress and then gradually decline.
     (6) Among the different nitrogen stress treatments, there was significantly different in total root length, root surface area, root average diameter, root biomass of Neyraudia reynaudiana, However, not in the average diameter. The root length, root surface area, root volume and root biomass decreased with increase of nitrogen stress. The Neyraudia reynaudiana grew slowly under the extreme shortage of nitrogen in the soil, however, root biomass distribution ratio was higher than the aerial parts which may be an ecological resistance mechanism of Neyraudia reynaudiana under nitrogen stress.
     (7) There was significantly difference in biomass allocation pattern and root morphology indicators of Neyraudia reynaudiana under different potassium stress treatments. The total root length, total root surface area and total root volume of Neyraudia reynaudiana without potassium supply treatment were significantly higher than other treatments. The root average diameter of Neyraudia reynaudiana showed a decreasing trend with the decrease of potassium. The whole plant biomass showed an increasing trend and the root-shoot ratio showed a declining trend with the increase of potassium.
     (8) There was significantly difference in the leaves physiology indicators of Neyraudia reynaudiana among different phosphorus stress treatments. To some extent, the leaf protection enzymes of Neyraudia reynaudiana were enhanced under low phosphorus stress. Compared with normal phosphorus supply treatment, the activities of POD, SOD and CAT in Neyraudia reynaudiana leaves under low phosphorus stress were significantly increased (p<0.05), however, with the intensification of phosphorus stress, each protection enzymes activities consistently decreased under severe phosphorus stress and not phosphorus supply treatments. From the leaf membrane system, the MDA content and relative conductivity gradually increased with the intensification of phosphorus stress, while the phosphorus stress reaches a certain level, both showed a decreasing trend. The leaf soluble proteins content and secrete acidic substances content in roots of Neyraudia reynaudiana were significantly higher than other treatments under moderate stress.
     (9) There was significantly difference in the leaves physiology indicators of Neyraudia reynaudiana among different nitrogen stress treatments. The effects of low nitrogen stress on the leaf protection enzymes of Neyraudia reynaudiana were significantly. The activities of POD, SOD and CAT in Neyraudia reynaudiana under normal nitrogen supply, slight, moderate stress were gradually increased, however, with the intensification of nitrogen stress, each protection enzymes activities decreased in turn among severe nitrogen stress and not nitrogen supply treatments. The MDA content and relative conductivity gradually increased with the intensification of nitrogen stress. When the nitrogen stress reaches a certain level, both showed a decreasing trend. The leaf soluble proteins content and secrete acidic substances content in roots of Neyraudia reynaudiana under severe and moderate stress treatments were significantly higher than other treatments (p<0.05).
     (10) There was significantly difference in the leaves physiology indicators of Neyraudia reynaudiana among different potassium stress treatments. To some extent, under low potassium stress the protection enzymes of Neyraudia reynaudiana were enhanced, the activities of POD, SOD and CAT inNeyraudia reynaudiana leaves under moderate potassium stress were higher, and there were the lowest under normal supply potassium treatment, which significantly lower than the low potassium stress treatment (p<0.05). The MDA content was the highest under moderate stress among different treatments from the leaf membrane system of Neyraudia reynaudiana. While the leaf relative conductivity showed a gradually increasing trend with the intensification of low potassium stress. Similarly, the MDA content and the leaf relative conductivity showed a gradually increasing and then decreasing trend with the intensification of potassium stress.
     Based on the above results, the response strategies to environmental stress for pioneer plant Neyraudia reynaudiana in the collapsing hill area. were as follows:when field moisture capacity less than40%and moderate or severe drought stress, the tillers number of Neyraudia reynaudiana increased, which improved the coverage of Neyraudia reynaudiana to reduce soil moisture loss by increasing the leaves number and leaf width. At the same time, the average intercellular CO2content, chlorophyll, MDA content and relative conductivity significantly increased, which improved water use efficiency to some extent.The MDA content and the relative conductivity showed a gradually increasing and then decreasing trend with the intensification of drought stress, while the root biomass showed a significantly increasing trend, root-shoot ratio increasing, which mainly through the amplification of the root surface area and root length extending outward to enhance the searching ability for moisture in soi; and meet the demand of its normal growth.
     It showed a similar response strategy for Neyraudia reynaudiana to phosphorus nitrogen and potassium stress. When phosphorus content was less than0.50mmol·L-1, the nitrogen content was less than3.75mmol·L-1, and the potassium content was less than3.0mmol·L-1in the soil, or under a moderate or severe nutrient stress, the activities of POD, SOD and CAT in Neyraudia reynaudiana leaves were significantly increased, the leaf soluble proteins content and secrete acidic substances content in roots increased. At the same time, stalks, leaves, roots, and biomass accumulation of Neyraudia reynaudiana also increased, the root-shoot ratio, total root length, total root surface area and total root volume of Neyraudia reynaudiana significantly increased, and then improved root searching ability of Neyraudia reynaudiana under the nutrient stress. However, the active response mechanism to nutrient stress only last for a short time. With nutrient stress for a long time, the enzyme activity and number of the leaves might decrease, and the growth of Neyraudia reynaudiana became slow.
引文
ANDRONIKI B,DEMETRIOS V,MAGDALENE K P, et al.Photosynthetic parameters and cut-flower yield of rose'Eurored'(H.T.) are adversely affected by mild water stress irrespective of substrate composition[J]. Scientia Horticulturae,2010,126:390-394.
    ANTAL T, MATTILA H, HAKALA-YATKIN M, et al. Acclimation of photosynthesis to nitrogen deficiency in Phaseolus vulgaris [J]. Planta,2010,232 (4):887-898.
    ATHIKKATTUVALASU S, KARTHIKEYAN,DEEPA K, et al. Regulated expression of arabidopsis phosphate transporters [J]. Plant Physiology,2002,130:221-233.
    BETTINA S, ECKHARD H, MARSCHNER. Effect of varied soil nitrogen supply on Norway spruce, Plant Soil,1996.184:291-198.
    BIAN S M, JIANG Y W. Reactive oxygen species, antioxidant enzyme activities and gene expression patterns in leaves and roots of Kentucky blue grass in response to drought stress and recovery[J].Scientia Horticulturae A,2009,120(2):264-270.
    BONDADA B R, SYVERTSEN J P. Leaf chlorophyll,net gas exchange and chloroplast ultrastructure in citrus leaves of different nitrogen status [J]. Tree Physiol,2003,23 (8):553-559.
    BONDADA B R,OOSTERHUIS D M.Canopy photosynthesis, specific leaf weight, and yield components of cotton under varying nitrogen supply[J].Plant Nutr.,2001,24(3):469-477.
    BOSABALIDIS A M,KOFIDIS G.Comparative effects of drought stress on leaf anatomy of two olive cultivars[J].Plant Science,2002,163:375-379.
    CHAPINF S Ⅲ, The mineral nutrition of wild plants [J]. Annual Review of Ecology and Systematics,1980,11:233-260.
    CHEN L S,CHENG L L. Photosynthetic enzymes and carbohydrate metabolism of apple leaves in response to nitrogen limitation [J]. Journal of Horticultural Science & Biotechnology,2004,79 (6):923-929.
    COOMES D A, GRUBB P J. Responses of juvenile trees to above and belowground competition in nutrient-starved Amazo-nian rain forest [J]. Ecology,1998,79 (3):768-782.
    DORLODOT S D, FORSTER B, PAGES L, et al. Root system architecture:opportunities and constrains for genetic improvement of crops[J].Trends in Plant Science,2007,12(10):474-481.
    EVA O, GUY D K, WALTER W W, et al. Interactive effects of organic acids in the rhizosphere[J]. Soil Biology & Biochemistry,2009, (41):449-457.
    EVANS J R. Nitrogen and photosynthesis in the flag leaf of wheat [J]. Plant Physiology,1983,72 (2):297-302.
    FITTER A H.Roots as dynamic systems the developmental ecology of roots and root systems[M]. Physiological Plant Ecology,BES.UK:Blackwell Scientific Co,1999:115-131.
    F1EXAS J, ESCALONA J M,MEDRANO H. Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines[J].Plant,Cell & Environment,1999,22(1):39-48.
    GAHOONIA T S, ASMAR F, GIESE H. Root-released organic acids and phosphorus uptake of two barley cultivars in laboratory and field experiments[J]. European Journal of Agronomy, 2000,(12):281-289.
    GILES K L, BEARDSELL M F, COHEN D. Cellular and ultra structural changes in mesophyll and bundle sheath cell of maize in response to water stress [J]. Plant Physiol,1974,4:208-212.
    GLOSER V, SEDLAEK P, GLOSER J. Consequences of nitrogen deficiency induced by low external N concentration and by patchy N supply in Picea abies and Thuja occidentalis [J] Trees,2009,23 (1):1-9.
    GREEF J M, OTT H, WULFES R, et al. Growth analysis of dry mater accumulation and N up take of forage maize cultivars affected by N supply [J]. J Agric Sci,1999,132(1):31-43.
    DENG, H, YE Z H, WONG M H. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China[J]. Environmental Pollution, 2004,132:29-40.
    DENG, H, YE Z H, WONG M H. Lead, zinc and iron (Fe2+) tolerances in wetland plants and relation to root anatomy and spatial pattern of ROL[J], Environmental and Experimental Botany, 2009,65:353-362.
    HINSINGER P, PLASSARD C, TANG C, et al. Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints[J]. Plant and Soil,2003,248:43-59.
    HO C H, TSAY Y F. Nitrate, ammonium, and potassium sensing and signaling[J].Current Opinion Plant Biol,2010,13 (5):604-610.
    HUANG Z A, JIANG D A, YANG Y, et al. Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants [J]. Photosynthetica,2004,42 (3):357-364.
    HUBER W, SCHMIDT F. Effect of various salts and polyethylene glycol on proline and amino acid metabolism of Pennisetum typbodies[J]. Pflanzenphysiol,1980,33:59-103.
    IRYNAI T, INGO R,WALTER K. Distinguishing nitrogen deficiency and fungal infection of winter wheat by laser-induced fluorescence [J]. Precision Agric,2006,7 (4):281-293.
    JEONG HYUN LIM,ILL-MIN CHUNG, SANG SOO RYU,et al. Differential responses of rice acid phosphatase activities and informs to phosphorus deprivation[J]. Journal of Biochemistry and Molecular Biology,2003,36(6):597-602.
    JONGRUNNGKLANG N, TOOMSAN B, VORASOOT N, et al. Rooting traits of peanut genotypes with different yield responses to pre-flowering drought stress[J].Field Crops Research,2011,120:262-270.
    JUNG J Y, SHIN R, Schachtman D P.Ethylene mediates response and tolerance to potassium deprivation in arabidopsis[J].The Plant Cell Online,2009,21 (2):607-621.
    KOVACIK J, BA KOR M. Changes of phenolic metabolism and oxidative status in nitrogen-deficient Matricaria chamomilla plants [J]. Plant Soil,2007,297 (1):255-265.
    KUMAGAI E, ARAKI,T, UENO O. Effect of nitrogen-deficiency on midday photoinhibition in flag leaves of different rice (Oryza sativa L.) cultivars [J]. Photosynthetica,2009,47 (2): 241-246.
    KUTIK L, LUBOMIR N, DEMMERS-DERKS H H,et al. Chloroplast ultrastructure of sugar beat (Beta vulgaris L.) cultivated in normal and elevated CO2 concentrations with two contrasted nitrogen supply [J]. J Exp Bot,1995,46 (12):1797-1802.
    LAWLOR D W,CORNIC G.Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants.Plant,Cell and Environment,2002,25:275-294.
    LI Q, CHEN L S, JIANG H X, et al. Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase,carbohydrates and photosynthetic electron transport of leaves,and antioxidant systems of leaves and roots in Citrus grandis seedlings [J]. BMC Plant Biology,2010,7 (10):42.
    LIY N, HOU L G, QI C Y, et al. Effect of different levels of phosphorus nutrient on the photosynthesis characterisitic of rice flag leaf[J].Agricultural Science & Technology, 2010,11(6):11-14.
    LI Y Y,SHAO M A. Physio-ecological response of spring wheat root to water and nitrogen[J]. Plant Nutrition and Fertilizer Science,2000,6(4):383-388.
    LIN Z H, CHEN L S, CHEN R B, et al. CO2 assimilation,ribulose-1,5-bisphosphate carboxylase/oxygenase,carbohydrates and photosynthetic electron transport probed by the JIP-test, of tea leaves in response to phosphorus supply [J]. BMC Plant Biology,2009,21 (9):43.
    LUDLOW M M,MUCHOW R C.A Critical evaluation of traits for improving crop yields in water-limited environments[J].Advances In Agronomy,1990,43:107-153.
    MAATHUIS F J M, SANDERSD. Mechanism of potassium absorption by higher plant roots[J]. Physiol Plant,1996,96:158-168.
    MARSHNER H,V ROMHELD,I CAKMAK. Mineral Nutrition of Higher Plants[M].San Diego:Academic Press,London,1995:5-38.
    MASSACCI A,Nabiev S M,Pietrosanti L,et al.Response of the photosynthetic apparatus of cotton (Gossypium hirsutum) to the onset of drought stress under field conditions studied by gas-exchange analysis and chlorophyll fluorescence imaging[J]. Plant Physiology and Biochemistry,2008(46):189-195.
    MATERECHERA S A, DEXTER A R, AKSTIN A M. Formation of aggregates by plant roots in homogenized soil[J]. Plant and Soil,1992,142:69-79.
    MAXWELL K,JOHNSON G N. Chlorophyll fluorescence-apractical guide [J]. J Exp Bot,2000,51 (345):659-668.
    NIKIFOROVA V, FREITAG J, KEMPA S, et al. Transcriptome analysis of sulfur depletion in arabidopsis thaliana:interlacing of biosynthetic pathways provides response specificity[J]. Plant J.,2003,33 (4):633-650.
    OSMONT K S, SIBOUT R, HARDTKE C S. Hidden branches:developments in root system architecture[J].Annu Rev Plant Biol,2007,58,93-113.
    PEASLES D E,MOSS D N.Photosynthesis in K- and Mg- deficient maize leaves[J].Soil Sci., 1996,30:220-223.
    REN S J, ZHANG L M, ZHANG S Q. The effect of nitrogen nutrition on coordinate growth of root and shoot of winter wheat[J]. Acta Bot.Boreal-Occident.Sin,2003,23(3):395-400.
    SAUTER M, LORBIECKE R. Adventitious root growth and cell-cycle induction in deepwater rice[J].Plant Physiol,1999,119 (1):21-29.
    SAUTER M, STEFFRNS B, WANG J X. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice[J].Planta, 2006,223 (3):604-612.
    SCHACHTMAN D P, SHIN R. Hydrogen peroxide mediates plant root cell response to nutrient deprivation[J]. Proceed National Acad Sci, USA,2004,101 (23):8827-8832.
    SEITH B, GEORGE E, MARSCHNER H, et al. Effects of varied soil nitrogen supply on Norway spruce (Picea abies[L.]Karst). I. Shoot and root growth and nutrient uptake [J]. Plant and Soil,1996,184 (2):291-298.
    STANTURF J A, JR STONE E L,MC KITTRICK R C. Effects of added nitrogen on growth of hardwood trees in southern New York [J]. Canadian Journal of Forest Research,1989,19 (2): 279-284.
    STRASSER R J, TSIMILLI-MICHEAL M, SRIVASTAVA A. Analysis of the chlorophyll a fluorescence transient [A]. PA-PAGEORGIOU G C,GOVINDJEE. Chlorophyll a fluorescence: A signature of photosynthesis [C]. Dordrecht:Springer,2004.321-362.
    STRASSER R J,SRIVASTAVA A/TSIMILLI-MICHAEL M. The fluorescence transient as a tool to characterize and screen photosynthetic samples [A]. YUNUS M,PATHRE U,MOHANTY P,etal. Probing Photosynthesis:Mechanisms,Regulation and Adaptation [C]. London:Taylor and Francis,2000.445-483.
    TERRY N, TAO I M. Nutrient and photosynthesis:iron and phosphorus as case studies [A]. Porter J R, Law lor D W. Plant growth:interaction with nutrition and environment[M].Cambridge: Cambridge University Press,1991.54-59.
    WANG H, SIOPONGCO J, WADE L J, et al. Fractal analysis on root systems of rice plants in response to drought stress[J].Environmental and Experimental Botany,2009,65:338-344.
    WANG J A, ZHANG D Y, JIA W L. Variation in response of wheat genotypes to potassium[J]. Journal of Triticeae Crops,2000,20(3):35-39.
    WANG J R, HAWKINS C D B, LETCHFORD T. Relative growth rate and biomass allocation of paper birch (Betula papyrifera) populations under different soil moisture and nutrient regimes [J]. Canadian Journal of Forest Research,1998,28 (1):44-55.
    WEIBERGE.A relationship between potassium and proline accumulation in salt-stressed Sorghum bicolor [J].Physiol plant.1982,55:5-10.
    WISON J B.Shoot competition and root competition[J].Ecology,1988,25:279-296.
    WOOD A J,SANEDODA H,JOLY R J.Betaine aldedyde dehydrogenase in sorghum[J].Plant Physiol,1996,110(4):1301-1308.
    WU P F, MA X Q, TIGABU M, et al. Root morphological plasticity and biomass production of two Chinese fir clones with high phosphorus efficiency under low phosphorus stress, Canadian Journal of Forest Research,2011,41 (2):228-234.
    WU W H, WANG Y. Plant sensing and signaling in response to K (+)-deficiency[J]. Molecular Plant,2010,3 (2):280-287.
    Wu Y Y,LI D Q.Effects of soil water stress on osmotic adjustment and chloroplast ultrastrucrure of winter wheat leaves[J]. Acta Agriculturae Boreali-Sinica,2001,16(2):87-93.
    YANG X E, JIA Y B, FENG Y, et al. Differential response of root morphology to potassium deficient stress among rice genotypes varying in potassium efficiency[J].J Zhejiang University-Sci B,2008,9 (5):427-434.
    YANG X E, LIU J X, WANG W M, et al. Genotypic differences and some associated plant traits in potassium internal use efficiency of lowland rice (Oryza sativa L.) [J]. Nutrient Cycl Agroecosys,2003,67 (3):273-282.
    YIN C Y,WANG X,DUAN B L,et al. Early growth,dry matter allocation and water use efficiency of two sympatric Populus species as affected by water stress[J].Environmental and Experimental Botany,2004,53:315-322.
    ZHAI B N, SUN C M, WANG J R. Effects of nitrogen deficiency on the growth and development of winter wheat roots [J]. Acta Agronomica Sinica,2003,29(6):913-918.
    ZOU C Q, LI Z S, LI J Y. Study on difference in morphological and physiological characters of wheat varieties to potassium[J]. Plant Nutrition and Fertilizer Science,2001,7(1):36-43.
    ZRIBI O T, LABIDI N, SLAMA I, et al. Alleviation of phosphorus deficiency stress by moderate salinity in the halophyte Hordeum maritimun L. [O]. Plant Growth Regul, DOI 10.1007/s 10725-011-9631-9.
    蔡丽平,吴鹏飞,侯晓龙,等.磷胁迫对水士保持先锋植物类芦光合特性的影响[J].水土保持学报,2012,(6)
    蔡丽平,吴鹏飞,侯晓龙,等.干旱胁迫对水土保持县份植物类芦光合特性的影响[J].水土保持学报,2011,25(6):237-241,259.
    曹翠玲,李生秀,苗芳.氮素对植物某些生理生化过程影响的研究进展[J].西北农业大学学 报,1999,27(4):96—101.
    曹慧,王孝威,韩振海,等.水分胁迫对苹果属植物叶片超微结构的影响[J].中国农学通报,2004,20(3):175-178.
    陈菊艳,杨远庆,孙泉忠.不同光照处理对野扇花光合日变化的影响[J].中国农学通报,2010,26(21):243-249.
    陈少瑜,郎南军,贾利强,等.干旱胁迫对坡柳等抗旱树种幼苗膜脂过氧化及保护酶活性的影响[J].植物研究,2006,26(1):88-92.
    陈雅君,祖元刚,刘慧民,等.干旱对草地早熟禾膜质过氧化酶和保护酶活性的影响[J].中国草地学报,2008,30(5):32-36.
    陈贻竹,李晓萍,夏丽,等.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热带植物学报,1995,3(4):79-86.
    陈志彪,朱鹤健,刘强,等.根溪河小流域的崩岗特征及其治理措施[J].自然灾害学报,2006,15(5):83-88.
    陈志明,许永明,李翠玲.安溪县崩岗治理模式及实施效果[J].中国水土保持,2007,(3):15-17.
    代微然,任健,墨继光.干旱胁迫对假俭草叶绿素荧光特性的影响[J].草原与草坪,2010,30(5):1-5.
    戴文娇,宁平,刘晓海,等.类芦对铅的耐性及富集能力探讨[J].环境工程学报,2008,2(7):1004-1008.
    邓恢,张梓萍,赵永建,等.种植类芦后林地芒萁生长变化的分析[J].福建水土保持,2004,16(1):55-57.
    邓恢.水蚀荒漠地采用栽植器种植类芦技术探讨[J].林业勘察设计,2000,(1):96-98.
    董梅,贺康宁,张益源,等.黄土高寒区不同土壤水分条件下银水牛果幼苗光响应研究[J].中国农学通报,2010,26(18):165-169.
    董明,陈雪平,赵建军,等.低氮胁迫不同氮效率基因型茄子光合特性差异[J].华北农学报,2009,24(1):181-184.
    杜金伟,崔世茂,金丽萍,等.水分胁迫对山杏渗透调节物质积累及保护酶活性的影响[J].内蒙古农业大学学报,2009,30(2):88-93.
    杜金友,陈晓阳,胡东南,等.干旱胁迫条件下几种胡枝子渗透物质变化的研究[J].华北农学报,2004,19:40-44.
    樊卫国,刘国琴,何嵩涛,等.刺梨对土壤干旱胁迫的生理响应[J].中国农业科学,2002,35(10):1243-1248.
    范敏,金黎平,刘庆昌,等.马铃薯抗旱机理及其相关研究进展[J].中国马铃薯,2006,20(2):101-107.
    方平,姚启伦,陈发波.低氮胁迫下三峡库区玉米地方品种的苗期植株形态及生理效应[J].种子,2012,31(1):5-8.
    冯广龙,罗远培.不同水分条件下冬小麦根与冠生长及功能间的动态消长关系[J].干旱地区农业研究,1997,15(2):15-19.
    冯宏,郭彦彪,林日强,等.类芦和狗牙根内生固氮菌初步研究[J].热带亚热带植物学报,2009,17(5):465-470.
    高小锋,王进鑫,张波,等.不同生长期干旱胁迫对刺槐幼树干物质分配的影响[J].生态学杂志,2010,29(6):1103-1108.
    葛才林,杨小勇,刘向农,等.重金属对水稻和小麦甲基化水平的影响[J],植物生理与分子生物学学报,2002,28(5):363-368.
    郭卫东,桑丹,郑建树,等.缺氮对佛手气体交换、叶绿素荧光及叶绿体超微结构的影响[J].浙江大学学报(农业与生命科学版),2009,35(3):307-314.
    郭相平,张烈君,王琴,等.拔节孕穗期水分胁迫对水稻生理特性的影响[J].干旱地区农业研究,2006,24(2):125-129.
    韩碧文.植物生理生化进展(第三期)[M].科学出版社,北京:1984:125-127.
    韩蕊莲,侯庆春.作物对缺水环境的感知及其反应.西北植物学报,1996,16(6):67-72.
    韩善华.油菜叶绿体的干旱处理过程中的超微结构变化[J].作物学报,1991,17(4):311-313.
    韩胜芳,邓若磊,徐海荣,等.缺磷条件下不同磷效率水稻品种光合特性和细胞保护酶活性[J].应用生态学报,2007,(11):2462-2467.
    何炎红,郭连生,田有亮.白刺叶不同水分状况下光合速率及其叶绿素荧光特性的研究[J].西北植物学报,2005,25(11):2226-2226.
    胡廷章,陈国平,胡宗利,等.植物根系对氮胁迫的形态学响应[J].生态学报2010,30(1):0205-0211
    黄俊,郭世荣,吴震,等.弱光对不结球白菜光合特性与叶绿体超微结构的影响[J].应用生态学报,2001,18(2):352-358.
    黄艳霞.广西崩岗侵蚀的现状、成因及治理模式[J].中国水土保持,2007,(2):3-4.
    吉彪,李晶,商文楠,等.氮素水平对小黑麦旗叶叶绿素荧光参数的影响[J].作物杂志,2010(3):50-53.
    季华,傅强,姜德伟,等.干旱胁迫下罗浮槭苗期的生理和形态变化[J].江西农业学报2012,24(1):1-4.
    家顺,李志友.干旱胁迫对茶树根系形态特征的影响[J].河南农业科学,2011,40(9):55-57.
    蒋丽,刘延吉.不同玉米自交系耐低钾的酶学特性研究[J].沈阳农业大学学报,2005,36(3):279-281.
    蒋永涛,刘传兰,马勇,等.低钾胁迫对黄瓜生长和抗氧化酶活性的影响[J].山东农业科 学,2010,5:47-50.
    焦志丽,李勇,吕典秋,等.不同程度干旱胁迫对马铃薯幼苗生长和生理特性的影响[J].中国马铃薯,2011,25(6).329-333.
    金继运,何萍.氮钾营养对春玉米后期碳氮代谢与粒重形成的影响[J].中国农业科学,1999,32(4):55-62.
    金忠民,沙伟,臧威,等.干旱胁迫对白三叶幼苗保护酶的影响[J].2010,38(7):52-53.
    井春喜,张怀刚,师生波,等.土壤水分胁迫对不同耐旱性春小麦品种叶片色素含量的影响[J].西北植物学报,2003,23(5):811-814.
    孔垂华,徐涛,胡飞,等.境胁迫下植物的化感作用及其诱导机制[J].生态学报,2000,20(5):849-854.
    孔兰静,李红双,张志国.三种观赏草对土壤干旱胁迫的生理响应[J].中国草地学报,2008,30(4):40-45.
    库文珍,彭克勤,张雪芹,等.低钾胁迫对水稻苗期矿质营养吸收植物激素含量的影响[J].植物营养与肥料学报,2009,15(1):69-75.
    匡艺,李廷轩,余海英.氮素对不同氮效率小黑麦基因型叶片保护酶活性和膜脂过氧化的影响[J],草业学报,2011,20(6):93-100.
    冷华妮,陈益泰,段红平,等.磷胁迫对不同种源枫香生长及氮、磷吸收利用率的影响[J].应用生态学报,2009,20(4):754-760.
    李春杰,王建国,许艳丽,等.钾对大豆产量及品质的影响.农业系统科学与综合研究[J].2005,21(2):154-155,160.
    李从锋,刘鹏,王空军,等.缺氮对细胞质雄性不育玉米产量和光合特性的影响[J].作物学报,2008,34(4):684-689.
    李芳,王燕凌,李文兵,等.不同水位条件对刚毛柽柳叶绿体超微结构的影响[J].干旱区研究,2009,26(1):65-69.
    李芳兰.三种豆科灌木对干旱胁迫的响应与适应[D],中国农科院研究生院,2007.
    李合生,孙群,世杰,等.植物生理生化实验原理和技术[M].高等教育出版社,2003.
    李吉跃.植物耐旱性及其机理[J].北京林业大学学报,1991,13(3):92-97.
    李洁,朱清科,郭小平.不同土壤水分对幼龄梨树生理特性及生物量的影响[J].水土保持通报2007,27(2):79-82.
    李俊,张春雷,秦岭,等.不同磷效率基因型油菜对低磷胁迫的生理响应[J].中国油料作物学报,2010,32(2):222-228.
    李立芹.植物低磷胁迫适应机制的研究进展[J].生物学通报,2011,46(2):13-16.
    李鹏民,高辉远,STRASSER R J.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报,2005,31(6):559-566.
    李文娆,张岁歧,丁圣彦,等.干旱胁迫下紫花苜蓿根系形态变化及水分利用的关系[J].生态学报,2010,30(19):5140-5150.
    李小强,李相玺,孟菁玲.江西省崩岗侵蚀防治对策[J].江西水利科技.2002,28(4):256-258.
    李彦瑾,赵忠,孙德祥,等.干旱胁迫下柠条锦鸡儿的水分生理特征[J].西北林学院学报,2008,23(3):1-4.
    李植,王伟,周春喜,等.不同钾营养型大豆主要形态、生理及产量指标的研究[J].沈阳农业大学学报,2007,38(4):483-487.
    梁建生,张建华.根系逆境信号ABA的产生和运输及其生理作用[J].植物生理学通讯,1998,34(5):329-339.
    梁开明,曹洪麟,徐志防,等.台湾青枣及野生种的光合作用日变化及光响应特征[J].园艺学报,2008,35(6):793-798.
    梁文斌,蒋丽娟,马倩,等.干旱胁迫下光皮树不同无性系苗木的生理生化变化[J].中南林业科技大学学报,2011,31(4):13-19.
    梁新华,史大刚.干旱胁迫对光果甘草幼苗根系MDA含量及保护酶POD、CAT活性的影响[J].干旱地区农业研究,2006,24(3):108-110.
    梁宗锁,韩蕊莲,刘淑明,等.黄土高原树木水分生理生态学特征[M].北京:中国林业出版社,2008:40-41.
    廖宝生.强度水土流失区种植类芦后林地生物多样性变化分析[J].亚热带水土保持,2005,17(3):30-32.
    廖建文.广东省崩岗侵蚀现状与防治措施探讨[J].亚热带水土保持.2005,17(4):28-30,48.
    林红强.优良的水土保持草种——类芦[J].龙岩学院学报,2005,23(3):106-107.
    林夏馨.福建长汀河田水土流失地区的迳流试验及类芦的绿化效果分析[J].广东林业科技,2005,21(1):6-10.
    林夏馨.类芦生长和抗逆特性的分析探讨[J].亚热带水土保持,2006,18(1):48-51.
    林夏馨.类芦绿化煤矸石山的效果分析[J].林业勘察设计,2004,(1):108-111.
    林夏馨.类芦生长和抗逆特性的分析探讨[J].亚热带水土保持,2006,18(1):48-51.
    林义章,张淑媛,朱海生.铜胁迫对小白菜叶肉细胞超微结构的影响[J].中国生态农业学报,2008,16(4):948-951.
    刘刚,张光灿,刘霞.土壤干旱胁迫对黄栌叶片光合作用的影响[J].应用生态学报,2010,21(7):1697-1701.
    刘国栋,刘更另.水稻不同基因型中Ca,Na对K的部分替代作用[J].作物学报,1992,22(3):314-319.
    刘洪升,宋秋华,李凤民.根分泌物对根际矿物营养及根际微生物的效应[J].西北植物学报,2002,22(3):693—702.
    刘华,张玉平,葛安静,等.干旱胁迫对4个刺柏品种抗旱生理指标的影响[J].安徽农业大学学报,2011,38(2):190-196.
    刘建祥,杨肖娥,吴良欢,等.低钾胁迫对水稻叶片光合功能的影响及其基因型差异[J].作物学报,2001,27(6):1000-1006.
    刘建祥,杨肖娥,杨玉爱.低钾胁迫下水稻钾高效基因型若干生长特性和营养特性的研究[J].植物营养与肥料学报2003,9(2):190-195.
    刘萍,李明军.植物生理学实验技术[M].科学出版社,2009.
    刘世鹏,刘济明,陈宗礼,等.模拟干旱胁迫对枣树幼苗的抗氧化系统和渗透调节的影响[J].西北植物学报,2006,26(9):1781-1787.
    刘淑明,陈海滨,孙长忠,等.黄土高原主要造林树种的抗旱性研究[J].西北农林科技大学学报,2003,31(4):149-153.
    刘延吉,田晓艳,曹敏建.低钾胁迫对玉米自交系苗期部分信号分子的影响[J].玉米科学,2007,15(3):87-90,94.
    刘延吉,田晓艳,曹敏建.低钾胁迫对玉米苗期根系生长和钾吸收特性的影响[J].玉米科学,2007,15(2):107-110.
    卢少云,陈斯平,陈斯曼,等.三种暖季型草坪草在干旱条件下脯氨酸含量和抗氧化酶活性的变化[J].园艺学报,2003,30(3):303-306.
    陆庆,蒋德安,翁晓燕,等.钾营养对不同水稻基因型物质生产和光合作用的效应[J].浙江农业大学学报,1999,25(3):267-270.
    吕仕洪,向悟生,李先琨,等.红壤侵蚀区植被恢复研究综述[J].广西植物,2003,23(1):83-89.
    罗英,罗明华.干旱胁迫对丹参幼苗气体交换特征和保护酶活性的影响[J].核农学报,2011,25(2):375-381.
    马廷臣,余蓉蓉,陈荣军,等.PEG-6000模拟干旱对水稻幼苗期根系的影响[J].中国生态农业学报,2010,18(6):1206-12]1.
    毛培培,赵云云.植物对钾营养的吸收、运转和胁迫反应的研究进展[J].生物学通报,2008,43(8):11-13.
    明凤,米国华,张福锁,等.水稻对低磷反应的基因型差异及其生理适应机制的初步研究[J].应用与环境生物学报,2000,6(2):138-141.
    聂石辉,齐军仓,张海禄,等.PEG6000模拟干旱胁迫对大麦幼苗丙二醛含量及保护酶活性的影响[J].
    潘晓华,刘水英,李锋,等.低磷胁迫对不同水稻品种幼苗生长和低磷效率的影响[J].江西农业大学学报,2002,24(3):297-300.
    彭海欢,翁晓燕,徐红霞,等.缺钾胁迫对水稻光合特性及光合防御机制的影响[J].中国水稻科学,2006,20(6):621-625
    祁娟,徐柱,马玉宝,等.披碱草属六种野生牧草苗期抗旱胁迫的生理变化[J].中国草地学报,2008,30(5):18-24.
    祁娟,徐柱,王海清,等.披碱草与老芒麦苗期抗旱性综合评价[J].草地学报,2009,17(1):36-42.
    齐炳林,曹翠玲,王菲,等.磷胁迫对豇豆幼苗硝酸还原酶活性和硝态氮含量的影响[J].干旱地区农业研究,2010,28(1):147-151.
    齐健,宋凤斌,刘胜群.苗期玉米根叶对干旱胁迫的生理响应[J].生态环境,2006,15(6):1264-1268.
    齐伟,张吉旺,王空军,等.干旱胁迫对不同耐旱性玉米杂交种产量和根系生理特性的影响[J].应用生态学报,2010,21(1):48-52.
    綦伟,翟衡,厉恩茂,等.部分根区干旱对不同砧木嫁接葡萄光合作用的影响[J].园艺学报,2007,34(5):1081-1086.
    曲婷婷,曹敏建,李兴涛,等.低钾胁迫下两种不同耐低钾大豆叶片显微结构的差异[J].大豆科学,2009,28(3):434-438.
    任永哲.低氮胁迫对不同小麦品种苗期性状的影响[J].种子,2012,31(5):91-94.
    茹广欣,郝绍菊,茹桃勤,等.干旱梯度下刺槐无性系生理指标的变化与品种抗旱性关系的研究[J].河南科技学院学报,2006,34(1):36-40.
    佘贵连,吴敏,韦家少,等.低磷胁迫对巴西橡胶树苗期生长及相关生理指标的影响[J].福建林业科技,2009,36(4):136-138.
    沈伟其.低钾胁迫对不同基因型杂交水稻氮代谢的影响[J].科技通报,1999,,15(5):382-386.
    施建敏,郭起荣,杨光耀.毛竹光合动态研究[J].林业科学研究,2005,18(5):551-555.
    时丽冉,刘志华.干旱胁迫对苣荬菜抗氧化酶和渗透调节物质的影响[J].草地学报,2010,18(5):673-677.
    史德明,周伏健,徐朋.我国南方土壤侵蚀动态与水土保持发展趋势[J].福建水土保持,1993,(3):9-13.
    苏日古嘎,孙铁军,武菊英,等.干旱胁迫对禾草苗期抗旱性特征的影响[J].中国草地学报,2007,29(3):256-260.
    孙发政,胡荣,张艺东,等.类芦在岩壁上生长的机理及其应用评价[J].中国水土保持,2004(7):18-20.
    孙发政.类芦绿化边坡施工方法的研究[J].草原与草坪,2004,107(4):61-62.
    孙晶,李春红,孙海鹰,等.低钾胁迫对不同基因型大豆生长发育的影响[J],士壤通报,2011,42(2):431-434.
    台德卫,张效忠,苏泽胜,等.不同磷营养胁迫下水稻苗期性状基因型性状差异的研究[J].分 子植物育种,2005,3(5):704-710.
    谭勇,梁宗锁,王渭玲,等.氮、磷、钾营养胁迫对黄芪幼苗根系活力及根系导水率的影响[J].中国生态农业学报,2007,15(6):69-72.
    汤继华,谢惠玲,黄绍敏,等.缺氮条件下玉米自交系叶绿素含量与光合效率的变化[J].华北农学报,2005,20(5):10-12.
    汤章城.逆境条件下植物脯氨酸的积累其可能的意义[J].植物生理学通讯,1984(1):15-21.
    汤章城.植物对水分胁迫的反应和适应性[J].植物生理学通讯,1983(4):1-7.
    田晓艳,刘延吉,曹敏建.低钾胁迫对玉米自交系苗期叶绿体结构及光合响应影响[J].玉米科学2007,15(4):79-82.
    万美亮,邝炎华,陈建勋.缺磷胁迫对甘蔗膜脂过氧化及保护酶系统活性的影响[J].华南农业大学学报,1999,20(2):1-6.
    王敬国,张浙玲,曹一平.磷胁迫对植物直接活化和利用矿物结构钾的影响[J].中国农业大学学报,1999,4(3):72-76.
    王磊,胡楠,张彤,等.干旱和复水对大豆叶片光合及叶绿素荧光的影响[J].生态学报,2007,27(9):3630-3636.
    王丽娜,克热木伊力,侯江涛.水分胁迫对扁桃砧木叶片脯氨酸、可溶性蛋白质、质膜透性、相对含水量的影响[J].新疆农业大学学报,2006,29(3):53-58.
    王庆仁,李继云,李振声.植物高效利用土壤难溶态磷研究动态及展望[J].植物营养与肥料学报,1998.4(2):107-116.
    王秋菊,李明贤,赵宏亮,等.控水灌溉对水稻根系生长影响的试验研究[J].中国农学通报,2008,24(8):206-208.
    王树起,韩晓增,乔云发,等.缺磷胁迫对大豆根系形态和氮磷吸收积累的影响[J].土壤通报,2010,41(3):644-650.
    王树起,韩晓增,乔云发,等.缺磷胁迫对大豆根瘤生长和结瘤固氮的影响[J].大豆科学,2009,28(6):1000-1003.
    王王庆成.水曲柳落叶松细根对土壤养分空间异质性的反应[D].哈尔滨:东北林业大学,2004.
    王为木,杨肖娥,李华,等.低钾胁迫对两个耐钾能力不同水稻品种养分吸收和分配的影响[J].中国水稻科学,,2003,17(1):52-56.
    王伟,李兴涛,綦左莹,等.低钾胁迫对不同效应型大豆光合特性及叶绿素荧光参数的影响[J].大豆科学,2008,27(3):451-455.
    王伟,曹敏建,綦左莹,等.不同大豆品种对钾素吸收和利用效率差异的比较研究[J].大豆科学,2007,26(4):561-564.
    工伟,曹敏建,周春喜,等.大豆耐低钾胁迫品种(系)的筛选[J].大豆通报,2005,(4):7-8.
    王炜,孙发政,刘荣堂.类芦对重建边坡防护植被的贡献[J].草原与草坪,2006(4):49-52.
    王晓冬,曹立萍,刘延迪.干旱胁迫对真桦根系形态及生物量分配的影响[J].防护林科技,2011(5):20-22.
    王晓磊,于海秋,夏乐,等.干旱胁迫下不同耐旱性玉米自交系根形态特性差异[J].现代农业科学,2008,15(12):17-19.
    王晓萍.茶根分泌物有机酸的分析研究初报[J].茶叶科学,1994,14(1):17-22.
    王新超,杨亚军,陈亮,等.不同品种茶树氮素效率差异研究[J].茶叶科学,2004,24(2):93-98.
    王永锐,等.耐低钾基因型水稻品种孕穗期剑叶生理及根系活力[J].生态科学,1997,16(1):67-70.
    王月福,于振文,李尚霞,等.氮素营养水平对小麦开花后碳素同化、运转和产量的影响[J].麦类作物学报,2002,22(2):55-59.
    魏海燕,张洪程,马群,等.不同氮肥吸收利用效率水稻基因型叶片衰老特性[J].作物学报,2010,36(4):645-654.
    吴楚,王政权,范志强,等.氮胁迫对水曲柳幼苗养分吸收、利用和生物量分配的影响[J].应用生态学报,2004,15(11):2034-2038.
    吴鹏飞,马祥庆.植物养分高效利用机制研究进展.生态学报,2009,29(1):427-437.
    吴显艺,乙引.干旱胁迫对金钗石斛幼苗生理生化的影响[J].贵州农业科学,2006,34(1):18-20.
    武艺,杨洁一,汪邦稳,等.红壤坡地水土保持措施减流减沙效果研究[J].中国水土保持,2008,(10):37-38,43.
    武永军,项燕,曹让,等.干旱胁迫下蚕豆叶片抗氧化酶活性的变化[J].干旱地区农业研究,2009,27(5):188-190.
    夏钦,何丙辉,刘玉民,等.磷胁迫对粉带扦插苗生长和生理特征的影响[J].水土保持学报,2010,24(3):228-242.
    谢钰容,周志春,金国庆.低磷胁迫对马尾松不同种源根系形态和干物质分配的影响[J].林业科学研究,2004,17(3):272-278.
    熊明彪,何建平,宋光煜.根分泌物对根际微生物生态分布的影响[J].土壤通报,2002,33(2):145-148.
    徐丽,张震,王育鹏,等.磷胁迫对番茄幼苗生长的影响[J].安徽农业科学,.2010,38(11)6062-6064.
    徐伟洲,徐炳成,段东平,等.不同水肥条件下白羊草光合生理生态特征研究Ⅰ:光合生理日变化[J].草地学报,2010,18(5):629-635.
    许衡,杨和生,束怀瑞.氮胁迫对平邑甜茶水培苗的生理效应[J].果树学报,2006,23 (6):787-792.
    薛建鹏,王秋玉,任欢.干旱胁迫下白桦主要生理指标的变化及相互关系[J].东北林业大学学报,2007,35(8):12-15.
    薛乃雯,冷平生,孙嬛,等.土壤干旱胁迫对8种景天属植物生长与生理生化指标的影响[J].中国农学通报,2010,6(13):302-307.
    杨国伟,张秀清,苏东海,等.水分胁迫下几种冷季型草坪草抗旱性研究[J].河南农业科学,2004(2):38-42.
    杨清,吕立堂,赵德刚.贵州地方稻种禾类苗期耐低氮胁迫的生理效应[J].贵州农业科学,2012,40(5):32-35
    杨时桐.类芦的生长与VA菌根的关系分析[J].亚热带水土保持,2008,20(4):16-19.
    杨中义,张发明,李永智,等.不同烤烟品种对氮素胁迫响应差异的研究[J].云南大学学报.2011,26(2):240-245.
    姚庆元,钟五常.江西赣南花岗岩地区的崩岗及其治理[J].江西师范学院学报,1966,(1):61-77.
    余利平,田立荣,张春雷,等.低磷胁迫对油菜不同生育期叶片光合作用的影响[J].中国农学通报,2008,24(12):232-236.
    郁慧,刘中亮,胡宏亮,等.干旱胁迫对5种植物叶绿体和线粒体超微结构的影响[J].植物研究,2011,31(2):152-158.
    袁梦雅.干旱胁迫对植物保护酶的影响[J].科技信息,2011,14:501.
    岳辉,曾河水,陈志彪.河田侵蚀区崩岗的生物治理研究[J].亚热带水土保持.2005,17(1):13-14,28.
    云岚,米福贵,云锦凤,等.六个苜蓿品种幼苗对水分胁迫的响应及其抗旱性[J].中国草地,2004,26(2):152-201.
    曾国华,谢金波,李彬粦,等.南方花岗岩区各种崩岗的整治途径[J].中国水土保持,2008,(1):16-18.
    张斌,秦岭.植物对低磷胁迫的适应及其分子基础[J].分子植物育种,2010,8(4):776-783.
    张承林,付子轼.水分胁迫对荔枝幼树根系与梢生长的影响[J].果树学报,2005,22(4):339-342.
    张春,何伟,周冀衡,等.施氮形态及方式对烤烟生长及烟碱含量的影响[J].湖北农业科学,2010,49(5):1075-1077.
    张道远,尹林克,潘伯荣.柽柳属植物抗旱性能研究及其应用潜力评价[J].中国沙漠,2003,23(3):252-256.
    张海娜.6-BA和氮素调控小麦、棉花叶片衰老的生理机制及衰老相关基因鉴定[D].河北:河北农业大学2008:18-23.
    张可炜,王贤丽,李坤朋,等.低磷胁迫对耐低磷玉米自交系幼苗光合特性的影响[J].山东大学学报(理学版),2007,42(3):89-94.
    张明生,杜建厂,谢波,等.水分胁迫下甘薯叶片渗透调节物质含量与品种抗旱性的关系[J].南京农业大学学报,2004,27(4):123-125.
    张木清,陈如凯,高三基,等.甘蔗基因型对水分胁迫的形态生理响应[J].中国农业科学,1997,30(6):72-77.
    张鹏,孙明高,宋尚文.干旱胁迫对板栗幼苗保护酶活性的影响[J].山东农业大学学报,2010,41(1):6-10.
    张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    张西露,刘明月,伍壮生,等.马铃薯对氮、磷、钾的吸收及分配规律研究进展[J].中国马铃薯,2010,24(4):237-241.
    张玉兰,王俊宇,马星竹,等.提高磷肥有效性的活化技术研究进展[J],土壤通报,2009,40(1):194-202.
    张芸.类芦对异质供磷的生理生态响应机制研究[D].福建农林大学,2011,4.
    张子义,伊霞,胡博,等.缺氮条件下燕麦根轴细胞的程序性死亡[J].中国农学通报,2010,26(8):175-178.
    张祖荣.植物根系提高土壤抗侵蚀能力的初步研究[J].渝西学院学报,2002,15(1):31-35.
    章爱群,崔雪梅,李淑艳,等.磷铝胁迫对玉米幼苗生长和养分吸收的影响[J].玉米科学,2010,18(1):70-76.
    赵平,韩杰,张从宇,等.不同基因型小麦对干旱胁迫响应的差异研究[J].种子,2011,30(1):25-29.
    赵平,孙谷畴,彭少麟.植物氮素营养的生理生态学研究[J].生态科学,1998,17(2):37-42.
    赵其国.我国红壤的退化问题[J].土壤,1995,27(6):281-286.
    赵欣龙.类芦保育的生理生态研究[D].北京林业大学:北京,2007,5.
    周朝彬,宋于洋,王炳举,等.干旱胁迫对胡杨光合和叶绿素荧光参数的影响[J].西北林学院学报,2009,24(4):5-9.
    朱万泽,王金锡,薛建辉.台湾桤木和四川桤木种源苗木对水分胁迫的生理响应[J].西北植学报,2005,25(10):1969-1975.
    祝鹏飞,宁平,曾向东,等.矿区土壤Pb的分布特征及植物修复应用性研究[J].工业安全与环保,2006,32(5):4-6.
    左文博,吴静利,杨奇,等.干旱胁迫对小麦根系活力和可溶性糖含量的影响[J].华北农学报,2010,25(6):191-193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700