用户名: 密码: 验证码:
高旋磁特性的LiZn铁氧体及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LiZn铁氧体材料具有饱和磁化强度可调范围宽、居里温度高、剩磁对应力敏感性低以及成本低廉等特点,是制造高功率微波移相器等微波/毫米波器件的优良材料。如Ka波段铁氧体移相器是高精度相控阵雷达的关键组件,要求应用于其中的LiZn铁氧体具有良好的旋磁性(饱和磁化强度高)、软磁性(矫顽力低)和矩磁性(剩磁比高),并具有低微波损耗(铁磁共振线宽和介电损耗低),以缩小器件体积、降低移相器驱动电流和插入损耗。基于上述,本文就高旋磁特性LiZn铁氧体的制备技术和静态磁性能、微波性能及其影响机理与应用展开研究。
     本文首先结合自蔓延燃烧工艺对LiZn铁氧体纳米粉Sol-Gel制备工艺技术进行研究,并对LiZn铁氧体纳米粉的烧结性能进行分析。结果表明:1)采用Sol-Gel自蔓延燃烧工艺可在较低温度下(约500℃)获得高活性的LiZn铁氧体纳米粉,适宜的柠檬酸与金属硝酸盐配比(r=1:1)是保证通过自蔓延燃烧获得单一晶相LiZn铁氧体的前提;2)在800℃煅烧时会出现Li挥发现象,导致Fe3+析出,形成Fe_2O_3另相;3)提高溶胶反应温度可稍降低自蔓延燃烧粉体颗粒尺寸和粉体比饱和磁化强度;4)Sol-Gel法自蔓延粉体的烧结样品气孔率较高(大于10%),密度较低(约4.4g·cm-3)。
     其次,对Sol-Gel工艺和氧化物工艺进行探索性比对研究,分析了氧化物工艺制备低矫顽力的高旋磁性LiZn铁氧体的优势。接着分别讨论了预烧温度、二次球磨时间、烧结条件和气氛对材料性能的影响。结果表明:1)预烧温度为800℃时,LiZn铁氧体粉料活性、烧结材料的显微结构理想,材料饱和磁化强度和剩磁比高,矫顽力和铁磁共振线宽相对较低;2)在1100℃烧结时,二次球磨时间大于4h时样品饱和磁化强度变化不大,但在1160℃烧结时,二次球磨时间大于4h时会引起样品饱和磁化强度下降,矫顽力上升。LiZn铁氧体适宜的二次球磨时间为3h;3)对于1wt%Bi_2O_3掺杂LiZn铁氧体,为了保证材料具有良好的矩磁特性,以便获取高剩磁,应在低于1100℃的环境中进行烧结;4)氧气氛烧结时,LiZn铁氧体材料电阻率提高非常显著;负压烧结可提高材料密度和饱和磁化强度,降低材料矫顽力。
     在氧化物工艺参数明确后,本文分析了LiZn铁氧体中离子分布和超交换作用对材料磁参数和温度特性的影响,还分析了缺铁量和富锂量对LiZn铁氧体微波损耗的影响。结果表明:1)Zn2+能够有效提高LiZn铁氧体的饱和磁化强度,降低材料矫顽力和铁磁共振线宽,但会引起剩磁比和居里温度下降。2)在主配方中适量缺铁能够有效抑制Fe2+,降低介电损耗,但会引起居里温度下降;3)在主配方中适量富锂可以降低介电损耗,但过量富锂会导致饱和磁化强度和剩磁下降,引起铁磁共振线宽和矫顽力增大。
     本文还展开了多种添加剂(V2O5、CuO、Bi_2O_3、Mn_3O_4和NiO)对材料晶粒生长、烧结特性及磁电性能的影响研究,分析了烧结温度和Bi_2O_3添加量对Li挥发的影响。结果表明:1)添加V2O5可以有效地促进烧结致密化和晶粒生长,降低H c,但非磁性的V5+离子取代会降低材料饱和磁化强度。适宜的V2O5添加量应该控制在0.25wt%以下;2)在1000~1100℃烧结时,添加CuO可有效地促进烧结致密化和晶粒生长,降低烧结温度,提高LiZn铁氧体密度、饱和磁化强度和剩磁,降低材料矫顽力,但矫顽力仍较高。在1130℃烧结时,CuO的助烧作用不明显;3)在1000℃烧结时,添加2.00~3.00wt%Bi_2O_3时能够获得低矫顽力的高旋磁性LiZn铁氧体。在1100℃烧结时,添加3.00wt%Bi_2O_3可使Li挥发量由8wt%降至1wt%;4)Mn_3O_4含量和添加方式对LiZn铁氧体性能影响较大。920℃烧结时在配方中添加适量的Mn_3O_4可提高LiZn铁氧体饱和磁化强度和剩磁,降低矫顽力,而在预烧料中掺Mn_3O_4对饱和磁化强度和剩磁影响不大。在950℃烧结时,两种样品矫顽力显著下降,且在配方中添加Mn_3O_4的样品矫顽力相对较高。两种方式添加适量的Mn_3O_4均能通过抑制Fe2+和Fe3+间的电子跃迁来提高材料电阻率,对于Li0.35Zn0.30Fe2.29MnxO4±δ铁氧体,当x=0.06时两种样品电阻率达峰值,且在配方中添加Mn_3O_4的样品电阻率较高。在1000℃烧结时,添加Mn_3O_4仍有助于提高材料电阻率,但与950℃烧结样品相比,样品电阻率因Li挥发而下降;5)少量NiO有助于提高材料剩磁比,但会导致材料矫顽力上升。
     最后,基于研制的高旋磁特性LiZn铁氧体材料进行应用研究。采用背脊式波导结构在高旋磁性LiZn铁氧体材料基础上进行移相器仿真设计和研制,结果表明:1)优化波导和铁氧体矩形环的横截面尺寸能够有效减小插入损耗;2)在-60~+100℃温度范围内,实现360°差相移所需的铁氧体矩形环长度至少应为25.5mm;(3)以29.6mm长的铁氧体矩形环研制的移相器可在25℃实现420°差相移,以34GHz为中心频率的6%带宽内插入损耗小于1.3dB,驻波比小于1.4。
LiZn ferrite, which performs a wide range of variable saturation magnetization, highCurie temperature, low stress sensitivity and low fabrication cost, is apt to be fabricatedinto microwave/millimeter wave devices, e.g. ferrite phase shifter. Ka-band ferrite phaseshifter is a crucial component of phase array radar, and the LiZn ferrite applied in itshould have excellent gyromagnetic property (high saturation magneticzation), goodsoft magnetic property (low coercivity) and rectangular characteristic (high remanenceratio). Furthermore, low microwave losses (low ferromagnetic resonance line width anddielectric loss) are required to reduce insertion loss. For the features given above, thepreparation process, the influence mechanism of the static magnetic characteristics andmicrowave properties, and its application of high gyromagnetic LiZn ferrite areresearched and analyzed.
     Firstly, the auto-combustion method used for preparation of LiZn ferrite nanopowder was researched and the sintering characteristic of LiZn ferrite nano powder wasanalyzed. The results are as follows.1) High activity LiZn ferrite nano powder can beobtained by auto-combustion process at low temperature (about500℃), and anappropriate ratio of citric acid and metal nitrates (r=1:1) is the prerequisite to obtain thesingle crystalline phase LiZn ferrite;2) LiZn ferrite nano powder is so active thatlithium volatilization ocurrs when sintered at800℃, which causes the Fe3+precipitatedand Fe_2O_3phase formed;3) When the reaction temperature off Sol-Gel is heighten, thepowder size and the specific saturation magnetization decrease slightly;4) The sinteredbulk sample, derived from self-propagating nano powder which is fabricated by theSol-Gel method, has high porosity (>10%) and low density (about4.4g·cm-3).
     And then, the comparation between Sol-Gel process and oxide process isperformed, And the oxide process was choosed to fabricate LiZn-ferrite materials usedfor Ka band phase shifter. The advantages of oxide process to fabricate LiZn-ferritewere analyzed. The influence of calcining temperature, second ball milling time,sintering conditions and atmosphere on the material performance was discussed. Theresults are as follows.1) When the calcining temperature is800℃, the LiZn ferrite powder posesses a high activity, and the sintered LiZn ferrite has a perfectmicrostructure, uniform grain size, less pore, high saturation magnetization and highremanence ratio, relatively low coercivity, and low ferromagnetic resonance linewidth;2) When sintered at1100℃, if the second ball milling time is more than4hours, it haslittle impact on saturation magnetization. But sintered at1160℃, saturationmagnetization decreases and coercivity increases when second ball milling time exceeds4hours;3) For the1wt%Bi_2O_3doped LiZn-ferrite, in order to get a rectangularproperty so that high remanence can be obtained, it should be sintered below1100℃;4)When sintered in oxygen atmosphere, the resistivity of LiZn-ferrite is enhancedobvously. Sintered at a negative air pressure is benefit to increase saturationmagnetization and decrease coercivity.
     The effect of Zn substitution on the ions distribution and superexchange interactionof LiZn ferrite was researched. The effect of ions distribution and superexchangeinteraction on the magnetic parameter and temperature characteristic was analyzed,together with the effect of iron deficiency and Li overdose on the microwave loss ofLiZn ferrite. The results are as follows.1) The Zn2+can enhance the saturationmagnetization and decrease the coercivity and ferromagnetic resonance linewidth, but ata price of decreasing the remanence ratio and Curie temperature;2) In the main recipe, amoderate iron deficiency can suppress the appeareance of Fe2+effectively. And then thedielectric loss can be decreased;3) A proper Li overdose in the main recipe can reducethe dielectric loss, but the existence of too much Li will cause a drop in the saturationmagnetization and remanence ratio, and then make the ferromagnetic resonancelinewidth and coercivity to increase.
     In addition, the paper carried out a series of additives research systematically,including V2O5, CuO, Bi_2O_3, Mn_3O_4, and NiO on grain growth, sintering characteristics,magnetic property. Furthermore, the effect of sintering temperature and Bi_2O_3concentration on Li volatilization is investigated. The results are as follows.1)V2O5caneffectively promote sintering densification and grain growth and decrease coercivity, butnonmagnetic V5+ions substitution can result in a decline in saturation magnetizationsignificantly. So V2O5concentration should be controlled below0.25wt%, in order toobtain high saturation magnetization LiZn ferrite materials;2)Sintering at1000~1100℃, CuO doping can effectively promote sintering densification and grain growth, reduce the sintering temperature, enhance density, saturation magnetization, andremanence, reduce coercive force, but coercive force is still higher. Sintering at1130℃,the CuO aid is not obvious;3)Sintered at1000℃, the appropriate dosage of Bi_2O_3is2~3wt%. Li volatilization in1100℃sintered magnet decreases from8wt%to1wt%by doping3wt%Bi_2O_3;4) content of Mn_3O_4and adding method have great impact onthe performance for LiZn ferrite. In920℃sintered sample, adding appropriate amountof Mn_3O_4into the raw materials can enhance saturation magnetization and remanence,and reduce coercive force. Whereas adding Mn_3O_4into the presintering powder affectslittle on saturation magnetization and remanence. Sintered at950℃, coercive force ofthe samples fabricated by the both Mn_3O_4adding methods decreases significantly,furthermore, the coercivity is higher when adding Mn_3O_4into the raw materials. For theboth adding methods, Moderate Mn_3O_4content can improve resistivity via inhibitingthe electron hopping between Fe2+and Fe3+. Both resistivities ofLi0.35Zn0.30Fe2.29MnxO4±δ(0.02≤x≤0.08) ferrite reach the peak value when x=0.06,furthermore, resistivity is higher when adding Mn_3O_4into the raw materials. Mn_3O_4stillhelps to improve resistivity sintering at1000℃, but the resistivity declines comparedwith that of950℃sintered samples;5)A small amount of NiO helps to improveremanence ratio, but it increases coercivity.
     Finally, the suitable main recipe and process are given and the application isinvestigated for high gyromagnetic LiZn ferrite. Simulation design for ferrite phaseshifter with back ridged waveguide is developed. The results are as follows.1)Modifying the section size of grooved waveguide and ferrite rectangular helps todecrease insertion loss;2) To insure differential phase shift being360°in the wholerange of-60~+100℃, the length of ferrite rectangular loop should be at least25.5mm;3) Ferrite phase shifter with29.6mm ferrite rectangular was fabricated, and420°differential phase shift was achieved at25℃. VSWR and insertion loss at33~35GHzis less than1.4and1.3dB, respectively.
引文
[1]黄永杰,李世堃,兰中文.磁性材料.成都:电子科技大学出版社,1994,255-268
    [2]都有为.铁氧体.南京:江苏科学技术出版社,1996,1-3
    [3] S. Tanabe, Y. Shiraki, K. Itoh. FEM analysis of thin film inductors used in GHzfrequency bands. IEEE Trans. Magn.,1999,35(5):3580-3582
    [4]姜寿亭,李卫.凝聚态磁性物理.北京:科学出版社,2003,84-85
    [5] M. Pardavi-Horvath. Microwave applications of soft ferrites. J. Magn. Magn. Mater.,2000,215-216:171-183
    [6] C. Surig, K.A. Hempel, D. Bonnenberg. Hexaferrite particles prepared by sol-geltechnique. IEEE Trans. Magn.,1994,30(6):4092-4094
    [7] T. Inui, N. Ogasawara. Grain-size effects on microwave ferrite magnetic properties. IEEETrans. Magn.,1977, MAG-13(6):1729-1744
    [8]都有为.铁氧体.南京:江苏科学技术出版社,1996,376-377
    [9] S. Dixon, D. Leo. Nonlinear properties of magnesium manganese ferrite. J. Appl. Phys.,1969,40:1414-1415
    [10]都有为.铁氧体.南京:江苏科学技术出版社,1996,395-402
    [11]黄永杰.磁性材料.北京:电子工业出版社,1994,97-100
    [12] L.G. Van Uitert. Dc Resistivity in the nickel and nickel zinc ferrite system. J. Chem.Phys.,1955,23:1883-1887
    [13] H.T. Hahn. The substitution of cobalt for nickel in stoichiometric nickel zinc ferrte. J.Appl. Phys.,1991,69:6192-6194
    [14] I. Bady. Microwave properties of ferrites. J. Appl. Phys.,1969,40:1420-1421
    [15] R. Manjula, V.R.K. Murthy, J. Sobhanadri. Electrical conductivity and thermoelectricpower measurements of some lithium-titanium ferrites. J. Appl. Phys.,1986,59:2929-2932
    [16] W.E. Hord. Microwave and millimeter-wave ferrite phase shifters.1989,http://ww.magsmx.com/links/Micro_MMW_PS.pdf
    [17]黄永杰.磁性材料.北京:电子工业出版社,1994,156-159
    [18] B.K. Kuanr, P.K. Singh, P. Kishan, et al. Dielectric and magnetic properties ofpolycrystalline cobalt-substituted LiTi ferrites. J. Appl. Phys.,1988,63:3780-3782
    [19] Z.C. Xu. Magnetic anisotropy and Mossbauer spectra in disordered lithium-zinc ferrites. J.Appl. Phys.,2003,93(8):4746-4749
    [20] S.A. Oliver, V.G. Harris, H.H. Hamdeh, et al. Large zinc cation occupancy of octahedralsites in mechanically activated zinc ferrite powders. Appl. Phys. Lett.,2000,76:2761-2763
    [21] J.J. Green, H.J. Van Hook. Microwave properties of lithium ferrites. IEEE Trans.Microwave Theory Tech.,1977, Short Papers:155-159
    [22] T.A. Dooling, D.C. Cook. Magnetic-field distributions in zinc-nickel ferrite. J. Appl.Phys.,1991,69:5352-5354
    [23] S. Dixon. Low-temperature nonlinear effects in high-saturation magnetization ferrites. J.Appl. Phys.,1967,38:1417-1418
    [24] P.D. Baba, G.M. Argentina, W. E. Courtney, et al. IEEE Trans. Magn.,1972, MAG28(1):83-94
    [25]余忠,陈代中,兰中文,等. Bi2O3对烧结LiZn铁氧体性能的影响.无机材料学报,2007,22(6):1173-1177
    [26] Teo, M.L.S., Kong, L.B., Li, Z.W., et al. Development of magneto-dielectric materialsbased on Li-ferrite ceramics. I. Densification behavior and microstructure development. J.Alloys Comp.,2008,459(1-2):557-566
    [27]贾利军,徐彬彬,靳伟,等.锂铁氧体的低温烧结及磁电特性研究.压电与声光,2005,27(3):277-279
    [28]石星.毫米波相控阵雷达及其应用发展.电讯技术,2008,48(1):6-12
    [29] E. Marsan, J. Gauthier, M. Chaker, et al. Tunable microwave device: status andperspective. Quebec:IEEE-NEWCAS the3rdInternational Conference,2005,279-282
    [30]蒋微波.相控阵雷达中的多晶微波铁氧体材料及器件.磁性材料及器件,2004,35(6):31-33
    [31]李士根.新型微波铁氧体器件的开发和应用.磁性材料及器件,2000,31(3):26-30
    [32]李士根.磁性材料和器件新应用的探讨:微波铁氧体组件.磁性材料及器件,1997,29(2):15-19
    [33]潘永吉.微波铁氧体器件的新近发展.磁性材料及器件,1999,30(6):22-30
    [34] P.P. Hankare, R.P. Patil, U.B.Sankpal, et al. Magnetic and dielectric properties ofnanophase manganese-substituted lithium ferrite. J. Magn. Magn. Mater.,2009,321:3270-3273
    [35] D.B. Rogers, R.W. Germann, R.J. Arnott. Effect of trivalent manganese on the crystalchemistry of some lithium spinels. J. Appl. Phys.,1965,36(8):2338-2342
    [36] T.M. Robinson. Spin-wave and effective linewidths of lithium ferrites. J. Appl. Phys.,1992,72(2):607-611
    [37] C.E. Patton, C.A. Edmondson, Y.H. Liu. Magnetic properties of lithium zinc ferrite. J.Appl. Phys.,1982,53(3):2431-2433
    [38] J. Dash, S. Prasad, N. Venkataramani, et al. Study of magnetization and crystallization insputter deposited LiZn ferrite thin films. J. Appl. Phys.,1999,86(6):3303-3311
    [39] J. Slama, A. Gruskova, R. Vicen. et al. Composite material with substituted Li ferrite forhigh-frequency applications. J. Magn. Magn. Mater.,2003,254-255:642-645
    [40] G.O. White, C.E. Patton. Magnetic properties of lithium ferrite microwave materials. J.Magn. Magn. Mater.,2009,9:299-317
    [41] C.J. Brower, C.E. Patton. Order-disorder effects in the anisotropy of substituted lithiumferrite. IEEE Trans. Magn.,1982, MAG-18(1):1619-1621
    [42] A.J. Pointon, R.C. Saull. Solid state reactions in lithium ferrite. J. Am. Ceram. Soc.,1969,52(3):157-160
    [43] D.H. Ridgley, H. Lessoff, J.D. Childress. Effects of lithium and oxygen losses onmagnetic and crystallographic properties of spinel lithium ferrite. J. Am. Ceram. Soc.,1970,53(6):304-311
    [44] M.L.S. Teo, L.B.Kong, Z.W.Li, et al. Development of magneto-dielectric materials basedon Li-ferrite ceramics. II. DC resistivity and complex relative permittivity. J. AlloysCompd.2008,459(1-2):567-575
    [45] M.L.S. Teo, L.B.Kong, Z.W.Li, et al. Development of magneto-dielectric materials basedon Li-ferrite ceramics. III. Complex relative permeability and magneto-dielectricproperties. J. Alloys Compd.2008,459(1-2):576-582
    [46] G.M. Argentina, P.B. Baba. Microwave lithium ferrites: an overview. IEEE MicrowaveTheory and Techniques,1974, MTT-22(6):652-658
    [47] C.E. Patton, C.A. Edmondson, Y.H. Liu. Magnetic properties of lithium zinc ferrite. J.Appl. Phys.,1982,53(3):2431-2433
    [48] Y.C. Venudhar, K.S. Mohan. Dielectric behavior of lithium-cobalt mixed ferrites.Materials Letters,2002,54:135-139
    [49] D. Ravinder, A.C. Reddy. Dielectric properties of Li-Ge ferrites. Mater. Lett.,2003,57(19):2855-2860
    [50] N. Gupta, S.C. Kashyap, D.C. Dube. Dielectric and magnetic properties ofcitrate-route-processed Li-Co spinel ferrites. Phys. Stat. Sol.,2007,204(7):2441-2452
    [51] V. Verma, V. Pandey, R. K. Kotnala, et al. Influence of silicon substitution on theproperties of lithium ferrite. J. Alloys Compd.,2007,443(1):178-181
    [52] V. Verma, V. Pandey, V. N. Shukla, et al. Remarkable influence on the dielectric andmagnetic properties of lithium ferrite by Ti and Zn substitution. Solid State Commun.,2009,149(39):1726-1730
    [53] Y.S. Cho, D.T. Hoelzer, V.L. Burdick, et al. Grain boundaries and growth kinetics ofpolycrystalline ferrimagnetic oxides with chemical additives. J. Appl. Phys.,1999,85(8):5220-5222
    [54] S.H. Gee, Y.K. Hong, M.H. Park, et al. Synthesis of nanosized (Li0.5xFe0.5xZn1-x)Fe2O4particles and magnetic properties. J. Appl.Phys.,2002,91(10):7586-7587
    [55] I. Soibam, S. Phanjoubam, H.B. Sharma. et al. Effects of cobalt substitution on thedielectric properties of Li-Zn ferrites. Solid State Communications,2008,148:399-402
    [56] I. Soibam, S. Phanjoubam, C. Prakash. Magnetic and Mossbauer studieds of Nisubstituted Li-Zn ferrite. J. Magn. Magn. Mater.,2009,321(18):2779-2782
    [57]王会宗. Li-Mg-Ti铁氧体的研究.电子学报,1979,11(1):64-70
    [58]王会宗.微波磁学及其应用的新进展.物理.1989,18(11):678-682
    [59]李国栋,王会宗,屈毅. Li-Ti系微波铁氧体磁性和铁磁共振研究.磁性材料及器件,1984,15(3):7-10
    [60]徐茂忠. X波段移相器用微波锂铁氧体材料的制备.现代雷达,1999,21(4):95-99
    [61]韩志全.多晶微波铁氧体材料中的铁磁弛豫过程研究.磁性材料及器件,2003,34(2):1-3
    [62]韩志全,廖杨,冯涛.氧化物法低温烧结LiZn(Ti)铁氧体的球磨工艺、性能及显微结构.磁性材料及器件,2007,38(4):18-20
    [63]廖杨,韩志全,冯涛. Ti取代的低温烧结的LiZn铁氧体特性.第十三届全国磁学和磁性材料会议论文集.湖北,2008,10:297-297
    [64]刘承勇,兰中文,蒋晓娜,等.预烧温度对LiZn铁氧体微结构和性能的影响.压电与声光,2008,30(5):604-607
    [65]刘承勇,兰中文,蒋晓娜,等.烧结温度对Li0.35Zn0.3Fe2.35O4铁氧体微结构和磁性能的影响.磁性材料及器件,2008,39(2):36-38
    [66] Yen-Pei Fu. Electrical conductivity and magnetic properties of Li0.5Fe2.5-xCrxO4ferrite.Mater. Chem. Phys.,2009,115(1):334-338
    [67]刘培元,余忠,蒋晓娜,等.缺铁量对LiZn铁氧体电磁性能的影响.磁性材料及器件,2009,40(4):23-26
    [68]曹晓非.低频锂锌铁氧体吸波材料及其在聚合物中分散技术的研究:[博士学位论文],山东:山东大学,2009,65-77
    [69] Y.P. Fu, S.H. Hu. Electrical and magnetic properties of magnesium-substituted lithiumferrite. Ceram. Int.,2010,36(4):1311-1317
    [70] Z.X.Yue, J. Zhou, X.H. Wang, et al. Preparation and magnetic properties oftitanium-substituted LiZn ferrites via a sol-gel auto-combustion process. J. Europ. Ceram.Soc.,2003,23:189-193
    [71]李俊蓉,李文兵,王会宗.溶胶-凝胶法制备纳米LiZn铁氧体的磁性能.磁性材料及器件,2005,36(3):30-32
    [72] Y.P. Fu, Y.D. Yao, C.C. Hsu. Microwave-induced combustion synthesis ofLi0.5Fe2.5-xAlxO4powder and their characterization. J. Alloys Compd.,2006,421(1-2):136-140
    [73]廖杨,韩志全,冯涛.用溶胶-凝胶法制备的低温烧结Ti取代LiZn铁氧体.磁性材料及器件,2009,40(4):41-46
    [74]韩志全,廖杨,冯涛.氧化物法与溶胶-凝胶法低温共烧NiCuZn铁氧体性能比较.磁性材料及器件,2008,39(4):33-36
    [75]韩志全,廖杨,冯涛. Sol-Gel法低温共烧LiZn铁氧体研究.磁性材料及器件,2007,16-19
    [76]韩志全.微波铁氧体材料的发展概况.磁性材料及器件,2000,31(5):32-35
    [77]李标荣.电子陶瓷工艺原理.武汉:华中工学院出版社,1986,59-140
    [78]宛德福,马兴隆.磁性物理学.北京:电子工业出版社,1999,360-385
    [79] X.N. Jiang, Z.W. Lan, Z. Yu, et al. Effect of sintering temperature and Bi2O3doping on Livolatilization in LiZn ferrites, The10thInternational Conference on Ferrites (ICF10).Chengdu, P. R. China: ICFIC,2008,10-13
    [80]王朝明,兰中文,余忠.预烧温度对高磁导率MnZn微结构和磁性能的影响.功能材料,2006,37(4):552-554
    [81]黄永杰,李世堃,兰中文.磁性材料.成都:电子科技大学出版社,1994,131-136
    [82]张怀武,刘颖力.抗电磁干扰材料及元器件工艺.成都:电子科技大学出版社,2001,40-98
    [83]孟庆新,梁宝岩,李海云.球磨时间对Nd:YAG烧结致密化的影响,热加工工艺,2007,36(14):12-14
    [84]周志刚.铁氧体磁性材料.北京:科学出版社,1981,352-363
    [85]黄永杰,李世堃,兰中文.磁性材料.成都:电子科技大学出版社,1994,1-5
    [86] G.O. White, C.A. Edmondson, R.B. Goldfarb, et al. High field magnetization studies inlithium-zinc ferrite. J. Appl.Phys.,1979,50(3):2381-2383
    [87]冯全源.矩形波导铁氧体移相器的温度特性.磁性材料及器件,2002,33(4):1-3
    [88] C. Y. Liu, X. N. Jiang, Z. W. Lan, et al. Effect of sintering temperature and Bi2O3contenton microstructure and magnetic properties of LiZn ferrites. J. Magn. Magn. Mater.,2008,320:1335-1183
    [89]孙科.高频功率转换用软磁铁氧体材料研究:[博士学位论文],成都:电子科技大学,2009,89-106
    [90]余忠,兰中文.添加CaO、V2O5对高频MnZn铁氧体性能的影响.材料研究学报,2004,18(2):176-180
    [91]胡军.高磁导率NiZn铁氧体低温烧结的氧化物法研究:[博士学位论文],浙江:浙江大学,2006,30-34
    [92] N. Rezlescu, E. Rezlescu, P.D. Popa, et al. Copper ions influence on the physicalproperties of a magnesium-znic ferrite. J Magn Magn Mater,1992,182(1-2):199-206
    [93] H. Sim, J.M. Xue, J. Wang. Structured calcium bismuth titanate by mechanical activation.Materials Letters,2004,58(10):2032-2036
    [94] H. Park, B.C. Kang, S.D. Bu. Lanthanum-subsituted bismuth titanate for use innon-volatile memories. Nature,1999,40(8):682-684
    [95]王智锟,余忠,蒋晓娜.锰取代对LiZn铁氧体的磁性能和介电性能研究.磁性材料及器件,2010,41(4):35-37
    [96]魏克珠,李士根,蒋仁培.微波铁氧体新器件.北京:国防工业出版社,1995,60-62
    [97]周雁翎,钱林,吕文中.用于相控阵雷达的新型铁电移相器.华中科技大学学报(自然科学版),2007,35(4):60-62
    [98]余桉,杨传仁,张继华.铁电薄膜移相器研究进展.材料导报,2007,21(11):20-24
    [99]郁元卫,朱健,姜理利,等. Ka波段0/π MEMS移相器.固体电子学研究与进展,2012,32(1):68-72
    [100]王治福.国外毫米波铁氧体移相器述评.火控雷达技术,1989,69:1-5
    [101]马昌贵.微波铁氧体材料与器件的现状与发展.磁性材料及器件,1994,25(3):41-46
    [102]黄彩华.矩形变形脊波导主模截止波长和特性阻抗计算.雷达与对抗,1997,3:16-22
    [103]温俊鼎.背脊波导锁式铁氧体移相器的实验研究.电子学报,1979,3:44-51
    [104]田锦昌.武向辉.史崇德,等.相控阵雷达铁氧体移相器设计.舰船电子对抗,2006,29(2):16-18
    [105]韦生文.高功率移相器粘接工艺初探.粘接,2004,25(1):48-50
    [106]魏克珠,李士根,蒋仁培.微波铁氧体新器件.北京:国防工业出版社,1995,130-140
    [107]阎润卿,李英惠.微波技术基础.北京:北京理工大学出版社,1988,14-15
    [108]于卫东,章日荣.宽频带脊波导±45°移相器的原理和设计.通信学报,1997,18(8):6-13
    [109]冯全源,任朗. Ku波段锁式铁氧体移相器.电子器件,2000,23(3):191-195
    [110]张江华,杜自成,李福利.背脊波导移相器高次模特性研究.火控雷达技术,2001,30(3):6-9
    [111]刘明宇,张江华.过尺寸毫米波铁氧体移相器的工程设计.现代现代雷达,2006,28(8):74-76
    [112]温俊鼎,韩军.正脊、背脊和矩形波导锁式铁氧体相移器的一般理论.电子学报,1987,15(6):43-48
    [113]张江华,刘明宇,李福利.过尺寸毫米波圆极化移相器.现代雷达,2002,24(6):75-77
    [114]王治福.国外毫米波铁氧体移相器述评.火控雷达技术,1989,69(2):1-5
    [115] A. Mizobuchi. Nonreciprocal remanence ferrite phase shifters using the groovedwaveguide. IEEE Trans. Microwave Theory Tech.,1978,26(12):1012-1016
    [116]温俊鼎,施美娟,熊永忠.等.背脊波导移相器的阻抗匹配研究.电子学报,1992,20(6):49-53
    [117]温俊鼎.车文荃.相控阵中的剩磁铁氧体移相器研究进展.现代雷达,1995,17(3):92-98
    [118]朱兆麒,陈清河,姚琪.背脊波导锁式铁氧体移相器的实验研究,电子学报,1979,9(3):44-51
    [119]黄永杰.磁性材料.北京:电子工业出版社,1994,156-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700