用户名: 密码: 验证码:
基于电站锅炉排烟余热的机炉烟气回热循环理论与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济发展与能源、环境之间的矛盾日益突出,火电机组的节能减排成为一个备受关注的问题。大容量的超(超)临界机组的普及应用,为提高热系统经济性提供了一种有效的手段,同时,有效的利用机组余热也是机组节能的重要技术措施,其中锅炉排烟余热数量巨大,具备资源化利用的条件,但并未被充分利用。锅炉排烟余热属于低温余热,可做为回热热量引入蒸汽回热系统,用于加热汽轮机凝结水,或通过加热空气预热器进口冷空气以引入锅炉,但这两种锅炉排烟余热利用方式产生的经济性,由于机组冷源损失的变化和计算方法的差异性,导致对其评价一直存在争议。在这种背景下,急需把电站锅炉排烟余热回收利用中重要的节能理论问题搞清楚,以找到锅炉排烟余热利用经济性的合理评价方法和利用的最佳途径,提高排烟余热的能量转换效率,进一步降低发电能耗。
     本文在机组原有蒸汽回热循环的基础上,通过引入烟气回热循环的概念,根据烟气余热的输入部位,建立了机侧烟气回热循环、炉侧烟气回热循环和机炉联合烟气回热循环的新概念。运用熵平衡原理及方法,建立了各种烟气回热循环的做功能力的热经济性评价模型,通过现场热力特性试验进行验证,系统地研究了锅炉烟气余热在机组内部利用过程中能量传递、转换的特性与机理,分析了锅炉烟气回热利用的热经济性评价机制,建立了机组中各热效率的有效的分析方法,澄清了学术界与工程界关于排烟余热机组内部回热利用评价的疑问。
     本文首先总结了电站锅炉排烟余热利用的各种途径,指出各种利用方法中存在的问题与局限性,确定以排烟热量在机组内部回热利用的方式做为余热利用的基本方式,讨论了现有的各种排烟余热利用节能分析理论与方法,深入分析了各种方法的优势及其存在的问题,根据电站锅炉排烟余热利用的特点,确立以熵产分析法与等效热降法做为本文理论分析与计算的研究方法,以利用两种方法理论的特色与优势,深入研究锅炉排烟余热利用的热经济性问题。
     在机组原有蒸汽回热循环的基础上,将回收的烟气余热做为回热热量用于蒸汽回热与空气回热中,提出了机侧烟气回热循环和炉侧烟气回热循环的概念。应用等效热降法对机侧烟气回热循环进行了局部定量分析,提出了抽汽热量实际做功效率与等效焓降当量增量的概念,并对原热经济性计算模型进行了整合,使其更易于理解与应用。依据三分仓回转空气预热器系统模型,对炉侧烟气回热循环进行了传热分析,通过引入烟气回热能量转换数的概念,确定了炉侧烟气回热循环的实际利用烟气热量,为准确分析其热经济性创造了前提条件。
     运用熵平衡的原理,建立了外部热量输入温差传热系统的熵产模型,为烟气回热循环的热经济性分析提供了一种简化可行的分析方法,据此对烟气热量利用各环节进行了熵产分析,建立了两种烟气回热循环的做功能力模型。依据局部定量分析热力参数规定原则,应用于某300MW机组,并对烟气余热利用各环节的做功能力损失进行了分析,表明机侧烟气回热循环的热经济性受到电站锅炉原始排烟温度的限制,炉侧烟气回热循环通过降低空气预热器冷端的较大熵产,克服了锅炉排烟温度对其热经济性的制约,但实际利用烟气热量的减少导致其热经济性低于机侧烟气回热循环。计算分析还表明等效热降法与熵产分析法计算结果具有一致性,但熵产分析法能揭示烟气余热利用中产生的不可逆损失在热力系统中的分布特征,更容易查找影响系统热经济性的主要因素,可以为减小不可逆损失、系统优化指明方向。
     运用机侧烟气回热循环热经济性评价模型,对分离式热管换热器与低压省煤器进行了热经济性分析比较,表明低压省煤器更具有节能优势;根据炉侧烟气回热循环的时段性特点,采用两种烟气回热循环在不同运行时段内单独运行的方式,对烟气回热循环系统进行了初步优化。
     针对安装于300MW机组中的机侧烟气回热循环系统,现场进行了系统投用与切除的热耗率对比试验。通过建立凝汽器变工况传热模型,在试验值对排汽压力的回归修正中消除了机侧烟气回热循环使汽轮机排汽量增加的影响,并将投用状态的试验结果修正至计算基准状态,结果表明试验修正值与模型计算值相比偏差为1.83%,验证了以熵平衡原理为基础的研究方法的正确性及热经济性计算模型的准确性。
     结合当前抗腐蚀的低温烟气换热元件应用研究取得显著进展的背景,在电站锅炉低温排烟余热深度利用中,从降低空气预热器冷端熵产与提高烟气利用能级的角度,将两种基本烟气回热循环有机结合,提出了机炉联合烟气回热循环(URC)的概念,并拓展为URC并联系统与URC串联系统。建立了机炉联合烟气回热循环的传热模型,通过引入回热能量转换数的概念,分析了机侧与炉侧两种烟气回热方式的联合机制,并建立了机炉联合烟气回热循环的热经济性评价模型。针对应用于某超临界600MW机组的计算结果,分析了烟气余热利用能级提升的机理,表明机炉联合烟气回热循环的热经济性高于机侧烟气回热循环,空气预热器单元熵产减少、热量做功能力增加是优化系统烟气利用能级提升的根本原因。
     为进一步明确排烟回热利用对机组的各种热效率的影响,在传统热效率的基础上,应用局部定量分析的思想,将排烟余热利用过程进行独立考核,提出了排烟回热利用的各当量热效率的概念,并根据效率的热力学原始意义,定义了广义热效率,对各种烟气回热循环进行了广义热效率分析,表明其可使复杂余热利用的分析更加简捷方便,为复杂的烟气余热利用方式的热效率分析提供了一种简捷有效的新思路与新方法。
     从实际运行的角度,对机炉联合烟气回热循环的各影响因素展开分析。依据磨煤机进口风温的调节原理,分析得到保证锅炉燃烧稳定性的条件。分析了URC并联系统在额定工况运行调节下与变工况运行时的热经济性变化规律,表明旁路烟气份额的调节可满足系统季节性调节的需求,为URC并联系统的运行调节提供了理论依据。进行了各烟气回热循环的热经济性对锅炉原始排烟温度的敏感性分析,表明URC串联系统与机侧烟气回热循环系统对原始排烟温度的敏感性高于URC并联系统,并由此确定了各种烟气回热循环的原始排烟温度适用区域,有利于设计中烟气余热利用形式的合理选择。相对于机组的厂用电率,通过引入烟气余热新增功率的当量厂用电率的概念,对各烟气回热循环对全厂净效率的影响进行了分析,为评价烟气余热利用系统的供电热经济性指标提供了依据。
With the increasingly prominent contradiction between economy development and energy and environment in China, energy conservation and emission reduction of thermal power units becomes an issue of great concern. The current wide use of large-capacity super criticality units provides an effective means of improving thermal efficiency. Meanwhile, to utilize the waste heat is an important measure to save energy. The huge amount of boiler flue gas waste heat can be used but haven't been fully used. The flue gas heat has a low temperature and can be conducted into either regenerative system to heat the condensate water or the boiler through heating the inlet air of air preheater. However, the economy of the two ways of boiler flue gas waste heat utilization (BFGWHU) is disputed due to the disagreement over the calculation methods of cold source loss. In this context, it's urgent to figure out the theoretical questions and find out exact evaluation methodology and best ways to utilize it, thus we can improve the energy conversion efficiency of flue gas waste heat and lower the energy consumption rate accordingly.
     Based on the original steam regenerative cycle, the concepts of flue gas regenerative cycles which include turbine side regenerative cycle (TRC), boiler side regenerative cycle (BRC) and united regenerative cycle (URC) are presented according to the inputting location of flue gas waste heat. Following the entropy equilibrium principle, working ability models of all the flue gas regenerative cycles which can evaluate thermal economy are built and verified by field tests. So the energy transfer mechanism of flue gas heat during utilization is systematically studied and the effective analytical method is put forward, thus the doubt in the evaluation of BFGWHU is clarified.
     In this thesis, various means of BFGWHU in power station are summarized, the drawbacks and limitations of which are discussed. Flue gas waste heat being regeneratively utilized inside the unit is determined as the basic mode. The main saving energy analysis theories and methods of BFGWHU in thermal plants are discussed, and the advantages and problems are analyzed. According to the characteristics of BFGWHU in power station, the entropy generation analysis and equivalent enthalpy drop method are used as the research basis of theoretical analysis and calculation. By combining the advantages of the two methods, the thermal economy of BFGWHU is deeply studied.
     On the basis of steam regenerative cycle, the recovered flue gas waste heat is used in steam regeneration and air regeneration, and the concepts of TRC and BRC are presented. TRC is quantitatively analyzed using the equivalent enthalpy drop method. The concepts of extraced steam actual working efficiency and equivalent increment of equivalent enthalpy drop are put forward. The original thermal economy computing model is modified for better understand and application. Based on trisector air preheater system model, the heat transfer of BRC is analyzed. Through the concept of flue gas regenerative heat recovery conversion numbers, the actual amount of utilized flue gas heat is determined, which lays the fundation of exact thermal economy analysis.
     Based on the entropy equilibrium principle, entropy generation model of external heat entering temprature difference heat-transfer system is built, which supplies a simplified and feasible method of thermal economy analysis. Working ability models of TRC&BRC are built using this method. Subject to the thermal parameter regulation of partial quantitative analysis, the application in a300MW unit shows that the thermal economy of TRC is confined by the original temperature of boiler flue gas while BRC is free of it, but the reduction in actual amount of utilized flue heat leads to lower thermal economy than TRC. Calculation shows that equivalent enthalpy drop method has good uniformity with entropy generation method. However, the latter can reveal the distribution characteristics of the irreversible loss in thermal system and can more easily find the key factor to affect thermal economy, thus can indicate the way to decrease the irreversible loss and optimize the system.
     Using the thermal economy evaluation models of TRC, the thermal economy of separated type heat pipe and low pressure economizer are respectively analyzed, which shows that the latter is better at energy saving. According to the time-interval feature of BRC, two flue gas regenerative cycles are combined in the manner of running separately in respective time-interval, the BFGWHU system is preliminarily optimized.
     The heat rate field tests with TRC on and off is conducted in a300MW unit. Except for the errer actor of the exhaust steam pressure change by TRC, the test result is corrected to calculation standard through variable working condition computing model of condenser. Comparison between the test and the calculated result shows that the deviation is1.83%, thus validating the accuracy of the research method and the thermal economy computing models.
     Currently the application research about low temperature flue gas heat transfer elements has made great progress. According to the analysis conclusion has been obtained, the concept of united regenerative cycle (URC) on boiler and turbine is presented to deeply utilize low temperature flue gas waste heat, which is a combination of TRC&BRC. URC can be extended to series system and parallel system. The heat transfer model of URC is built. The coupling mechanism of TRC&BRC is analyzed and thermal economy evaluation models are built through the concept of heat recovery conversion numbers. Considering the calculated results of a600MW unit, the mechanism of the flue gas heat energy level increasing is analyzed. It shows that the thermal economy of URC is higher than that of TRC, the root cause of which is the entropy generation reducing and the working ability increasing of the air preheater.
     To further learn the influence of BFGWHU on unit thermal efficiency, the BFGWHU process is discussed independently using the partial quantitative analysis thought, and the concept of equivalent unit efficiency of BFGWHU is presented. According to the original thermodynamic meaning of efficiency, the generalized unit efficiency is defined on the basis of traditional unit efficiency and analyzed with the use of BFGWHU system. This efficiency analysis provides a new simple and effective way for researches into more complex BFGWHU systems.
     The influencing factors of URC are analyzed from the perspective of actual running. According to the adjusting principle of air inlet temprature of coal mill, the conditions of ensuring boiler combustion stability are obtained. The thermal economy variation of URC parallel system operation adjustment under rated conditions and variable conditions is analyzed, which reveals that the adjustment of flue gas bypass portion is able to meet the requirement of seasonal characteristics. The sensitivities of various BFGWHU systems to original boiler exhaust gas temperature are analyzed, which shows that the sensitivity of URC series system and TRC is higher than that of URC parallel system, and the suitable original exhaust temperature range of each flue gas regenerative system is determined. The influences of flue gas regenerative systems on whole plant net efficiency are analyzed through the concept of equivalent auxiliary power rate, which provides foudation for evaluating the power supply thermal efficiency indices of BFGWHU systems.
引文
[1]BP世界能源统计年鉴2011.BP,2011.
    [2]中国国家统计局.中国能源统计年鉴2011[M].北京:中国统计出版社,2011.
    [3]崔民选,中国能源发展报告(2008) (能源蓝皮书)[M].北京:社会科学文献出版社,2008.
    [4]IEA.CO2 emissions from fuel combustion Highlights(2010 Edition)[R]. IEA,2010.
    [5]韩雪.哥本哈根中国声音[J].中国改革,2009,28(18):29-33.
    [6]中华人民共和国国家发展和改革委员会.世界能源消费现状和可再生能源发展趋势[R].北京:国家发展和改革委员会,2006.
    [7]十一五节能减排回顾.2011,9,27(http://www.sdpc.gov.cn).
    [8]国务院常务会议通过《节能减排“十二五”规划》.2012,7,12.(http://www.chinanews.com/gn/2012/07-11/4025771.shtml?_fin)
    [9]张卓元.以节能减排为着力点推动经济增长方式转变[J].经济纵横,2007,8:2.
    [10]杨立洲.超临界压力火力发电技术[M].上海:上海交通大学出版社,1990:21-22.
    [11]国家电力总公司.国家863计划项目“超超临界燃煤发电技术”课题研究报告[R].2005,9.
    [12]宋之平.超临界化-优化我国火电结构应从这里起步[J].中国工程科学,2002,4(2):33-36.
    [13]Seheflknecht G.Niederaus sem Power Station,Unit K,Cologne,Germany[J] Power,2003,147(6):78-89.
    [14]Markel K. Coal Power Program Roadmap[C].CCPI Round 2 Planning Workshop,Pittsburgh,PA,August 23,2003.
    [15]樊险峰,张志伦,吴少华.国产首台百万千瓦超超临界锅炉的启动调试和运行[J].动力工程,2008,28(4):497-501.
    [16]上海外高桥第三发电公司再创煤耗新低.201 1,2,23.(http://news.cntv.cn/20110222/104330.shtml).
    [17]樊泉桂,阎维平.锅炉原理[M].北京:中国电力出版社,2004.
    [18]张昌.热泵技术与应用.北京:机械工业出版社,2008,19-20.
    [19]王枫.电厂循环水余热利用方案的研究[D].北京:华北电力大学,2009.
    [20]曾华锋。HG_1100_25_4_YMl型锅炉排烟温度高的治理[J].热力发电,2012,41(4):83-84.
    [21]王健.热电厂锅炉烟气余热利用[J].能源研究与利用,2011(1):36-38.
    [22]秦建柱,杨炎锋,江建忠,等.HG-440/13.7-L.WM20锅炉排烟温度异常偏高原因分析及处理[J].热力发电,2009,38(6):104,101.
    [23]KITTO J B. Developments in pulverized coal fired boiler technology[C]. Presented at Missouri valley electric association engineering conference. Kansas City,1996.
    [24]Naoki H, Yoshitsugu W, Takeyoshi K, et al. Minimizing Energy Consumption In Industries By Cascade Use of Waste Energy[C]. IEEE Transactions on Energy Conversion,1999,14(3):795-801.
    [25]Tetsuya F, Masashi N, Masafumi F. An Optimum Design Method For Heat Recovery Steam Generator[C]日本机械学会论文集.B编,1998,64(627):3846-3852.
    [26]黄素逸,王晓墨.节能概论[M].武汉:华中科技大学出版社,2008.
    [27]Hung TC, Wang SK, Kuo CH, et al. A study of organic working fluids on system efficiency of an ORC using low grade energy sources[J]. Energy, 2010,35(3):1403-1411.
    [28]Srinivasan K K, Mago P J, Krishnan S R. Analysis of exhaust waste heat recoveryfrom a dual fuel low temperature combustion engine using an Organic Rankine Cycle[J]. Energy,2010,35(6):2387-2399.
    [29]Pedro J M, Chamra L M, Srinivasan K, et al. An examination of regenerative Organic Rankine Cycle using dry fluids[J]. Appl Therm Eng, 2008,28(8-9):998-1007.
    [30]Saleh B, Koglbauer G, Wendland M, et al. Working fluids for low temperature Organic Rankine Cycles[J]. Energy,2007,32(7):1210-1221.
    [31]Roy J P, Mishra M K, Misra A. Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle[J]. Energy,2010,35:5049-5062.
    [32]余敏,汤妙琴,杨茉.热、电、冷三联供系统节能分析[C].中国工程热物理学会工程热力学与能源利用学术会议论文集,2003:468-473.
    [33]林振娴.系统冷源领域节能及耦合机理研究[D].北京:华北电力大学,2011.
    [34]Resource Dynamics Corporation. Cooling,Heating and Power for Industry A Market Assessment[R]. August 2003.
    [35]Resource Dynamics Corporation. Integrated Energy Systems(IES)for Buildings:A Market Assessment[R]. August 2002.
    [36]Midwest CHP Application Center(University of Illinois at Chicago)and Avalon Consulting, Inc. Combined Heat & Power Resource Guide[R]. September 2003.
    [37]Phillip Fairchild(Oak Ridge National Laboratory). Integrated Energy Systems:Technologies, Program Structure, and Applications[R]. April 2002.
    [38]Pongsid S, Satha A, Supachart C. A Review of Absorption Refrigeration Technologies[J]. Renewable and Sustainable Energy Reviews,2001,5: 343-372.
    [39]王信茂.分布式能源系统发展相关问题探讨[J].电力技术经济,2007,19(3):6-8.
    [40]高从楷,陈国华.海水淡化技术与工程手册[M].北京:化学工业出版社,2004.
    [41]陈金增.船舶海水淡化及节能技术的研究[D].武汉:华中科技大学,2010.
    [42]Gustavo K, Fredi L. Low-temperature distillation proeesses in single and dual-purpose plants. Desalination,2001,136:189-197.
    [43]Maheshwari G P, Al-Ramadhan M, Al-Abdulhadi M. Energy requirement of water production in dual-purpose plants. Desalination,1995,101:133-140.
    [44]Darwish M A, El-Dessouky H T. The heat recovery thermal vapor-compression desalting system:a comparison with other thermal desalination Processes. Applied Thermal Engineering,1996,16(6):523-537.
    [45]赵恩婵,张方炜,赵永红.火力发电厂烟气余热利用系统的研究设计[J].热力发电,2008,37(10):66-70.
    [46]黄新元.电站锅炉运行与燃烧调整[M].北京:中国电力出版社,2003.
    [47]刘琦,孙文杰,杨宝宏.双进双出磨煤机辅助风的投运对锅炉排烟温度的影响[J].热力发电,2006,(7):31-35.
    [48]撒应禄,吴华森,顾凯棣.谏壁发电厂SG1000t/h直流锅炉降低排烟温度的研究与改造[J].锅炉技术,2000,31(5):25-32.
    [49]刘振宇.古交电厂#2锅炉排烟温度较高状况的分析[J].山西焦煤科技,2008,6:30-31.
    [50]岑可法.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:水利电力出版社,2004.
    [51]Garrett-Price B A. Fouling in heat exchangers[M]. New Jersey:Noyes Publications,1997.
    [52]Energy Research Center, L.U.. Successful Field Installations Point Out Benefits of Intelligent Sootblowing[J]. Lehigh energy update,2006,24.
    [53]Nakoneczny G J, Conrad R S, Scavuzzo S A. Implementing B & W's intelligent sootblowing System at MidAmerican Energy Company's Louisa Energy Center Unitl[C]. Western Fuels Conference, Albuquerque,2002.
    [54]Bruce RC. Ash monitoring system for coal-fired utility boilers[R]. CANMET Energy Technology Center Research Report, Ottawa,2007.
    [55]John W S. Intelligent clean on Lambton unit3[R]. Lehigh University Energy Research Center Research Report, USA,2003.
    [56]Valero A, Cortes C. Ash fouling in coal-fired utility boilers:monitoring and optimization of on-load cleaning[J]. Progress in Energy and Combustion Seines,1996,22 (2):189-200.
    [57]George W, Jim N, Don S, et al. Intelligent sootblowing within a global intelligent operations management system[C]. International Intelligent sootblowing Conference, USA,2002
    [58]林宗虎.强化传热技术[M].北京:化学工业出版社,2007.
    [59]薛福连.钎焊渗层螺旋翅片管省煤器[J].石油化工设备,2009,38(4):66-67.
    [60]杨大哲,黄新元,薛立志.H型鳍片管的传热与流动特性试验研究[J].锅炉制造,2008,(6):14-17.
    [61]李钧,阎维平,邢德山,等。某电厂670t/h锅炉省煤器磨损原因分析及改造设计[J].热力发电,2007,(4):100-104.
    [62]孙海天,马晓琴,史洪起.电站锅炉余热资源利用的研究[J].吉林电力,2001,(2):9-12.
    [63]骆青业,何立东,王庆峰.空气预热器U型接触式柔性密封结构的实验研究[J].北京化工大学学报,2011,38(3):108-112.
    [64]胡兰海,赵文军,张燕飞,等.回转式空气预热器双密封节能改造[J].热能动力工程,2005,20(2):208-210.
    [65]国家电力公司电力机械局.电站锅炉空气预热器[M].北京:中国电力出版社,2002.
    [66]张启,金小峰,王恩禄等.回转式空气预热器蓄热元件传热特性实验研究[J].锅炉技术,2011,42(3):6-8.
    [67]张静涛,陆海荣,崔凝.热电站热管式空气预热器的应用研究[J].电力科学与工程,2011,27(1):40-43.
    [68]Firouzfar E, Attaran M. A Review of Heat Pipe Heat Exchangers Activity in Asia[J]. Proceedings of World Academy of Science, Engineering and Technology,2008,30:639-644.
    [69]陆万鹏,孙奉仲,史月涛,等.前置式液相介质空气预热器经济性分析及热力系统优化[J].中国电机工程学报,2011,31(11):6-10.
    [70]西安热工研究所,东北电力局技术改进局.燃煤锅炉燃烧调整试验方法[M].北京:水利电力出版社,1974.
    [71]林万超.火电厂热系统节能理论[M].陕西:西安交通大学出版社,1994.
    [72]黄新元,王力平.火力发电厂低压省煤器系统最优设计的通用数学模型[J].电站系统工程,1999,15(5):20-24.
    [73]黄新元.火力发电厂低压省煤器系统的最佳水量分配[J].水动力学研究与进展A辑,2003,18(5):526-531.
    [74]黄新元,孙奉仲,史月涛.火电厂热系统增设低压省煤器的节能效果[J].热力发电,2008,37(3):56-58.
    [75]闫水保,马新灵.电站锅炉受热面能级分析[J].发电设备,2006(2):101-107.
    [76]李清海,张衍国,陈勇,等.垃圾焚烧电站空气预热器与低压省煤器的组合分析[J].动力工程,2006,26(6):854-858.
    [77]安恩科,马健越.加装低压省煤器对汽轮机相对内效率的影响[J].同济大学学报,2010,38(10):1492-1495.
    [78]马健越,安恩科.350MW电站低压省煤器优化设计[J].锅炉技术,2010,41(2):13-17.
    [79]丁乐群,张镭,杨楠.火电厂加装低压省煤器经济效益分析[J].东北电力大学学报,2006,26(1):26-30.
    [80]Wang C, He B, Sun S. Application of a low pressure economizer for waste heat from recovery the exhaust flue gas in a 600 MW power plant[J]. Energy, 2012,10:1016-1023.
    [81]黄嘉驷,李杨.低压省煤器水侧系统连接方案优化分析[J].热力发电,2011,40(3):62-64.
    [82]张建福,赵钦新,王海超,等.烟气余热回收装置的参数优化分析[J].动力工程学报,2010,30(9):652-657.
    [83]黄新元.龙口电厂#1号炉低压省煤器优化设计[J].锅炉技术,1998,(3):22-25.
    [84]张磊,曲利艳.SG50413型锅炉低压省煤器改造[J].山东电力高等专科学校学报,2004,7(3):41-42.
    [85]姜延灿,韦成国.200MW机组加装低压省煤器后性能试验分析[J].重庆电力高等专科学校学报,2008,13(4):1-4.
    [86]张锐,信丹丹,孙晓菲.热管技术在降低电站锅炉排烟温度中的应用[J].电站系统工程,2011,27(3):23-25.
    [87]胡志光,惠远峰,常爱玲,等.火电厂湿法烟气脱硫省却气-气换热器(GGH)的可行性研究[J].热力发电,2007(1):1-4.
    [88]赵鹏高,马果骏,王宝德等.石灰石-石膏烟气脱硫工艺不宜安装烟气换热器[C].火电厂烟气脱硫脱与硝技术研讨会论文集.吉林:中国电力企业联合会环保资源节约部,2005.
    [89]钟毅,高翔,霍旺,等.湿法烟气脱硫系统气-气换热器的结垢分析[J].动力工程,2008,28(2):275-278.
    [90]张三虎,包俊江.湿法烟气脱硫系统中影响脱硫效率的关键参数[J].环境工程,2009,27(2):22-24.
    [91]黄新元,孙奉仲.电站锅炉深度降低排烟温度的理论分析与计算[J].华电技术,2010,32(10):28-30.
    [92]李彦,武斌,徐旭常SO2、SO3和H2O对烟气露点温度影响的研究[J].环 境科学学报,1997,17(1):126-130.
    [93]朱予东,阎维平,黄景立,等.回转式空气预热器的冷段堵灰分析与进口风温计算[J].华北电力大学学报,2007,34(5):64-67.
    [94]张贤忠,蔡启舟,魏伯康,等.三种不锈钢在含硫酸的水砂介质中的耐腐蚀磨损性能[J].热加工工艺,2005,(9):6-8.
    [95]马艳红,黄元伟.高硅对不锈钢耐高温浓硫酸腐蚀行为的影响[J].上海金属,1999,21(5):27-33.
    [96]黄飞,王洪云.余热锅炉受热面低温腐蚀分析[J].锅炉技术,2000,31(7):18-20.
    [97]何立波,左军,林伯川,陈恩鉴.烟气湿法脱硫系统中热管的耐腐蚀实验研究[J].腐蚀科学与防护技术,2003,15(2):111-112.
    [98]司兆平.空气预热器耐低温露点腐蚀的改进[J].石油化工腐蚀与防护,1999,16(2):16-18.
    [99]顾国亮,杨文忠.ND钢、316L、20#碳钢在硫酸介质中的腐蚀行为[J].腐蚀与防护,2005,26(8):336-337.
    [100]曲逵,刘丰.热管换热器尾部受热面腐蚀分析及耐腐材料合理选用研究[J].能源研究与利用,2004,4:9-10.
    [101]孙传水12MnCuCr钢耐硫酸露点腐蚀性能的研究[J].材料保护,1998,31(10):10-12.
    [102]钱余海,李自刚,杨阿娜.低合金耐硫酸露点腐蚀钢的性能和应用[J].特殊钢,2005,26(5):30-34.
    [103]王维宗.露点腐蚀与防护[J].化工腐蚀与防护,1993,2:23-27.
    [104]Gomma G K. Corrosion of low-carbon steel in sulfuric acid solution in presence of pyrazole-halides mixture[J]. Materials Chemistry and Physics. 1998, (55):241-246.
    [105]Ganapathy V. Cold end corrosion:causes and cures[J]. Hydrocarbon Processing,1989, (1):57-59.
    [106]Ganapathy V. Solve Waste-fuel boiler corrosion problems in procurement[J]. Power Engineering,1991, (9):34-36.
    [107]Takizawa Y, Sugahara K. Corrosion-resistant Ni-Cr-Mo alloys in hot concentrated sulfuric acid with active carbon[J]. Materials Science and Engineering,1995, (A198):145-152.
    [108]Okamoto, Junichi, Usami, et al. Hiroyuki Sulfuric acid dew resistant steel S-TEN 1 tube[J]. Nippon Steel Technical Report,2003, (87):46-48.
    [109]Cheng X L, Ma H Y, Chen S H, et al. Corrosion of stainless steels in acid solutions with organic sulfur-containing compounds[J]. Corrosion Science 1999, (41):321-333.
    [110]Wire mesh-plastic composite material for heat exchangers[J]. Journal of Heat Recovery Systems,1981,1(2):153-161.
    [111]SmithJ, Boiston D. Heat exchanger having a plastics membrane[J]. Journal of Heat Recovery Systems,1986,6(1):11.
    [112]Brouwers H J H, Van Der Geld C W M. Heat transfer, condensation and fog formation in cross flow plastic heat exchangers[J]. International Journal of Heat and Mass Transfer,1996,39(2):391-405.
    [113]Electric Power Research Institute. Retrofits for improved heat rate and availability (low-level heat recovery economizer retrofits)[R]. Reading: Electric Power Research Institute,1992.
    [114]Kuppan T. Heat exchanger design handbook[M]. Marcel Deckker Inc,2000.
    [115]周云龙,张炳文.电站锅炉排烟热量回收节能技术[J].长春工业大学学报,2007,28(增刊):79-83.
    [116]姜媛媛,周少祥,周惠.烟气余热利用及脱硫的新方案[J].石油石化节能,2008,19(3):10-13.
    [117]黄新元.某电厂深度节能装置的设计、运行与试验[J].华电技术,2010,32(1):69-70.
    [118]赵之军,冯伟忠,张玲,等.电站锅炉排烟余热回收的理论分析与工程实践[J].动力工程,2009,29(11):994-997.
    [119]冯伟忠.未来低碳煤电技术的发展之思考[J].电力与能源,2011,1(1):18-21.
    [120]Takai, Satoshi. Energy saving by installation of boiler exhaust gas heat recovery system[J]. Kami Pa Gikyoshi/Japan Tappi Journal,2006,65(5): 7-13.
    [121]Bhattacharjee, Kaushik. Energy conservation opportunities in industrial waste heat recovery systems[J]. Energy Engineering,2010,107(6):7-13.
    [122]Ametek Chemical products. Fluorpolymers shell and tube heat exchangers, (www.ametekfpp.com).
    [123]叶涛.热力发电厂[M].北京:中国电力出版社,2009.
    [124]Vahidi, B, Tavakoli M R B, etc. Determining Parameters of Turbine, Model Using Heat Balance Data of Steam Power Unit for Educational Purposes[J]. Power Systems,2007,22(4):1547-1553.
    [125]HeXZ, MaPY, TangZG. A Comprehensive Heat-Equilibrium Analysis of Swiss-Roll Combustor and Its Thermal Energy Utilization System[J]. Energy and Environment Technology,2009, (1):503-506.
    [126]Zeng B, Lu XF, Liu HZ. Influence of CFB boiler bottom ash heat recovery mode on thermal economy of units[J]. Energy,2010,35(9):3563-3569.
    [127]Wang Q, Wang PH, Peng XY. Improving Algorithm Study on Drain Heat Utilization of Regenerative Heating System with Equivalent Enthalpy Drop Method[J]. Energy and Environment Teehnology,2009, (1):699-702.
    [128]Wang L, Zhang RQ, Shen W. Improving Study on the Impact to the Equivalent Enthalpy Drop Model with Exhaust Enthalpy Inaccuracy[C]. Modelling and Simulation-World Academic Union,2010:362-365.
    [129]Napalkov V V. On the theory of the linear partial differential equations with variable coefficients[J]. Doklady Akademii Nauk,2004,397(6):748-750.
    [130]Kida Y, Kida T. A numerical solution of linear variable-coefficient partial differential equations with two independent variables based on Kida's optimum approximation theory[C]. International Symposium on Information Theory and its Applications,2008, (6):1-6.
    [131]马芳礼.电厂热力系统节能分析原理[M].北京:水利电力出版社,1992.
    [132]胡吴,孙垦,钱宇,等.循环函数法在回热系统中的局部定量计算[J].华北水利水电学院学报,2008,29(4):45-50.
    [133]闫水保,于庆丽,张晓东.循环函数法、矩阵法与等效焓降法之间的联系[J].汽轮机技术,2009,51(4):249-251.
    [134]江峰,王培红.等效焓降与热平衡算法的一致性证明与验证[J].汽轮机技术,2008,50(4):261-264.
    [135]张卫彬,张春发,吴仲.多种分析方法在热经济性分析中的应用[J].汽轮机技术2008,50(4):259-260.
    [136]刘强,杨玲,辛洪祥,等.压水堆核电机组二回路热力系统矩阵分析法[J].热能动力工程,2009,24(3):391-394.
    [137]Wang HJ, Zhang CF, Zhao N. The on-line guide system for power plant based on parameter variance analysis and logical matrix[C]. Wavelet Analysis and Patten Recognition,2008. ICWAPR'08 International Conference,2008, 2:856-861.
    [138]Wang HJ,, Zhao N. The on-line guide system for energy-saving of Power Plant based on Parameter variance analysis and logical matrix[C]. Machine Leaning and Cybernetics,2008 International Conference,2008,2: 1025-1030.
    [139]Zhang CF, Chen HP, Liu JZ. Thermodynamic unit matrix analysis method for the thermal economics of coal fired Power plants shaft gland system [C]. TENCON'02 Proceedings.2002 IEEE Region 10 Conference on Computers, Communications, Control and Power Engineering,2002,3:1782-1786.
    [140]Jones J A. Entropy generation minimization[R]. CRC Press,1996.
    [141]Baehr H D工程热力学理论基础及工程应用[M].杨东华等译.北京:科学出版社,1983.
    [142]陈文威,李沪萍.热力学分析与节能[M].北京:科学出版社,1999.
    [143]K S福兰德T,福兰德S克斯罗.不可逆过程热力学—理论及应用[M].许茜,马一鸣,邱竹贤译.北京:冶金工业出版社,2001.
    [144]Bejan A. Entropy generation through heat and fluid flow[M]. New York: Wiley,1982.
    [145]Bejan A. Entropy generation minimization:The method and its applications[J]. Strojniski Vestnik/Journal of Mechanical Engineering,2001,47(8):345-355.
    [146]Bejan A. Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture[J]. International Journal of Energy Research,2002,26(7):545-565.
    [147]Cao YL, Xia WQ, Yu L. Optimal Performance of Thermoelectric Refrigeration System Using Entropy Generation Minimization Method[J]. Transactions of Nanjing University of Aeronautics & Astronaut,2005, (4):73-77.
    [148]Sekulie D P. The Second Law Quality of Energy Transformation in a Heat Exchanger[J]. Heat Transfer,1990, (112):295-300.
    [149]Zubair S M, Kadaba P U, Evans R B. Second-law-based thermodynamic optimization of two Phase heat exchanger[J]. Heat Transfer,1987, (109): 287-293.
    [150]Sekuuc D P. Entropy Generation in a Heat Exchanger[J]. Heat Transfer Engineering,1986,7(1):83-88.
    [151]朱明善.能量系统的 分析[M].北京:清华大学出版社,1985:129-179.
    [152]宋之平,王加璇.节能原理[M].北京:水利电力出版社,1984:164-195.
    [153]]布罗章斯基,B.W.(?)方法及其应用[M].王加璇译.北京:中国电力出版社,1996.
    [154]Feng X, Zhu XX. Combining pinch and exergy analysis for process modifications[J]. Applied Thermal Engineering,1997,17(3):249-261.
    [155]杨东华.(?)分析和能级分析[M].北京:科学出版社,1986.
    [156]Valero A. On causality in organized energy systems[C]. Pergamon Press. International Symposium:A future for energy,Florence,Italy,1990:387-420.
    [157]Valero A, Torres C, Serra L. A general theory of thermoeconomics:Part I-Structural analysis[C]. ASME Book 100331, ECOS'92 International Symposium, Zaragoza, Spain,1992:137-145.
    [158]]Valero A,Serra L,Lozano,M A. Structural theory of thermoeconomics[C]. Richter H J,editor. ASME Book H00874. International Symposium on Thermodynamics and the Design, Analysis and Improvement of Energy Systems, ASME Winter Annual Meeting,1993:189-198.
    [159]Kwon Y-H, Kwak H-Y, Oh S-D. Exergoeconomic analysis of gas turbine cogeneration systems[J]. Exergy,2001,1(1):31-40.
    [160]Zaleta-Aguilar A, Royo J, Rangel V H, et al. Thermo-characterization of power systems components:a tool to diagnose their malfunctions[J]. Energy, 2004,29(3):361-377.
    [161]Zaleta-Aguilar A, Range] V H, Royo J. Exergo-economic fuel-impact analysis for steam turbines sections in power plants[J]. International Journal of Thermodynamics,2003,6(3):133-141.
    [162]Reini M, Taccani R. Improving the energy diagnosis of steam power plants using the lost work impact formula[J]. International Journal of Applied Thermodynamics,2002,5(4):189-202.
    [163]Mazur V A. Fuzzy thermoeconomic optimization[J]..International Journal of Exergy,2005,2(1):1-13.
    [164]熊杰,张超,赵海波,等.基于热经济学结构理论的电站热力系统全局优化[J].中国电机工程学报,2007,27(26):65-71.
    [165]史德安,王顺启,王浩.暖风器运行参数对机组运行经济性的影响[J].热力发电,2008,37(4):65-67.
    [166]沈维道,童钧耕.工程热力学[M].北京:高等教育出版社,2007.
    [167]庄骏,张红.热管技术及其工程应用[M].北京:化学工业出版社,2000.
    [168]朱聘冠.换热器原理及计算[M].北京:清华大学出版社,1987.
    [169]沈士一,庄贺庆,康松,等.汽轮机原理[M].北京:中国电力出版社,2007.
    [170]ASME汽轮机性能试验规程(PTC6-1996)[M].电力工业部热力发电设备及材料质量检验测试中心译,1998.
    [171]锅炉机组热力计算标准方法[M].北京锅炉厂译.北京:机械工业出版社,1976.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700