用户名: 密码: 验证码:
分段式Halbach阵列永磁同步电机磁场分析及稳健性优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Halbach阵列因其特殊的充磁方式,具有磁场分布正弦度好、磁密幅值高、磁屏蔽等特性,在电机等电磁工程领域得到广泛应用。磁场是电机实现能量转换的媒介,了解并预测电机内磁场分布对认识与理解电机工作机制、分析与研究电机电磁性能、设计与优化电机结构具有重要意义。本文针对分段式Halbach阵列永磁同步电机,分析其主磁场与电枢磁场分布,研究齿槽效应对气隙磁场分布的影响,并提出稳健性优化设计方案。
     本文根据磁场解析基本理论,建立分段式Halbach阵列永磁同步电机空载气隙磁场解析模型。为便于分析应用,根据电机定、转子相对位置及转子芯材料属性对解析模型整理化简,有限元分析表明,解析模型能较好地描述气隙磁场分布。在此基础上,研究气隙磁密随电机结构尺寸、材料属性等参数的变化规律。
     永磁同步电机电枢铁芯上通常分布有齿、槽,致使气隙磁密波形畸变加重,电机运行性能恶化。为研究齿槽效应,基于子域模型法,建立电枢开槽情况下空载气隙磁场解析模型,并分析电机空载反电动势和齿槽转矩特性。有限元分析结果表明,解析模型能够真实反映电枢开槽对气隙磁场的影响,经与理想气隙磁密波形相比,电枢开槽后波形畸变更加严重。
     永磁同步电机正常运行时,电枢磁场将对主磁场产生影响。为研究电枢反应,相继建立电枢无槽和开槽时电枢磁场解析模型,有限元分析表明,解析模型预测电枢磁场分布准确性较好,且齿槽效应同样导致电枢磁场波形畸变严重。在此基础上,将主磁场与电枢磁场相结合,研究电机电磁转矩特性。
     Taguchi法是参数设计的有效工具,通过配置参数确保设计方案的稳健性。据此,利用Taguchi法确定电机结构尺寸、材料属性等参数最佳配置,改善气隙磁场分布,并检验各参数影响的显著性程度。研究结果表明,各参数的显著性程度因输出特性的不同而变化,且存在不同的最佳参数组合,具体确定时应权衡利弊,综合选择。
     粒子群优化技术是一种基于群智能理论的全局优化技术,其调节参数少,易于实现。由于算法性能优劣与参数配置合理性有关,首先利用Taguchi法对其进行参数设计,继而引入自调节与自进化机制,提高算法收敛速率和求解精度。最后,基于该优化技术对分段式Halbach阵列永磁同步电机进行优化设计,为有效抑制齿槽转矩提供稳健性设计方案。
The Halbach magnet array has potential features like providing sinusoidal fielddistribution, high flux density and self-shielding for its special magnetization, sincewhich more and more attraction has been paid to it in many electromagneticengineering domains such as electrical machines. The magnetic field is a medium tocovert mechanical energy to electrical energy or vice verse for an electrical machine.The understanding and prediction of the magnetic field distribution in electricalmachines are of great importance for the knowledge and comprehension of theirworking mechanism, the analysis and research of their electromagnetic performance,and the design and optimization of their structures. In this dissertation, the theory anddesign of segmented Halbach cylindrical permanent magnet synchronous machines(PMSMs) is mainly focused on, including the computation of the open-circuit andarmature-reaction magnetic field distribution, the prediction of the effect of statorslotting on the magnetic field distribution, and robust design.
     Based on the electromagnetic field theory, the analytical models for predictingthe magnetic field distribution in segmented Halbach magnetized machines aredeveloped. In order to ease the discussion and application, they are classified intointernal and external rotor machines having iron-cored or air-cored rotor. Predictedair-gap flux density distributions from the analytical models have been compared withfinite element (FE) calculations, and good agreement has been achieved. Further, therelationships between air-gap flux density and parameters, such as structureparameters and material properties of electrical machines, are investigated.
     Teeth and slots are usually distributed along stator bore in many PMSMs, whichdistorts the flux density distribution, and degrades the performance of PMSMs.Accurate analytical subdomain models for the open-circuit magnetic field in slotPMSMs are presented, accounting for the stator slotting effect. Comparison betweenanalytical and FE predictions illustrates that analytical models accurately reflect theinfluence of stator slotting effect, which makes the flux density waveform worse.Then, the back-electromotive force and cogging torque are obtained based on theanalytical models.
     The armature-reaction field has effects on the main field when a PMSM runs. Two analytical models for slotless and slot PMSMs are successively built forpredicting the armature-reaction field. The FE predictions confirm good accuracy ofthe two analytical models, and it is also shown that the slotting effect on thearmature-reaction field is significant. Based on the two models, the electromagnetictorque is calculated.
     The Taguchi method is a powerful tool for parameter design, which achievesrobustness through proper settings of certain parameters. Based on this method, theoptimal settings of structural parameters and material properties are identified toimprove the magnetic field distributions in segmented Halbach cylinders. Theexperimental results show that the effects of parameters and the optimal combinationsdepend on the problems, and it is necessary to weigh both advantages anddisadvantages and take all factors into consideration before making a decision.
     Particle swarm optimization (PSO) is a global optimization technique rooted inswarm intelligence, which has a few parameters and is easy to implement. TheTaguchi method is adopted to identify the settings of parameters for PSO since theyhave a large impact on optimization performance. A self-regulating mechanism and aself-evolving mechanism are introduced into PSO in succession to speed up theconvergence and improve the accuracy of solutions. Based on enhanced PSO, thecogging torque is minimized as the objective function, and the optimal settings ofparameters are identified for the robust design of a segmented Halbach cylindricalpermanent magnet synchronous machine.
引文
[1]汤蕴璆,史乃.电机学(第2版)[M].北京:机械工业出版社,2005.
    [2]唐任远.现代永磁电机理论与设计[M].北京:机械工业出版社,2008.
    [3] R.Krishnan. Permanent magnet synchronous and brushless DC motordrives[M].Boca Raton:CRC Press/Taylor&Francis,2010.
    [4] Zhu Z Q,Xia Z P,Howe D.Comparison of Halbach magnetized brushlessmachines based on discrete magnet segments or a single ring magnet[J].IEEETransactions on Magnetics,2002,38(5):2997-2999.
    [5]王秀和.永磁电机[M].北京:中国电力出版社,2007.
    [6] Zhu Z Q,Xia Z P,Howe D.Comparative study of electromagnetic performanceof alternative Halbach and conventional radially magnetized permanent magnetbrushless motors[C]. International Conference on Electrical Machines andSystems,2008,2778-2783.
    [7] Zhu Z Q,Xia Z P,Atallah K,et al.Novel permanent magnet machines usingHalbach cylinders[C].Proceedings of IPEMC2000,2000,903-908.
    [8] Zhu Z Q,Howe D.Halbach permanent magnet machines and applications: areview[J].IEE Electrical Power Application,2001,148(4):299-308.
    [9] Zhu Z Q.Recent development of Halbach permanent magnet machines andapplications[C].Power Conversion Conference,2007,K-9-K-16.
    [10] Trumper D L,Kim W J,Williams M E.Design and analysis framework for linearpermanent-magnet machines[J].IEEE Transactions on Industry Applications,32(2):371-379.
    [11] Wang H S,Ye Y,Wang Q L,et al.Analysis for ring arranged axial field Halbachpermanent magnets[J].IEEE Transactions on Applied Superconductivity,16(2):1562-1565.
    [12] Jang S M,Seo J C,Choi J Y.Experiment and characteristic analysis of disk typePMLSM with Halbach array[J].IEEE Trasactions on Magnetics,2005,41(10):3817-3819.
    [13] Trumper D L,Kim W J,Williams M E.Magnetic arrays.US Patent,5631618,1997.
    [14] Cho H S,Im C H,Jung H K.Magnetic field analysis of2-D permanent magnetarray for planar motor[J].IEEE Trasactions on Magnetics,2001,37(5):3762-3766.
    [15] Compter J C,Frissen P C M.Displacement devices.US Patent,WO01/8944,2001.
    [16]夏长亮,李洪凤,宋鹏,史婷娜.基于Halbach阵列的永磁球形电动机磁场[J].电工技术学报,2007,22(7):126-130.
    [17]李洪凤.Halbach阵列永磁球形电动机三维磁场分析[D].[博士学位论文],天津:天津大学,2008.
    [18] Li H F,Xia C L,Shi T N.Spherical harmonic analysis of a novel Halbach arrayPM spherical motor[C]. IEEE International Conference on Robotics andBiomimetics,2007,2085-2089.
    [19] Song P,Xia C L,Shi T N.Torque characteristic investigation of a permanentmagnet spherical motor[C].IEEE international Conference on Robotics andBiomimetics,2007,2101-2105.
    [20] Xia C L,Song P,Li H F,et al.Research on torque calculation method ofpermanent-magnet spherical motor based on the finite-element method[J].IEEETransactions on Magnetics,2009,45(4):2015-2022.
    [21]宋鹏,夏长亮,李洪凤等.永磁球形电动机转矩特性的数值计算与分析[J].天津大学学报,2009,42(7):608-613.
    [22]宋鹏.永磁球形电动机静态特性及有限元分析[D].[博士学位论文],天津:天津大学,2009.
    [23] Li B,Xia C L,Li H F,et al.Study on the position identification of a Halbacharray permanent magnet spherical motor[C].IEEE International Conference onRobotics and Biomimetics,2007,2080-2084.
    [24] Guo C,Xia C L.A dynamic decoupling control algorithm for Halbach arraypermanent magnet spherical motor based on computed torque method[C].IEEEInternational Conference on Robotics and Biomimetics,2007,2090-2094.
    [25] Xia C L,Guo C,Shi T N.A new algorithm for dynamic decoupling control ofHPMSM using fuzzy controllers[C].IEEE International Conference on IndustrialElectronics and Automation,2008,1031-1035.
    [26] Xia C L,Guo C,Shi T N.A Neural network identifier and fuzzy controller basedalgorithm for dynamic decoupling control of permanent magnet sphericalmotor[J].IEEE Transactions on Industrial Electronics,2010,57(8):2867-2878.
    [27]郭辰.永磁球形电动机动力学解耦控制及通电策略研究[D].[博士学位论文],天津:天津大学,2010.
    [28]胡之光.电机电磁场的分析与计算[M].北京:机械工业出版社,1982.
    [29]汤蕴璆.电机内的电磁场(第二版)[M].北京:科学出版社,1998.
    [30] Bloch F,Cugat O,Meunier G,et al.Innovating approaches to the generation ofintense magnetic fields: design and optimization of a4Tesla permanent magnetflux source[J].IEEE Transactions on Magnetics,1998,34(5):2465-3468.
    [31] Bj rk R,Bahl C R H,Smith A,et al.Optimization and improvement of Halbachcylinder design[J]. Journal of Applied Physics,2008,104(1):013910-1-03910-9.
    [32] Boules N.Prediction of no-load flux density distribution in permanent magnetmachines[J].IEEE Transactions on Industry Applications,1985,IA-21(3):633-643.
    [33] Boules N. Two-dimensional field analysis of cylindrical machines withpermanent magnet excitation[J].IEEE Transactions on Industry Applications,1984,IA-20(5):1267-1277.
    [34] Zhu Z Q,Howe D,Bolte E,et al.Instantaneous magnetic field distribution inbrushless permanent magnet dc motors, Part I: Open-circuit field[J].IEEETransactions on Magnetics,1993,29(1):124-135.
    [35] Kim U,Lieu D K.Magnetic field calculation in permanent magnet motors withrotor eccentricity: Without slotting effect[J].IEEE Transactions on Magnetics,1998,34(4):2243-2252.
    [36] Zhu Z Q,Howe D.Instantaneous magnetic field distribution in brushlesspermanent magnet dc motors, Part II: Armature-reaction field[J]. IEEETransactions on Magnetics,1993,29(1):136-142.
    [37] Zhu Z Q,Howe D,Chen C C.Improved analytical model for predicting themagnetic field distribution in brushless permanent-magnet machines[J].IEEETransactions on Magnetics,2002,38(1):229-238.
    [38] Markovic M,Perriard Y.Analytical formula for the torque/emf constant of aslotless BLDC motor[C]. IEEE Conference on Electromagnetic FieldComputation,2006,148.
    [39] Zhu Z Q, Ishak D, Howe D, et al. Unbalanced magnetic forces inpermanent-magnet brushless machines with diametrically asymmetric phasewindings[J].IEEE Transactions on Industry Applications,2007,43(6):1544-1553.
    [40] Marinescu M,Marinescu N.New concept of permanent magnet excitation forelectrical machines analytical and numerical computation[J].IEEE Transactionson Magnetics,1992,28(2):1390-1393.
    [41] Atallah K,Howe D,Mellor P H.Design and analysis of multi-pole Halbach(self-shielding) cylinder brushless permanent magnet machines[C]. EighthInternational Conference on Electrical Machines and Drives,1997,376-380.
    [42] Atallah K,Howe D.The Application of Halbach Cylinders to Brushless ACServo Motors[J].IEEE Transactions on Magnetics,1998,34(4):2060-2062.
    [43] Xia Z P,Zhu Z Q,Howe D.Analytical magnetic field analysis of Halbachmagnetized permanent-magnet machines[J].IEEE Transactions on Magnetics,2004,40(4):1864-1872.
    [44] Li H F,Xia C L,Song P,et al.Magnetic field analysis of a Halbach array PMspherical motor[C].IEEE International Conference on Automation and Logistics,2007,2019-2023.
    [45] Xia C L,Li H F,Shi T N.3-D magnetic field and torque analysis of a novelHalbach array permanent-magnet spherical motor[J].IEEE Transactions onMagnetics,2008,44(8):2016-2020.
    [46] Markovic M, Perriard Y. Optimization design of a segmented Halbachpermanent-magnet motor using an analytical model[J].IEEE Transactions onMagnetics,2009,45(7):2955-2960.
    [47] Meessen K J,Gysen B L J,Paulides J J H,et al.Three-dimensional magneticfield modeling of a cylindrical Halbach array[J]. IEEE Transactions onMagnetics,2010,46(6):1733-1736.
    [48] Bj rk R,Smith A,Bahl C R H.Analysis of the magnetic field, force, and torquefor two-dimensional Halbach cylinders[J].Journal of Magnetism and MagneticMaterials,2010,322(1):133-141.
    [49] De La Ree J,Boules N.Torque production in permanent-magnet synchronousmotors[J].IEEE Transactions on Industry Applications,1989,25(1):107-112.
    [50] Gieras J F.Analytical approach to cogging torque calculation of PM brushlessmotors[J].IEEE Transactions on Industry Applications,2004,40(5):1310-1316.
    [51] Zhu Z Q,Howe D.Analytical prediction of the cogging torque in radial-fieldpermanent magnet brushless motors[J].IEEE Transactions on Magnetics,1992,28(2):1371-1374.
    [52] Hwang S M,Eom J B,Hwang G B,et al.Cogging torque and acoustic noisereduction in permanent magnet motors by teeth pairing[J].IEEE Transactions onMagnetics,2000,36(5):3144-3146.
    [53] Zhu Z Q,Howe D.Influence of design parameters on cogging torque inpermanent magnet machines[J].IEEE Transactions on Energy Conversion,2000,15(4):407-412.
    [54] Zhu Z Q,Ruangsinchaiwanich S,Chen Y,et al.Evaluation of superpositiontechnique for calculating cogging torque in permanent-magnet brushlessmachines[J].IEEE Transactions on Magnetics,2006,42(5):1597-1603.
    [55] Aydin M,Zhu Z Q,Lipo T A,et al.Minimization of cogging torque in axial-fluxpermanent-magnet machines: Design concepts[J]. IEEE Transactions onMagnetics,2007,43(9):3614-3622.
    [56] Li Z,Jiang S Z,Zhu Z Q.Analytical methods for minimizing cogging torque inpermanent-magnet machines[J].IEEE Transactions on Magnetics,2009,45(4):2023-2031.
    [57] Zhu Z Q,Howe D.Instantaneous magnetic field distribution in brushlesspermanent magnet dc motors, Part III: Effect of stator slotting[J]. IEEETransactions on Magnetics,1993,29(1):143-151.
    [58] Zhu Z Q,Howe D.Instantaneous magnetic field distribution in brushlesspermanent magnet dc motors, Part IV: Magnetic field on load[J]. IEEETransactions on Magnetics,1993,29(1):152-158.
    [59] Zhu Z Q,Howe D.Electromagnetic noise radiated by brushless permanentmagnet dc drives[C].Sixth International Conference on Electrical Machines andDrives,1993,606-611.
    [60] Kim U,Lieu D K.Magnetic field calculation in permanent magnet motors withrotor eccentricity: With slotting effect[J].IEEE Transactions on Magnetics,1998,34(4):2243-2252.
    [61] Zarko D,Ban D,Lipo T A.Analytical calculation of magnetic field distributionin the slotted air gap of a surface permanent-magnet motor using complex relativeair-gap permeance[J].IEEE Transactions on Magnetics,2006,42(7):1828-1837.
    [62] Zarko D,Ban D,Lipo T A.Analytical solution for cogging torque in surfacepermanent-magnet motors using conformal mapping[J].IEEE Transactions onMagnetics,2008,44(1)52-65.
    [63] Boughrara K,Chikouche B L,Ibtiouen R,et al.Analytical model of slottedair-gap surface mounted permanent-magnet synchronous motor with magnet barsmagnetized in the shifting direction[J].IEEE Transactions on Magnetics,2009,45(2):747-758.
    [64] Ackermann B,Sottek R.Analytical modeling of the cogging torque in permanentmagnet motors[J].Electrical Engineering,1995,78(2):117-125.
    [65] Liu Z J,Li J T.Analytical solution of air-gap field in permanent-magnet motorstaking into account the effect of pole transition over slots[J].IEEE Transactionson Magnetics,2007,43(10):3872-3883.
    [66] Liu Z J,Li J T.Accurate prediction of magnetic field and magnetic forces inpermanent magnet motors using an analytical solution[J].IEEE Transactions onEnergy Conversion,2008,23(3):717-716.
    [67] Liu Z J,Li J T,Jiang Q.An improved analytical solution for predicting magneticforces in permanent magnet motors[J].Journal of Applied Physics,2008,103(7):07F135-1-07F135-3.
    [68] Dubas F, Espanet C. Analytical solution of the magnetic field inpermanent-magnet motors taking into account slotting effect: no-load vectorpotential and flux density calculation[J].IEEE Transactions on Magnetics,2009,45(5):2097-2109.
    [69] Zhu Z Q,Wu L J,Xia Z P.An accurate subdomain model for magnetic fieldcomputation in slotted surface-mounted permanent-magnet machines[J].IEEETransactions on Magnetics,2010,46(4):1100-1115.
    [70] Lubin T,Mezani S,Rezzoug A.Exact analytical method for magnetic fieldcomputation in the air gap of cylindrical electrical machines considering slottingeffects[J].IEEE Transactions on Magnetics,2010,46(4):1092-1099.
    [71] Lubin T,Mezani S,Rezzoug A.Improved analytical model for surface-mountedPM motors considering slotting effects and armature reaction[J].Progress inElectromagnetics Research B,2010,25:293-314.
    [72] Bellara A,Amara Y,Barakat G.Two-dimensional exact analytical solution ofarmature reaction field in slotted surface mounted PM radial flux synchronousmachines[J].IEEE Transactions on Magnetics,2009,45(10):4534-4538.
    [73] Wu L J,Zhu Z Q,Staton D.Subdomain model for predicting armature reactionfield of surface-mounted permanent-magnet machines accounting fortooth-tips[J].IEEE Transactions on Magnetics,2011,47(4):812-822.
    [74] Wu L J,Zhu Z Q,Staton D.An improved subdomain model for predictingmagnetic field of surface-mounted permanent magnet machines accounting fortooth-tips[J].IEEE Transactions on Magnetics,2011,47(6):1693-1704.
    [75] Wu L J,Zhu Z Q,Staton D.Analytical prediction of electromagnetic performanceof surface-mounted PM machines based on subdomain model accounting fortooth-tips[J].IET Electric Power Applications,2011,5(7):597-609.
    [76]任露泉.试验优化设计与分析(第二版)[M].北京:高等教育出版社,2003.
    [77]韩之俊.三次设计[M].北京:机械工业出版社,1992.
    [78] Khosrow Dehnad. Quality control, robust design, and the Taguchimethod[M].Pacific Grove,Calif:Wadsworth&Brooks/Cole Advanced Books&Software,1989.
    [79] Khaw John F C,Lim B S,Lim Lennie E N.Optimal design of neural networksusing the Taguchi method[J].Neurocomputing,1995,7:225-245.
    [80] Khosla A,Kumar S,Aggarwal K K.Identification of strategy parameters forparticle swarm optimizer through Taguchi method[J]. Journal of ZhejiangUniversity SCIENCE A,2007,7(12):1989-1994.
    [81] Liu C H,Chen Y L,Chen J Y.Ameliorated particle swarm optimization byintegrating Taguchi methods[C]. Proceedings of the Ninth InternationalConference on Machine Learning and Cybernetics,2010,1823-1828.
    [82] Irad B G. On the use of data compression measures to analyze robustdesigns[J].IEEE Transactions on Reliability,2005,54(3):381-388.
    [83] Yang W H,Tarng Y S.Design optimization of cutting parameters for turningoperations based on the Taguchi method[J].Journal of Materials ProcessingTechnology,1998,84:122-129.
    [84] Sreenivas Rao R,Prakashamb R S,Krishna Prasad K.Xylitol production byCandida sp.: parameter optimization using Taguchi approach[J]. ProcessBiochemistry,2004,39:951-956.
    [85] Sreenivas Rao R,Ganesh Kumar C,Prakashamb R S,Ganesh Kumar C.TheTaguchi methodology as a statistical tool for biotechnological applications: Acritical appraisal[J].Biotechnology Journal,2008,3:510-523.
    [86] Wang H T,Liu Z J,Chen S X.Application of Taguchi method to robust designof BLDC motor performance[J].IEEE Transactions on Magnetics,1999,35(5):3700-3702.
    [87] Lai Y S,Lin J C,Wang J J.Direct torque control induction motor drives withself-commissioning based on Taguchi methodology[J].IEEE Transactions onPower Electronics,2000,15(6):1065-1071.
    [88] Brisset S,Gillon F,Vivier S,et al.Optimization with experimental design: Anapproach using Taguchi’s methodology and finite element simulations[J].IEEETransactions on Magnetics,2001,37(5):3530-3533.
    [89] Kim S I,Lee J Y,Kim Y K.Optimization for reduction of torque ripple in interiorpermanent magnet motor by using the Taguchi method[J].IEEE Transactions onMagnetics,2005,41(5):1750-1799.
    [90] Omekanda Avoki M.Robust torque and torque-per-inertia optimization of aswitched reluctance motor using the Taguchi methods[J].IEEE Transactions onMagnetics,2006,42(2):473-478.
    [91] Shin W G,Lee S H.Determination of accelerated condition for brush wear ofsmall brush-type DC motor in using Design of Experiment (DOE) based on theTaguchi method[J].Journal of Mechanical Science and Technology,2011,25(2):317-322.
    [92] Yang B Y,Hwang K Y,Rhee S B,et al.Optimization of novel flux barrier ininterior permanent magnet-type brushless dc motor based on modified Taguchimethod[J].Journal of Applied Physics,2009,105(7):07F106-1-07F106-3.
    [93] Gaing Z L,Chiang J A.Robust design of in-wheel PM motor by fuzzy-basedTaguchi method[C].IEEE Power and Energy Society General Meeting,2010,1-7.
    [94] Kennedy J,Eberhart R C.Particle swarm optimization[C].Proceedings of IEEEInternational Conference on Neural Network,1995,1942-1948.
    [95] Eberhart R C,Shi Y H.Particle swarm optimization: Developments, applicationsand resources[C].Proceedings of IEEE Congress on Evolutionary Computation,2001,81-86.
    [96] Parsopoulos K E,Vrahatis M N.Recent approaches to global optimizationproblems through particle swarm optimization[J].Natural Computation,2002,1(2-3):235-306.
    [97] Hu X,Shi Y H,Eberhart R.Recent Advances in Particle Swarm[C].Proceedingsof IEEE Congress on Evolutionary Computation,2004,90-97.
    [98] Poli R, Kennedy J, Blackwell T. Particle swarm optimization. Anoverview[J].Swarm Intelligence,2007,1(1):33-57.
    [99]王慧敏.双馈风力发电机积分滑模励磁控制与混合粒子群优化设计[D].[博士学位论文],天津:天津大学,2010.
    [100] Kennedy J,Eberhart R C,Shi Y H.Swarm intelligence=群体智能[M].Beijing:Posts&Telecom Press,2009.
    [101] Shi Y H,Eberhart R C.A modified particle swarm optimizer[C].Proceedings ofIEEE International Conference on Evolutionary Computation,1998,69-73.
    [102] Shi Y H, Eberhart R C. Empirical study of particle swarmoptimization[C].Proceedings of IEEE Congress on Evolutionary Computation,1999,1945-1950.
    [103] Shi Y H, Eberhart R C. Parameter selection in particle swarmoptimization[C].Proceedings of7th International Conference on EvolutionaryProgramming,1998,591-600.
    [104] Carlisle,Dozier G.An Off-The-Shelf PSO[C].Proceedings of Particle SwarmOptimization Workshop,2001,1-6.
    [105] El-Gallad A,El-Hawary M,Sallam A,Kalas A.Enhancing the particle swarmoptimizer via proper parameters selection[C].Canadian Conference on Electricaland Computer Engineering,2002,792-797.
    [106] Trelea C.The particle swarm optimization algorithm: Convergence analysis andparameter selection[J].Information Processing Letters,2003,85(6):317-325.
    [107] Campana E F,Fasano G,Pinto A.Dynamic analysis for the selection ofparameters and initial population, in particle swarm optimization[J].Journal ofGlobal Optimization,2010,48(3):347-397.
    [108] Zheng Y L,Ma L H.,Zhang L Y,et al.On the convergence analysis andparameter selection in particle swarm optimization[C].Proceedings of IEEEInternational on Machine Learning and Cybernetics,2003,1802-1807.
    [109] Shi Y H, Eberhart R C. Fuzzy adaptive particle swarmoptimization[C].Proceedings of IEEE International Conference on EvolutionaryComputation,2001,101-106.
    [110] Eberhart R C,Shi Y H.Tracking and optimizing dynamic systems with particleswarms[C].Proceedings of IEEE Congress on Evolutionary Computation,2001,94-100.
    [111] Clerc M,Kennedy J.The particle swarm-explosion, stability and convergence ina multidimensional complex space[J]. IEEE Transactions on EvolutionaryComputation,2002,6(2):58-73.
    [112] Bratton D, Kennedy J. Defining a standard for particle swarmoptimization[C].Proceedings of IEEE Swarm Intelligence Symposium,2007,120-127.
    [113] Eberhart R C,Shi Y H.Comparing inertia weights and constriction factors inparticle swarm optimization[C].Proceedings of IEEE Congress on EvolutionaryComputation,2000,84-88.
    [114] Angeline P J. Using selection to improve particle swarmoptimization[C]. Proceedings of IEEE International Conference onComputational Intelligence,1998,84-89.
    [115] Higashi N, Iba H. Particle swarm optimization with Gaussianmutation[C].Proceedings of IEEE Swarm Intelligence Symposium,2003,72-79.
    [116] Jancic Stacey M, Grundy I. Particle swarm optimization withmutation[C].Proceedings of IEEE Congress on Evolutionary Computation,2003,1425-1430.
    [117] Andrews P S.An Investigation into Mutation Operators for Particle SwarmOptimization[C].Proceedings of IEEE Congress on Evolutionary Computation,2006,1044-1051.
    [118] Liang J J,Qin A K,Suganthan P N,et al.Comprehensive learning particle swarmoptimizer for global optimization of multimodal functions[J].IEEE Transactionson Evolutionary Computation,2006,10(3):281-295.
    [119] Krink T,Vesterstrom J S,Riget J.Particle swarm optimization with spatialparticle extension[C]. Proceedings of IEEE Congress on EvolutionaryComputation,2002,1474-1479.
    [120] Riget J,Vesterstrom J S.A diversity-guided particle swarm optimizer–theARPSO.EVALife Technical Report,Department of Computer Science,AarhusUniversity,2002.
    [121] Monson C K,Seppi K D.Adaptive diversity in PSO[C].Proceedings of8thAnnual conference on Genetic and Evolutionary Computation,2006,59-66.
    [122] Higashitani M,Ishigame A,Yasuda K.Particle swarm optimization consideringthe concept of predator-prey behavior[C].Proceedings of IEEE Congress onEvolutionary Computation,2006,434-437.
    [123] Kennedy J.Small Worlds and Mega-Minds: Effects of Neighborhood Topologyon Particle Swarm Performance[C]. Proceedings of IEEE Congress onEvolutionary Computation,1999,1931-1938.
    [124] Kennedy J, Mendes R. Population Structure and Particle SwarmPerformance.IEEE Int. Congress on Evolutionary Computation[C].Proceedingsof IEEE Congress on Evolutionary Computation,2002,1671-1676.
    [125] Clerc M.Particle Swarm Optimization[M].London:ISTE,2006.
    [126] Kennedy J.The particle swarm: Social adaptation of knowledge[C].Proceedingsof IEEE International Conference on Evolutionary Computation,1997,303-308.
    [127] Ozcanand E, Mohan C K. Particle swarm optimization: Surfing thewaves[C].Proceedings of IEEE Congress on Evolutionary Computation,1999,1944-1999.
    [128] Van den Bergh F.An analysis of particle swarm optimizers[D].[博士学位论文],Pretoria:Pretoria University,2002.
    [129] Kadirkamanathan V,Selvarajah K,Fleming P J.Stability analysis of the particledynamics in particle swarm optimizer[J].IEEE Transactions on EvolutionaryComputation,2006,10(3):245-255.
    [130] Salomon R.Re-evaluating genetic algorithm performance under coordinaterotation of benchmark functions[J].BioSystems,1996,39:263-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700