用户名: 密码: 验证码:
感应滤波理论及其在直流输电系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力滤波是提高电能质量的重要手段。无源滤波、有源滤波、混合滤波是目前普遍采用的滤波技术。论文就一种新的感应滤波技术开展了深入系统的研究。介绍了感应滤波技术的发展历程,从理论上分析了感应滤波的机理,给出了实现感应滤波的阻抗条件,通过论文的研究表明,将感应滤波应用于直流输电中将可以提高滤波效果、抑制谐波不稳定、减少无功需求、降低逆变状态下换相失败可能性、使得轻型直流输电系统展现各种优越性能。感应滤波在大功率整流系统中应用的测试结果初步验证了感应滤波技术的优越性。
     论文开展的基础性研究工作以及取得的创新性研究成果主要体现在以下几个方面:
     1、从理论上揭示了感应滤波的工作机理与电磁特性
     提出了一种应用“超导”闭合回路磁链守恒原理和磁势平衡原理对感应滤波的工作机理进行理论分析的方法。分别从场、路两方面揭示了感应滤波实施需要满足的特定次谐波频率下的“超导”闭合回路条件。提出了感应滤波的场路耦合电磁分析法,建立了场路耦合模型,对感应滤波装置的电磁特性进行了比较全面的分析。研究发现,就本质而言,感应滤波充分利用了变压器固有的安匝平衡特性,通过构建特定次谐波频率下的“超导”回路线圈,实现对特定次谐波电流与换流变压器网侧绕组及交流电网的隔离与屏蔽;就表现形式而言,感应滤波的实施抑制了特定次谐波频率下变压器铁心中的磁谐波磁通,这有利于从根本上改善谐波对换流变压器造成的诸如绝缘、损耗、振动等危害。
     2、提出了非理想参数下感应滤波性能的灵敏度分析方法
     根据多绕组变压器理论和电路基本原理,推导并建立了含电磁约束关系的感应滤波换流变压器解耦等值电路及相应的数学模型,应用系统灵敏度理论,研究了谐波源扰动、电网参数波动、以及内部阻抗参数摄动对感应滤波性能的灵敏度特性。研究发现,感应滤波不易与电网系统阻抗发生串/并联谐振;只要按照常规换流变压器设计网侧绕组等值阻抗使得滤波绕组等值阻抗接近为零、调谐装置工作在调谐点,就能保证感应滤波的滤波效果。
     3、建立了基于感应滤波的直流输电谐波传递数学模型
     提出了基于感应滤波的直流输电新型换流站的等值电路和谐波传递解析数学模型建立方法。首先,针对新型换流站特有的主电路拓扑,建立了以阻抗特征(包括基波阻抗与谐波阻抗)为表达方式的等值电路;建立了反映感应滤波对HVDC系统谐波分布特性影响的谐波传递模型:通过对换流器换相过程进行理论分析,得到了反映换流器谐波特性的阀电流时域表达式;结合谐波传递数学模型,对感应滤波换流变压器绕组谐波电流特性进行了研究。统一化的等值电路及相应数学模型的建立,为深入开展感应滤波对直流输电谐波特性及其它技术特性的研究奠定了理论基础。
     4、揭示了感应滤波抑制直流输电谐波不稳定的机理
     感应滤波可以双向抑制换流器交流侧并联谐振电流,通过对2次谐波实施感应滤波,还可以抑制直流偏磁引起的饱和型谐波不稳定,这就是感应滤波抑制直流输电谐波不稳定的机理。论文采用频率扫描的方法,从互补谐振的抑制角度揭示了其工作机理。建立了用于分析直流输电谐波不稳定的阻抗等值网络,并根据等效性原则建立了可与CIGRE直流输电标准测试系统作对比研究的基于感应滤波的直流输电系统测试系统;采用电力系统电磁暂态仿真工具PSCAD/EMTDC对这两种测试系统的阻抗网络在频域范围内进行扫描。研究发现,感应滤波的实施在一定程度上修改了换流器交流侧等值阻抗的并联谐振状态,使得低次并联谐振频率向高频方向漂移,从根本上避开了交直流侧互补谐振的频率点,这对于消除直流输电谐波不稳定发生的潜在性,增强直流输电交流系统的强度,提高直流输电运行的可靠性和稳定性是非常有益的。
     5、从理论上揭示了感应滤波具有的阀侧绕组无功补偿的优越特性
     根据多绕组变压器理论和基尔霍夫电流定律,对感应滤波的直流输电换流器所具有的阀侧绕组无功补偿特性进行了理论推导和矢量分析;得到了计及无功补偿度的新型换流变压器及其感应滤波系统等值阻抗表达式,通过频率扫描法对其阻抗频率特性进行了深入的研究,通过引入谐波参与因子,定义并详细研究了感应滤波对换流器等值换相电抗的影响,并进一步地研究了感应滤波对运行于不同控制模式时的换流器无功功率特性的影响。研究工作揭示了感应滤波在无功补偿方面的优越特性:等值换相电抗降低,直流输电各自控制模式下的无功消耗均较电流源型换流器低。动模试验结果验证了相关的研究结果。
     6、揭示了逆变状态下感应滤波增强换流器稳定运行能力的机理
     通过对正常运行、对称性故障运行以及非对称性故障运行下,感应滤波的实施与否对逆变器换相特性的影响进行了机理性的研究;其次,基于CIGRE直流输电标准测试系统和与之等值的基于感应滤波的新型直流输电测试系统,对新型和传统换流器的稳态响应特性进行了研究,揭示了感应滤波的实施对换流器控制性能的影响;最后,对采用感应滤波的新型直流输电在故障运行条件下的暂态响应特性进行了电磁暂态仿真测试,其结果与CIGRE直流输电标准系统的测试结果相比较,揭示了基于感应滤波的新型直流输电在暂态特性方面的优点。研究结果揭示了感应滤波在提升逆变器关断角裕度、降低逆变器换相失败概率、进而提升逆变器稳定运行能力方面具有的优点。
     7、建立了基于相分量法的感应滤波换流变压器数学模型
     为了从电路原理角度分析由感应滤波技术构建的新型换流变压器及其配套全调谐装置的运行特性,整定这类新型换流变压器的保护判据,论文在此部分提出并建立了基于相分量法的感应滤波换流变压器数学模型。该模型以变压器耦合电路原理为基础,包括了基本模型、节点拓展模型、支路拓展模型三大类,便于在实际应用中灵活选择。在此基础上,提出了基于模型法的感应滤波换流变压器保护方案,并初步整定了相应的保护判据。通过对感应滤波换流变压器的多种运行状态进行仿真计算,验证了保护方案和保护判据的正确性。
     8、提出了由感应滤波技术构建的轻型直流输电新模式
     具体地研究了电压源型感应滤波换流器应用于轻型直流输电的可行性及相关的技术特性。通过电磁暂态仿真计算,初步揭示了感应滤波对轻型直流输电滤波特性、换流器PQ特性、双向潮流控制特性、电压稳定性、以及故障恢复特性等方面的运行特性,对感应滤波理论在现代直流输电领域的进一步应用拓展进行了有益探讨。
     9、对感应滤波在工业直流系统中的工程实践进行了研究
     对感应滤波首次应用于直流415V,22kA,交流35kV,10080kVA整流系统的工程进行了测试研究。介绍了基于感应滤波的新型工业直流供电系统的电气主接线、感应滤波整流变压器及其配套全调谐装置的现场安装图、以及主要的设计参数;最后,对基于感应滤波技术的新型工业直流系统的实际运行情况进行了现场测试。测试结果表明:实施感应滤波,使得整流系统滤波效果好,功率因数高,系统效率高,铁心谐波磁通得到抑制。验证了本论文相关理论成果的正确性。
     论文通过系统深入地研究感应滤波理论及其在直流输电中的应用,构建了一套比较完善的理论与应用研究体系,并结合直流输电在实际应用中存在的主要问题,通过深入性研究,揭示了感应滤波对直流输电技术特性的影响及其内在作用机制。研究成果深化了感应滤波的技术理论,并拓宽了感应滤波的应用范围,这对于积极推动电力滤波技术和直流输电技术的理论创新与技术发展具有重要的科学意义。
Power filtering technology is the key approach for the improvement of power quality (PQ). The general filtering methods mainly include passive power filtering, active power filtering, and hybrid power filtering. Different from these, this thesis presents a new inductive filtering method. Its development is described, and its special filtering mechanism is revealed. The impedance conditions for the implementation of inductive filtering method is also obtained. From the overall research results, it can be seen that the application of inductive filtering method into DC transmission can improve the filtering performance, suppress the harmonic instability of AC/DC systems, reduce the requirement of reactive power, enhance the commutating reliability of the inverter, and so on. Besides these, the inductive filtering method also represents kinds of technical superiorities when applied into HVDC-Light systems. The engineering application in a large-power DC supply system validates the technical superiorities that inductive filtering can achieve.
     The performed fundamental research and the related innovative achievement in this thesis are summarized as follows:
     (1) The operating mechanism and the electromagnetic chareacteristics of the inductive filtering is revealed in theory. In this section, the theoretical analysis method, which applies the superconductivity constant-flux-linkage theorem and the core-balance principle to analyze the working mechanism of the inductive filtering, is proposed, and then the superconductivity closed-loop condition under the specific frequency, which should be satisfied for the implement of the inductive filtering, is revealed from the magnetic and the circuit side, respectively. Furthermore, the field-circuit coupled electromagnetic analysis method for the inductive filtering is proposed and the corresponding field-circuit coupled model is established. Based on this, the electromagnetic characteristics of the inductive filtering equipment are calculated and analyzed in detail. From the research results, it can be found that the inductive filtering efficiently utilizes the inherent ampere-turns balance characteristic that transformer has, and through constructing the superconductivity closed-loop winding, it realizes the separation of the specific harmonic currents from the power grid and the grid winding of the converter transformer. Meanwhile, the implement of the inductive filtering changes the magnetic-circuit relationship of the transformer under the specific harmonic frequency, and suppresses the harmonic magnetic potential to a certain extent, which is advantage to reduce the harm of the harmonic on the converter transformer such insulation, harmonic loss, vibration, and so on.
     (2) A sensitivity analysis method is proposed to analyze the inductive filtering performance under non-ideal operating conditions. According to multi-winding transformer theory and basic circuit principle, the decoupling circuit model and the corresponding mathematical model for the inductive filtering converter transformer with electromagnetic constraint relation are established. Furthermore, based on the system sensitivity theory, the sensitivity characteristics of inductive filtering effect on the disturbances of harmonic source, network parameters, and inter-impedance parameters are studied in detail. From the research results, it can be found that the inductive filtering can avoid the series/parallel harmonic resonance with the system impedance to a certain extent. On the other side, as long as the reasonable configuration on the three kinds of impedances, that is the equivalent impedance of the grid winding, the filtering winding and the tuned branches, it can promote the interaction among such impedances, and achieve fine inductive filtering performance.
     (3) The mathematical model is established to analyze harmonic transfer chareacteristics of the new inductive filtering based DC transmission system. A unified equivalent-circuit model and the harmonic transfer model for the inductive filtering based HVDC converter station are established. Firstly, the equivalent-circuit decoupling model, which is expressed by the fundamental and the harmonic impedances, is established. Then, through the detail mathematical modeling, the harmonic transfer model, which can be used to analyze the distribution characteristic of harmonic in HVDC system, is established. Finally, the effects of the inductive filtering on the harmonic transfer characteristic of the HVDC system, and the related inter-action mechanism of such effects, are revealed based on the proposed models. The establishment of the unified equivalent-circuit and the related mathematical model provides the theoretical basis for the technical research on the inductive filtering based DC transmission system.
     (4) The working mechanism on suppressing HVDC harmonic instability by way of inductive filtering is revealed. By using frequency scanning method, the working mechanism is discussed from the concept of the complementary resonance. Firstly, the impedance equivalent network for the HVDC harmonic instability analysis is established. Then, by using PSCAD/EMTDC to scan such network within frequency domain range, the potential advantages that inductive filtering method has for the suppression of the harmonic instability is revealed from the mechanism side of harmonic instability generation. Finally, the working mechanism that use inductive filtering method to bi-suppress the parallel resonance current is theoretically analyzed. From the research results, it can be found that the implement of inductive filtering modifies the parallel resonance state of the equivalent impedance at the AC side of the converter, and makes such resonance frequency shift to the higher frequency direction, which is advantage to avoid the resonance point between the AC-and the DC-side. In this way, it benefits to the reduction of HVDC harmonic instability occurrence, the increase of the strength of the AC side of the HVDC system, and the improvement of the stable operation of HVDC system.
     (5) The characteristic that inductive filtering based HVDC converter has about reactive power compensation at the valve winding side is theoretically analyzed. Firstly, according to multi-winding transformer theory and Kirchhoff's current law, such characteristic is studied by ways of mathematical modeling and vector analysis. Furthermore, it obtains the expression on equivalent impedance calculation for the new converter transformer and the inductive filtering system with considering compensation degree of the reactive power, and then its impedance-frequency characteristic is studied using frequency scanning method, and its change characteristic influenced by the compensation degree under different frequency is revealed. Through introducing the harmonic participation factor, this thesis defines the effects of inductive filtering on the equivalent commutating reactance of the converter, and further studies the reactive power characteristic of the inductive filtering based converter operating at the different control modes. Such research reveals a series of advantages that inductive filtering method has for the reactive power balance of the HVDC converter.
     (6) The ability of enhancing operating reliability of HVDC inverter is discussed in theory. The influence of inductive filtering on the commutating characteristic of the inverter is studied under the various HVDC operating states such as normal operation, symmetry or asymmetry fault operation. By comparative study with CIGRE HVDC benchmark test system, the influence of inductive filtering on the converter control performance is studied. Furthermore, through the simulation research on the transient response of the inductive filtering based HVDC transmission system under different fault operating conditions, it reveals the related advantages of the new HVDC system on the transient characteristics. From the research results, it can be found that the implement of the inductive filtering can increase the turn-off angle margin of the inverter, reduce the commutation failures, and increase the stability of the HVDC inverter.
     (7) The mathematical model of the inductive filtering converter transformer is established based on the phase component method. To analyze the operating characteristics of the new converter transformer and the related full-tuned branches from the side of the circuit principle, such mathematical model is established. The model is based on the transformer coupling-circuit principle, and contains the basic model, the node expansion model, and the branch expansion model, which is convenient to the flexible selection in the practice application. Based on this, the protection scheme for the inductive filtering converter transformer is proposed based on the model method, and the protective criterion is set initially. The simulation on the various operating states of the inductive filtering converter transformer verifies the correctness of the proposed protection scheme and criterion.
     (8) Propose a new HVDC-Light transmission model based on inductive filtering method. The feasibility and the technical characteristics on the application of voltage sourced inductive filtering converter in HVDC-Light system are studied in detail. By the electromagnetic transients simulation, it initially reveals the operating characteristics such as filtering characteristic, converter P&Q operating characteristics, bi-direction power flow control characteristic, voltage stability, fault recovery characteristic, and so on. Such kind of research widens the application fields of inductive filtering theory in the modern DC transmission system.
     (9) The practical application of inductive filtering in large-power industrial DC supply system is investigated. Currently, the inductive filtering method has been firstly applied into a industrial DC supply system (DC voltage is415V, DC current is22kA, AC voltage is35kV, AC capacity is10080kVA). In this thesis, the electric wiring scheme of the new industrial DC supply system based on inductive filtering technology is presented. Then, it further introduces the configuration and the main design parameters of the inductive filtering rectifier transformer and its related full-tuned branches. Finally, the field test on the new DC supply system is performed to verify the correctness of the related theoretical achievements mentioned in the thesis.
     This thesis performs the systematical research on the inductive filtering theory and its application in DC transmission systems, and constructs a set of relative complete theory and application research system. Combined with the existing problem of the practice HVDC project, this thesis reveals the action mechanism on the influence of inductive filtering on the technical characteristics of DC transmission. The research achievement deepens the technical theory of the inductive filtering, and widens its application fields, which has the scientific significance for the improvement of theoretical innovation and technical development of both power filtering and DC transmission technologies.
引文
[1]张国宝.科学发展:电力工业赢得挑战的根本途径.电气时代,2009,5:26-27
    [2]郝卫平.电力发展:问题与对策.中国电力企业管理,2009,4:12-13
    [3]方燕平.我国电力工业的发展与展望.电力系统装备,2009,4:62-65
    [4]Ali Emadi, Sheldon S. Williamson, Alireza Khaligh. Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems. IEEE Transactions on Power Electronics,2006,21(3):567-577
    [5]F. Blaabjerg, Z. Chen, S. B. Kjaer. Power electronics as efficient interface in dispersed power generation systems. IEEE Transactions on Power Eelectronics, 2004,19(5):1184-1194
    [6]F. Wang, S. Rosado, T. Thacker, et al. Power electronics building blocks for utility power system applications. The 4th International Power Electronics and Motion Control Conference,2004,1:354-359
    [7]汤广福,贺之渊.2008年国际大电网会议系列报道-高压直流输电和电力电子技术最新进展.电力系统自动化,2008,32(22):1-5
    [8]X. P. Zhang, C. Rehtanz, B. Pal. Flexible AC transmission systems:modeling and control. Springer,2006
    [9]Y. H. Song, A.T. Johns. Flexible ac transmission systems (FACTS). IEE Power and Energy Series,1999
    [10]喻新强.国家电网公司直流输电系统可靠性统计与分析.电网技术,2009,33(12):1-7
    [11]吴怀权.国内高压直流输电技术及装备的发展.电力系统装备,2009,4:59-61
    [12][加]Vijay K Sood著,徐政译.高压直流输电与柔性交流输电控制装置-静止换流器在电力系统中的应用.北京:机械工业出版社,2008
    [13]Bahrman M P, Johnson B K. The abcs of hvdc transmission technologies. IEEE Power and Energy Magazine,2007,5(2):32-34
    [14]B. R. Anderson. HVDC transmission-opportunities and challenges. The 8th IEE International Conference on AC and DC Power Transmission,2006:24-29
    [15]Brian Gemmel, John Loughran. HVDC offers the key to untrapped hydro potential. IEEE Power Engineering Review,2002,22(5):8-11
    [16]王兆安,杨君,刘进军.谐波抑制与无功功率补偿.北京:机械工业出版社,1999
    [17][奥]George J. Wakileh著,徐政译.电力系统谐波-基本原理、分析方法和滤波 器设计.北京:机械工业出版社,2003
    [18]J. C. Das. Passive filters-potentialities and limitations. IEEE Transactions on Industry Applications,2004,40(1):232-241
    [19]赵婉君.高压直流输电工程技术.北京:中国电力出版社,2004
    [20]Xiao Yao. Algorithm for the parameters of double tuned filter.8th International Conference on Harmonics and Quality of Power,1998,1:154-157
    [21]罗隆福,俞华,刘福生,等.高压直流输电系统中双调谐滤波器参数研究及其仿真.电力自动化设备,2006,26(10):25-27
    [22]李普明,徐政,黄莹,等.高压直流输电交流滤波器参数的计算.中国电机工程学报,2008,28(16):115-121
    [23]宋蕾,文俊,闫金春,等.高压直流输电系统直流滤波器的设计.高电压技术,2008,34(4):647-651,677
    [24]肖遥,尚春,林志波,等.低损耗多调谐无源滤波器.电力系统自动化,2006,30(19):69-72
    [25]童泽,罗隆福,李勇.高压直流输电系统多调谐滤波器参数摄动的影响分析.电网技术,2008,32(4):52-55,66
    [26]ABB. ConTune-continously tuned AC filter, www.abb.com,2009-02-05
    [27]陈国柱,吕征宇,钱照明.有源电力滤波器的一般原理及应用.中国电机工程学报,2000,20(9):17-21
    [28]H. L. Jou, J. C. Wu, Y. J. Chang, et al. A novel active power filter for harmonic suppression. IEEE Transactions on Power Delivery,2005,20(2):1507-
    [29]Wu Longhui, Zhuo Fnag, Zhang Pengbo, et al. Study on the influence of supply-voltage fluctuation on shunt active power filter. IEEE Transactions on Power Delivery,2007,22(3):1743-1749
    [30]王群,姚为正,刘进军.谐波源与有源电力滤波器的补偿特性,中国电机工程学报,2001,21(2):16-20
    [31]L. A. Moran, I. Pastorini, J. Dixon, et al. A fault protection scheme for series active power filters. IEEE Transactions on Power Electronics,1999,14(5): 928-938
    [32]H.-H. Kuo, S.-N. Yeh, J.-C. Hwang. Novel analytical model for design and implementation of three-phase active power filter controller. IEE Proceedings Electric Power Applications,2001,148(4):369-383
    [33]周林,蒋建文,周雒维.基于单周控制的三相四线制有源电力滤波器.中国电机工程学报,2003,23(3):85-88,125
    [34]范瑞祥.并联混合型有源电力滤波器的理论与应用研究.湖南大学博士学位论 文,2007
    [35]汤赐,罗安,范瑞祥,等.新型注入式混合有源滤波器应用中的问题.中国电机工程学报,2008,28(18):47-53
    [36]H. Fujita, T. Yamasaki, H. Akagi. A hybrid active filter for damping of harmonic resonance in industrial power systems. IEEE Transactions on Power Electronics, 2000,15(2):215-222
    [37]V. F. Corasaniti, M. B. Barbieri, P. L. Arnera, et al. Hybrid power filter to enhance power quality in a medium-voltage distribution network. IEEE Transactions on Industrial Electronics,2009,56(8):2885-2893
    [38]H. Akagi, T. Hatada. Voltage balancing control for a three-level diode-clamped converer in a medium-voltage transformerless hybrid active filter. IEEE Transactions on Power Electronics,2009,24(3):571-579
    [39]V. F. Corasaniti, M. B. Barbieri, P. L. Arnera, et al. Hybrid power filter for reactive and harmonics compensation in a distribution network. IEEE Transactions on Industrial Electronics,2009,56(3):670-677
    [40]陈国柱,吕征宇,钱照明.典型工业电网谐波及其混合有源滤波抑制.电网技术,2000,24(5):59-63
    [41]唐卓尧,任震.并联型混合滤波器及其滤波特性分析.中国电机工程学报,2000,20(5):25-29
    [42]S. Senini, P. J. Wolfs. Analysis and design of a multiple-loop control system for a hybrid active filter. IEEE Transactions on Industrial Electronics,2002,49(6): 1283-1292
    [43]刘福生,聂光前,肖乐军.阻抗匹配平衡变压器的模型试验及其性能分析.铁道学报,1992,3:23-31
    [44]刘福生,左辰.阻抗匹配平衡变压器牵引负荷的负序影响与谐波分析.电网技术,1989,(1):26-32
    [45]张志文,王耀南,刘福生,等.多功能平衡牵引变压器运行方式研究.中国电机工程学报,2004,24(4):125-132
    [46]刘福生.拓宽变压装置变换功能,推进产品创新.科学中国人,2004,(8):40-41
    [47]刘福生.两发明专利先后完成的产品开发和进入产业化.科学中国人,2002,(2):21-22
    [48]李勇,罗隆福,许加柱,等.采用新型换流变压器的直流输电稳态模型.电力系统自动化,2006,30(21):28-32
    [49]罗隆福,李勇,刘福生,等.基于新型换流变压器的直流输电系统滤波装置.电工技术学报,2006,21(12):108-115
    [50][英]马丁J.希斯科特,著,王晓莺,等译.变压器实用技术大全.北京:机械工业出版社,2004
    [51]李兴源.高压直流输电系统的运行与控制.北京:科学出版社,1998
    [52]徐政.交直流电力系统动态行为分析.北京:机械工业出版社,2005
    [53]浙江大学发电教研组.直流输电.北京:水利电力出版社,1985
    [54]戴熙杰.直流输电基础.北京:水利电力出版社,1990
    [55]韩民晓,尹忠东,徐永海,等.柔性电力技术-电力电子在电力系统中的应用.北京:中国水利水电出版社,2007
    [56]C. Rehtanz. Why moving R&D to China. http://www.eaylf.com/,2007-09-07
    [57]袁清云,高理迎,余军,等.特高压直流输电技术研究成果综述.见:2006年特高压输电技术国际会议论文集.北京:国家电网,2006,588-591
    [58]李广凯,李庚银,梁海峰,等.新型混合直流输电方式的研究.电网技术,2006,30(4):82-86
    [59]T. Funaki, K. Matsuura. Predictive firing angle calculation for constant effective margin angle control of CCC-HVdc. IEEE Transactions on Power Delivery,2000, 15(3):1087-1093
    [60]张桂斌,徐政.直流输电技术的新发展.中国电力,2000,33(3):32-35
    [61]K. Sadek, M. Pereira, D. P. Brandt, et al. Capacitor commutated converter circuit configurations for DC transmission. IEEE Transactions on Power Delivery,1998, 13(4):1247-1264
    [62]S. Gomes, N. Martins, T. Jonsson, et al. Modeling capacitor commutated converters in power system stability studies. IEEE Transactions on Power Systems, 2002,17(2):371-377
    [63]杨汾艳,徐政.直流系统采用电容换相换流器技术的特性研究.中国电机工程学报,2008,28(7):91-96
    [64]任震,何畅炜,高明振.HVDC系统电容换相换流器特性分析-机理与特性.中国电机工程学报,1999,19(3):55-58
    [65]任震,高明振,何畅炜.HVDC系统电容换相换流器特性分析-无功功率特性.中国电机工程学报,1999,19(4):4-8
    [66]殷自力,李庚银,李广凯,等.柔性直流输电系统运行机理分析及主回路相关参数设计.电网技术,2007,31(21):16-21,26
    [67]宋瑞华,周孝信.基于电压源换流器的高压直流输电系统的阻尼特性与阻尼控制,电网技术,2008,32(5):17-21,37
    [68]潘武略,徐政,张静,等.电压源换流器型直流输电换流器损耗分析,中国电机工程学报,2008,28(21):7-14
    [69]N. Flourentzou, V. G. Agelidis, G. D. Demetriades. VSC-based HVDC power transmission systems:an overiew. IEEE Transactions on Power Electronics,2009, 24(3):592-602
    [70]C. Du, E. Agneholm, G. Olsson. VSC-HVDC systems for industrial plants with onsite generators. IEEE Transactions on Power Delivery,2009,24(3):1359-1366
    [71]N. Prabhu, K. R. Padiyar. Investigation of subsynchronous resonance with VSC-based HVDC transmission systems. IEEE Transactions on Power Delivery, 2009,24(1):433-440
    [72]C. Du, E. Agneholm, G. Olsson. Comparison of different frequency controllers for a VSC-HVDC supplied system. IEEE Transactions on Power Delivery,2008, 23(4):2224-2232
    [73]L. Xu, V. G. Agelidis. VSC transmission system using flying capacitor multilevel converters and hybrid PWM control. IEEE Transactions on Power Delivery,2007, 22(1):693-702
    [74]杨一鸣,章旭雯.特高压直流换流站设备的降噪措施.高电压技术,2006,32(9):149-152
    [75]李晓萍,文习山,蓝磊,等.单相变压器直流偏磁实用与仿真.中国电机工程学报,2007,27(9):33-40
    [76]马玉龙.高压直流输电系统的稳定性分析:华北电力大学博士论文.北京:华北电力大学,2006
    [77]郝巍,李兴源,金小明,等.直流输电引起的谐波不稳定及其相关问题.电力系统自动化,2006,30(19):94-99
    [78]Xiao Jiang, A. M. Gole. A frequency scanning method for the identification of harmonic instabilities in HVDC systems. IEEE Transactions on Power Delivery, 1995,10(4):1875-1881
    [79]A. E. Hammad. Analysis of second harmonic instability for the chateauguay HVDC/SVC scheme. IEEE Transactions on Power Delivery,1992,7(1):410-415
    [80]P. S. Bodger, G. D. Irwin, D. A. Woodford. Controlling harmonic instability of HVDC links connected to weak AC systems. IEEE Transactions on Power Delivery,1990,5(4):2039-2046
    [81]S. Chen, A. R. Wood, J. Arrillaga. HVDC converter transformer core saturation instability:a frequency domain analysis. IEE Proc.-Gener. Transm. Distrib.,1996, 143(1):75-81
    [82]E. V. Larsen, D. H. Baker, J. C. Mclver. Low-order harmonic interactions on AC/DC systems. IEEE Transactions on Power Delivery,1989,4(1):493-501
    [83]穆子龙,李兴源.交直流输电系统相互影响引起的谐波不稳定问题.电力系统自动化,2009,33(2):96-100
    [84]穆子龙,李兴源,金小明,等.云广特高压直流送端谐波不稳定问题研究.电网技术,2008,32(20):8-14
    [85]荆勇,欧开健,任震.交流单相故障对高压直流输电换相失败的影响.高电压技术,2004,30(3):60-62
    [86]J. Bauman, M. Kazerani. Commutation failure reduction in HVDC systems using adaptive fuzzy logic controller. IEEE Transactions on Power Systems,2007,22(4): 1995-2002
    [87]Sun Y. Z., Ling Peng, Feng Ma, et al. Design a fuzzy controller to minimize the effect of HVDC commutation failure on power system. IEEE Transactions on Power Systems,2008,23(1):100-107
    [88]A. Hansen, H. Havemann. Decreasing the commutation failure frequency in HVDC transmission systems. IEEE Transactions on Power Delivery,2000,15(3): 1022-1026
    [89]C. V. Thio, J. B. Davies, K. L. Kent. Commutation failures in HVDC transmission systems. IEEE Transactions on Power Delivery,1996,11(2):946-957
    [90]欧开健,任震,荆勇.直流输电系统换相失败的研究-换相失败的影响因素分析.电力自动化设备,2003,23(5):5-8,25
    [91]任震,欧开健,荆勇.直流输电系统换相失败的研究-避免换相失败的措施.电力自动化设备,2003,23(6):6-9
    [92]林凌雪,张尧,钟庆,等.基于小波能量统计法的HVDC换相失败故障诊断.电力系统自动化,2007,12(10):61-64
    [93]李季.滤波换相换流器及其对直流输电系统稳定性影响分析.湖南大学博士学位论文,2008
    [94]马玉龙,肖湘宁,姜旭.交流系统接地故障对HVDC的影响分析.中国电机工程学报,2006,26(11):144-149
    [95]余江,周红阳,黄佳胤,等.交流系统故障导致直流线路保护动作的分析.南方电网技术,2009,3(3):20-23
    [96]李爱民,蔡泽祥,任达勇,等.高压直流输电控制与保护对线路故障的动态响应特性分析.电力系统自动化,2009,33(11):72-75,93
    [97]许爱东,柳勇军,吴小辰.±800kV云广特高压直流安全稳定控制策略研究.南方电网技术,2008,2(5):14-18
    [98]朱韬析,武诚,王超.交流系统故障对直流输电系统的影响及改进建议.电力系统自动化,2009,33(1):93-98
    [99]M. Sato, K. Yamaji, M. Sekita, et al. Development of a hybrid margin angle controller for HVDC continuous operation. IEEE Transactions on Power Systems, 1996,11(4):1792-1798
    [100]D. Jovcic, N. Pahalawaththa, M. Zavahir. Inverter controller for HVDC systems connected to weak AC systems. IEE Proceedings-Geneation, Transmission and Distribution,1999,146(3):235-240
    [101]N. Sato, N. Honjo, K. Yamaji, et al. HVDC converter control for fast power recovery after AC system fault. IEEE Transactions on Power Delivery,1997, 12(3):1319-1326
    [102]冯宇,唐轶,史丽萍,等.基于图形模式识别的稳态电能质量指标.电工技术学报,2008,23(3):108-114
    [103]肖湘宁,徐永海.电能质量问题剖析.电网技术,2001,25(3):66-69
    [104]王立国,徐殿国,苗立杰,等.无源滤波装置的建模分析及参数摄动的影响.中国电机工程学报,2005,25(10):70-74
    [105]涂春鸣,罗安,刘娟.无源滤波器的多目标优化设计.中国电机工程学报,2002,22(3):17-21
    [106]O. Gutierrez, C. R. Fuerte-Esquivel, J. A. Rubio, et al. Harmonic analysis of AC/DC systems based on phase-domain multi-port network approach. Electric Power Systems Research,2008,78(10):1789-1797
    [107][加]R. Mohan Mathur,[印]Rajiv K. Varma,著,徐政译.基于晶闸管的柔性交流输电控制装置.北京:机械工业出版社,2005
    [108]Mehmet Ucar, Engin Ozdemir. Control of a 3-phase 4-leg active power filter under non-ideal mains voltage condition. Electric Power Systems Research,2008,78 (1): 58-73
    [109]谭甜源,罗安,唐欣,等.大功率并联混合型有源电力滤波器的研制.中国电机工程学报,2004,24(3):41-45
    [110]M. Routimo, M. Salo, H. Tuusa. Comparison of voltage-source and current-source shunt active power filters. IEEE Transactions on Power Electronics,2007,22(2): 636-643
    [111]李红雨,吴隆辉,卓放,等.有源电力滤波器补偿延时及对策的研究.电工电能新技术,2005,24(3):18-21
    [112]马永健,徐政,沈沉.有源电力滤波器闭环控制算法研究.电工技术学报,2006,21(2):73-78
    [113]李勇,罗隆福,刘福生,等.变压器感应滤波技术的发展现状与应用前景.电工技术学报,2009,24(3):86-92
    [114]辜承林,陈乔夫,熊向前.电机学.武汉:华中科技大学出版社,2005
    [115]金建铭.电磁场有限元方法.西安:西安电子科技大学出版社,1998
    [116]孙宇光,王祥珩,桂林,等.场路耦合法计算同步发电机定子绕组内部故障的暂态过程,中国电机工程学报,2004,24(1):136-141
    [117]许加柱,罗隆福,李季.基于场路耦合法的大电流互感器屏蔽绕组分析,中国电机工程学报,2006,26(23):167-172
    [118]Longfu Luo, Hongyan Li, Yong Li, et al. Study on the electromagnetic transient state in the new converter transformer based on coupled field-circuit method. In: International Conference on Electrical Machines and Systems. Wuhan:IEEE,2008, 4291-4295
    [119]王胜辉,田立坚,唐任远.基于场路耦合法的机网暂态仿真研究,沈阳工业大学学报,1997,19(5):20-24
    [120][苏]C.B.瓦修京斯基著,崔立君,杜恩田等译.变压器的理论与计算.北京:机械工业出版社,1983
    [121]崔立君.特种变压器理论与设计.北京:科学技术文献出版社,1996
    [122]夏道止,沈赞埙.高压直流输电系统的谐波分析及滤波.北京:水利电力出版社,1994
    [123]罗健.系统灵敏度理论导论.西安:西北工业大学出版社,1990
    [124]吴敏,桂卫华,何勇,等.现代鲁棒控制.长沙:中南大学出版社,2006
    [125]蒋志坚,马鸿雁.无源电力滤波器功率因数的灵敏度分析.电气应用,2006,25(12):85-89
    [126]陈希有,纪延超,陈学允.空间矢量调制矩阵式电力变换器的灵敏度分析,电力系统自动化,2000,24(6):40-43,47
    [127]关柏利,王立国,徐殿国,等.无源电力滤波器电流传递函数对频率的灵敏度分析,电子器件,2005,28(1):56-58,62
    [128]吴宁.电网络分析与综合.北京:科学出版社,2003
    [129]俞集辉,韦俊涛,彭光金,等.基于人工神经网络的参数灵敏度分析模型.计算机应用研究,26(6):2279-2281,2284
    [130]张永斌,毕传兴,陈剑,等.基于波叠加的结构-声学灵敏度分析的伴随变量方法.机械工程学报,2009,45(4):177-182
    [131]赵冬泉,陈吉宁,王浩正,等.城市降雨径流污染模拟的水质参数局部灵敏度分析.环境科学学报,2009,29(6):1170-1177
    [132]罗安.电网谐波治理和无功补偿技术及装备.北京:中国电力出版社,2006
    [133]李战鹰,李建华,夏道止.±800kV特高压直流输电系统特征谐波分析.电网技术,2006,30(24):6-8
    [134]郝巍,李兴源,金小明,等.多馈入直流系统中逆变站滤波器投切对谐波电流的影响.电网技术,2006,30(19):48-52
    [135]Graeme N. Bathurst, Neville R. Waston, Jos Arrillaga. Modeling of bipolar HVdc links in the harmonic domain. IEEE Transactions on Power Delivery,2000,15(3): 1034-1038
    [136]Peter Riedel. Harmonic voltage and current transfer, and AC- and DC-side impedances of HVDC converters. IEEE Transactions on Power Delivery,2005, 20(3):2095-2099
    [137]A. R. Wood and J. Arrillaga. The frequency dependent impedance of an HVDC converter. IEEE Transactions on Power Delivery,1995,10(3):1635-1641
    [138]Kadry Sadek, Mareos Pereira. Harmonic transfer in HVDC systems under unbalanced conditions. IEEE Transactions on Power Systems,1999,14(4): 1394-1399
    [139]Lihua Hu, R. E. Morrison. The use of modulation theory to calculate the harmonic distortion in HVDC systems operating on an unbalanced supply. IEEE Transactions on Power Systems,1997,12(2):973-980
    [140]Sebastiao E. M. de Oliveira, Jose Octavio R. P. Guimaraes. Effects of voltage supply unbalance on AC harmonic current components produced by AC/DC converters. IEEE Transactions on Power Delivery,2007,22(4):2498-2507
    [141]Lihua Hu, R. Yacamini. Harmonic transfer through converters and HVDC links. IEEE Transactions on Power Electronics,1992,7(3):514-525
    [142]周群,张谊,黄家裕.非特征谐波引起的次同步振荡研究.电网技术,1999,23(12):4-5
    [143]曾艳,任震,余涛.基于调制迭代谐波分析法的交直流混联输电系统多谐波源研究.电网技术,2006,30(11):26-29
    [144]孙竹森,俞敦耀.华新换流站噪声控制探讨.电力建设,2007,28(11):10-13
    [145]胡雨龙,李兴,赵明.高压直流换流站噪声综合治理.南方电网技术,2009,3(1):49-52
    [146]高湛,胡小龙.蔡家冲(宜都)换流站噪声治理研究和实践.电力建设,2007,28(3):13-16
    [147]李勇,罗隆福,贺达江,等.新型直流输电系统典型谐波分布特性分析.电力系统自动化,2009,33(10):59-63
    [148]许加柱.新型换流变压器及其滤波系统的理论与应用研究.湖南大学博士学位论文,2007
    [149]Longfu Luo, Yong Li, Jiazhu Xu, et al. A new converter transformer and a corresponding inductive filtering method for HVDC transmission system. IEEE Transactions on Power Delivery,2008,23(3):1426-1431
    [150]尚荣艳.新型换流变压器及其滤波系统对直流输电换相的影响研究.湖南大学博士学位论文,2008
    [151]J. Alan C. Forrest, Bill Allard. Thermal problems caused by harmonic frequency leakage fluxes in three-phase, three-winding converter transformers. IEEE Transactions on Power Delivery,2004,19(1):208-213
    [152]张喜乐,王建民,吴增泊,等.超高压直流换流变压器阀侧引出线电场的数值分析.变压器,2009,46(7):1-4,10
    [153]杨汾艳,徐政.直流输电系统换流变压器短路阻抗的选择.高电压技术,2008,34(8):1628-1632
    [154]李靖宇.换流变压器直流偏磁的试验研究.变压器,2005,42(9):25-28
    [155]马为民.换流变压器中直流偏磁电流的计算.高电压技术,2004,30(11):48-49
    [156]朱艺颖,蒋卫平,曾昭华,等.抑制变压器中性点直流电流的措施研究.中国电机工程学报,2005,25(13):1-7
    [157]Burton, R. S., Fuchshuber, C. F., Woodford, D. A., et al. Prediction of core saturation instability at an HVDC converter. IEEE Transactions on Power Delivery,1996,11(4):1961-1969
    [158]R. Yacamini, J. C. Oliveria. Instability in HVDC schemes at low-order integer harmonics. IEE Proceedings Part C,1980,127(3):179-188
    [159]J. D. Ainsworth. Harmonic instability between controlled static converters and AC networks. IEE Proceedings,1967,114(7):949-957
    [160]J. D. Ainsworth. The phase locked oscillator-a new control system for controlled static converters. IEEE Transactions on Power Appartus And Systems,1968,87(3): 859-865
    [161]L. S. Zeng, Z. X. Zhu, B. D. Bai. Research on influence of DC magnetic bias on a converter transformer. In:Proceeding of International Conference on Electrical Machines and Systems 2007. Korea, Seoul:IEEE,2007,1346-1349
    [162]杨小兵,李兴源,金小明,等.云广特高压直流输电系统中换流变压器铁心饱和不稳定分析,电网技术,2008,32(19):5-9
    [163]M. O. Faruque, Y. Y. Zhang, V. Dinavahi. Detailed modeling of CIGRE HVDC benchmark system using PSCAD/EMTDC and PSB/SIMULINK. IEEE Transactions on Power Delivery,2006,21(1):378-387
    [164]M. Szechtman, T. Wess, C. V. Thio. A benchmark model for HVDC systems studies. In:1991 International Conference on AC and DC Power Transmission. U. K., London:IEEE,1991,374-378
    [165]文闿成.换流变压器的技术要求(上).变压器,1996,33(2):2-6
    [166]陈华山.换相电抗的测量与计算.变压器,1997,34(3):22-23
    [167]李勇,罗隆福,尚荣艳,等.新型直流输电系统阀侧绕组无功补偿特性分析,2007,31(8):52-55,66
    [168]B. Franken. Analysis of HVDC converters connected to weak AC systems. IEEE Transactions on Power Systems,1990,5(1):235-242
    [169]艾飞,李兴源,王晓丽,等.交流系统强度与所联直流输电系统换相失败关系研究.四川电力技术,2009,32(3):1-4,35
    [170]林伟芳,汤涌,卜广全.多馈入交直流系统短路比的定义和应用.中国电机工程学报,2008,28(31):1-8
    [171]杨秀,陈鸿煜,靳希.高压直流输电系统动态恢复特性的仿真研究.高电压技术,2006,32(9):11-14
    [172]袁旭峰,文劲宇,程时杰.与弱交流系统相连接的HVDC系统临界换相电压降及逆变站的运行范围.电网技术,2007,31(19):24-30
    [173]吴命利,范瑜.星形延边三角形接线平衡变压器的阻抗匹配与数学模型.中国电机工程学报,2004,24(11):160-166
    [174]陆家榆,陈莉,丁青青,等.星形延边三角形联结平衡变压器运行特性的数学模型.中国电机工程学报,1998,18(5):345-349
    [175]Chen Tsai Hsiang, Chen Mo Shing, Toshio Inoue, et al. Three-phase co-generator and transformer models for distribution system analysis. IEEE Transactions on Power Delivery,1991,6(4):1671-1681
    [176]黄锐锋,李琳.新的基于相分量的变压器模型及其在统一广义双侧消去法中的应用.中国电机工程学报,2004,24(7):188-193
    [177]Selva S Moorthy, David Hoadley. A new phase-coordinate transformer model for bus analysis. IEEE Transactions on Power systems,2002,17(4):951-956
    [178]Chen T H, Kuo H Y. Network modeling of traction substation transformers for studying unbalances effects. IEE Proceedings on Generation Transmission and distribution,1995,142(2):103-108
    [179]Chen T H, Chang J D, Chang Y L. Models of grounded mid-tap open-wye and open-delta connected transformers for rigorous analysis of a distribution system. IEE Proceedings on Generation Transmission and distribution,1996,134(1):82-88
    [180]韩正庆,高仕斌,李群湛.基于变压器模型的新型变压器保护原理和判据.电网技术,2005,29(5):67-71
    [181]王增平,徐岩,王雪,等.基于变压器模型的新型变压器保护原理研究.中国 电机工程学报,2003,23(12):54-58
    [182]韩正庆,高仕斌,刘淑萍.基于模型的SCOTT变压器保护原理研究.铁道学报,2005,27(4):42-46
    [183]Inagaki K, Higaki M, Matsui Y, et al. Digital protection method for power transformers based on an equivalent circuit composed of inverse inductance. IEEE Transactions on Power Delivery,1988,3(4):1501-1510
    [184]Kezunovic M, Guo Y. Modeling and simulation of the power transformer faults and related protective relay behavior. IEEE Transactions on Power Delivery,2000, 15(1):44-50
    [185]王维俭.变压器保护运行不良的反思.电力自动化设备,2001,21(10):1-3
    [186]汤蕴璆,史乃.电机学.北京:机械工业出版社,1999
    [187]文俊,张一工,韩民晓,等.电压源型换流器高压直流输电:一种新一代的HVDC技术.电网技术,2003,27(1):47-51
    [188]邹超,王奔,李泰.向无源网络供电的VSC-HVDC系统控制策略.电网技术,2009,33(2):84-88,110
    [189]陈海荣,徐政.向无源网络供电的VSC-HVDC系统的控制器设计.中国电机工程学报,2006,23(26):43-48
    [190]F. Schettler, H. Huang, N. Christl. HVDC transmission systems using voltage sourced converters design and applications. In:IEEE Power Engineering Society Summer Meeting,2000. Germany:IEEE,2000,715-720
    [191]Lie Xu, Liangzhong Yao, C. Sasse. Grid Integration of Large DFIG-Based Wind Farms Using VSC Transmission. IEEE Transactions on Power Systems,2007, 22(3):976-984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700