用户名: 密码: 验证码:
桥间分配四驱混合动力电动汽车能耗优化控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力汽车整车能量管理控制策略,是混合动力汽车核心技术之一,长期以来作为混合动力技术研究的热点而受到广泛重视。本文基于桥间分配型四轮驱动混合动力电动汽车(A4WDHEV),以降低能耗、提高燃油经济性为目标,对等效油耗最小控制策略(ECMS)进行了深入研究,从优化计算和行驶工况识别等方面对其进行了改进。
     首先,分析了A4WDHEV的结构特点和车辆工作模式转换控制;应用理论建模与实验建模相结合的方法,建立了动力总成关键部件和整车系统仿真模型;设计了基于动态规划(DP)优化算法的车辆能量管理控制策略(DPCS),通过仿真分析了车辆燃油经济性提高的效果,确定了理论上的车辆燃油经济性极限,为等效燃油消耗最小策略提供了改进的依据。
     其次,介绍了等效油耗最小能量管理策略的基本理论;系统分析了该策略中等效系数的理论意义,以及基于电池荷电状态水平的等效油耗修正方法;设计了应用于A4WDHEV的ECMS策略;应用模式搜索和并行计算加快优化计算速度;多工况下的仿真结果表明,运用等效油耗最小策略的A4WDHEV相对仅用发动机的原型纯发动机车辆平均燃油节省率可达20%以上。
     再次,分析了等效系数和维持电池荷电状态(SOC)平衡的修正方法对等效油耗最小策略控制效果的影响。以动态规划计算出的桥间分配四驱混合动力汽车最佳控制结果为基础,提出利用DIRECT算法优化求解具体工况下最优等效系数的方法。为使等效油耗最小策略在保持SOC平衡的同时兼顾燃油经济性最优,研究了基于SOC的修正函数的优化方法。在此基础上,提出了一种全局优化型等效油耗最小策略(GECMS)。多工况下的仿真结果表明,GECMS比原有ECMS的燃油经济性平均提升了6.8%。
     然后,针对GECMS工况适应性不强的问题,提出了一种行驶工况自调整的等效油耗最小策略。以实车采集的广州典型行驶工况数据为例设计学习向量量化(LVQ)神经网络工况识别器,该识别器经过训练后实时工况识别准确率接近100%。将工况识别器引入GECMS后提出一种实际行驶路况自调整全局优化型等效油耗最小策略(AGECMS)。开发了一套用于横向对比DPCS、ECMS、GECMS和AGECMS的A4WDHEV能耗优化控制策略评估仿真软件,运用该软件进行的多工况仿真结果表明,AGECMS的平均燃油经济性在GECMS基础上进一步提高了2.76%,对比原有ECMS提高了9.5%。
     最后,结合具体A4WDHEV乘用车(原车)实际开发项目,对GECMS策略控制效果进行了硬件在环仿真试验研究。根据GECMS方法原理对原车整车控制器(HCU)核心应用软件模块进行了修改实现。完成了硬件在环平台的调试。运用该平台进行了GECMS和原车策略的仿真对比试验。试验结果表明,在优化效果受到了原车HCU软件架构限制的情况下,GECMS燃油经济性比原车提高了3.83%。
Hybrid Electric Vehicle (HEV) energy management control strategy grabs muchattention for a long time as a key technology of HEV. This dissertation focues on energyconsumption minimization using an Axle-split Four Wheel Drive Hybrid Electric Vehicle(A4WDHEV) as a case study. Equivalent (fuel) Consumption Minimization Strategy (ECMS)has been improved with respect to optimization method and driving condition recognition.
     Firstly, through A4WDHEV structure and vehicle mode shift control analysis, the HEVand its key components model has been built on theoretical and experiment modelling. ADynamic Programming based Control Strategy (DPCS) for A4WDHEV is designed tooptimize vehicle energy consumption. Simulation results indicate the theoretical fuel savelimit while providing database for other control strategy improvement.
     After a brief introduction of the basic theory of Equivalent fule ConsumptionMinimization Strategy (ECMS), the equivalent factors implication and equivalent fuelconsumption penaty method are discussed systematically. The ECMS is applied toA4WDHEV for energy save optimization with numerical computation acceleration methodsuch as pattern search and parallel computation. The simulation results under multiple drivecycles show that ECMS can achive above20%fule saving compare to engine-onlyconventional vehicle.
     The influence to ECMS caused by equivalent factors variation and the correction forSOC maintenance is analysed. A new optimal method for equivalent factors calculationunder certain drive cycle is proposed. This method refers to DPCS optimal control outputand uses DIRECT algorithm to solve the optimization problem. A SOC based corcttionfunction optimization method is provided to keep the advantage of fule save while correctingequivalent consumption to maintain SOC. Then, present a new Global optimization basedECMS (GECMS) according to these two methods sutdied above. Simulation results showthat the fuel consumption using GECMS can be decreased by about6.8%under multipledrive cycles compared to ECMS.
     An Adaptive GECMS (AGECMS) is proposed to deal with the fact that ECMS has poordrive cycle adaptability.Four typical Guangzhou drive cycles are formed through real roadtest data acquisition as the example data for LVQ neural network drive condition identifierdesign. After training, the LVQ identifier can achive about100%identify accuracy. Add theroad condition identifier to GECMS, an Adjustable Global optimization based Equivalent Consumption Minimization Strategy (AGECMS) is put forward. Simulation software isdeveloped for the comparison study of DPCS, ECMS, GECMS and AGECMS forA4WDHEV energy consumption optimization. Mutiple drive cycle simulation resultsindicate that AGECMS is2.76%above to GECMS with respect to fule saving.The overallfuel saving is9.5%compared with original ECMS in a drive-cycle-average sense.
     Finally, related to an industrial A4WDHEV sedan development project, the GECMSHardware In Loop (HIL) simulation is conducted for evaluation of the control effectiveness.Some core parts of the original HEV HCU software are modified to realize the GECMS.After the construction of HIL platform, a comparison test is carried out for GECMS andoriginal HEV strategy. Under circumstances that the optimization effect is restricted to theHCU software architecture, the test results show that GECMS increase the fuel economy by3.83%compared with the original HEV strategy.
引文
[1]陈清泉,孙立清.电动汽车的现状和发展趋势[J].科技导报,2005,23(4):24-28.
    [2]候福深,李佩珩,易翔翔.国外电动汽车发展现状及对我国电动汽车发展的启示[J].北京工业大学学报.2004:51-54.
    [3]李秀芬,雷跃峰.电动汽车关键技术发展综述[J].上海汽车,2006(1):8-10.
    [4]陆刚.新世纪电动车用燃料电池的发展趋势[J].电子技术,2005(4):31-36.
    [5]钱伯章.燃料电池的发展现状与展望[J].节能,2004(3):3-7.
    [6]李兴虎.电动汽车概论[M].北京:北京理工大学出版社,2005:125-128.
    [7] Chan C.C. The state of the art of electric and hybrid vehicles [J]. Proceedings of theIEEE,2002,90(2):247-275.
    [8] Emadi A., Rajashekara K., Williamson S.S., et al. Topological overview of hybridelectric and fuel cell vehicular power system architectures and configurations [J]. IEEETransactions On Vehicular Technology,2005,54(3):763-770.
    [9] Maggetto G., Van Mierlo J. Electric and electric hybrid vehicle technology: a survey
    [C].IEE Seminar on Electric, Hybrid and Fuel Cell Vehicles London,U.K.: Institution ofEngineering and Technology,2000:1-11.
    [10] Wouk V. Hybrids: then and now [J]. IEEE Spectrum,1995,32(7):16-21.
    [11] Albert I.J., Kahrimanovic E., Emadi A. Diesel sport utility vehicles with hybrid electricdrive trains [J]. IEEE Transactions On Vehicular Technology,2004,53(4):1247-1256.
    [12] Sciarretta A., Back M., Guzzella L. Optimal control of parallel hybrid electric vehicles[J]. IEEE Transactions On Control Systems Technology,2004,12(3):352-363.
    [13] Delprat S., Lauber J., Guerra T.M., et al. Control of a parallel hybrid powertrain:Optimal control [J]. IEEE Transactions On Vehicular Technology,2004,53(3):872-881.
    [14] Lin C.C., Peng H., Grizzle J.W., et al. Power management strategy for a parallel hybridelectric truck [J]. IEEE Transactions On Control Systems Technology,2003,11(6):839-849.
    [15] He X.L., Hodgson J.W. Modeling and simulation for hybrid electric vehicles-Part I:Modeling [J]. IEEE Transactions On Intelligent Transprotation Systems,2002,3(4):235-243.
    [16] He X.L., Hodgson J.W. Modeling and simulation for hybrid electric vehicles-Part II:Simulation [J]. IEEE Transactions On Intelligent Transprotation Systems,2002,3(4):244-251.
    [17] Song H.S., Nam K., Choi H.R., et al. A new topology and control scheme for4WDHEV using a DFIM with a reduced size converter-inverter [C]. Industry ApplicationsConference,2005. Fourtieth IAS Annual Meeting. Conference Record of the20052005:2880-2886.
    [18] Lhomme W., Hancock M.J., Assadian F., et al. Multi-model of a hybrid electric vehicle’s four-wheel drive system with automatically-engaging clutch [C].2008IEEE VehiclePower and Propulsion Conference, VPPC20082008:1-6.
    [19] Cieslar D., Linden J.G., Burnham K.J., et al. Modelling of Hybrid Electric Vehicle AllWheel Drive Driveline System Incorporating Clutch Models [C]. Systems Engineering,2008. ICSENG '08.19th International Conference on Las Vegas, NV:2008:77-82.
    [20] Kim D., Hwang S., Kim H. Advanced active safety system using separated front andrear motor control for a4WD hybrid electric vehicle [C]. International Symposium onSafety and Structural Integrity2006, December8,2005-December10,2005Jeju,Korea, Republic of: Trans Tech Publications Ltd,2007:223-228.
    [21] Kim D., Hwang S., Kim H. Rear motor control for a4WD hybrid electric vehiclestability [C].2005IEEE International Conference on Vehicular Electronics and Safety,October14,2005-October16,2005Xi'an, Shaan'xi, China: Inst. of Elec. and Elec. Eng.Computer Society,2005:86-91.
    [22] Kim D.H., Kim J.M., Hwang S.H., et al. Optimal brake torque distribution for afour-wheel-drive hybrid electric vehicle stability enhancement [J]. Proceedings of theInstitution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2007,221(11):1357-1366.
    [23] Kim D., Kim H. Vehicle stability control with regenerative braking and electronic brakeforce distribution for a four-wheel drive hybrid electric vehicle [J]. Proceedings of theInstitution of Mechanical Engineers, Part D: Journal of Automobile Engineering,2006,220(6):683-693.
    [24] Kim D., Hwang S., Kim H. Vehicle stability enhancement of four-wheel-drive hybridelectric vehicle using rear motor control [J]. IEEE Transactions On VehicularTechnology,2008,57(2):727-735.
    [25]徐华,王耀南,陈洁平,等.并联型四轮驱动混合动力汽车的设计与开发[J].交通与计算机,2003(03):30-33.
    [26]余群明,周健,喻伟雄,等.四驱混联电动汽车的燃油经济性优化[J].汽车工程,2007(02):105-108.
    [27]黄伟.基于CVT的四轮驱动混合动力汽车传动控制策略研究[D].长沙:湖南大学,2008.
    [28]邓琦,皮俊,肖人杰.混合动力车四轮驱动控制策略研究[J].企业技术开发,2006(07):68-70.
    [29]蒋元广,孙文凯.四驱混合动力汽车的动力传动系统[P].200820033443.2009-02-18.
    [30]郭永斌,蒋元广,杨正林,等.四轮驱动混合动力汽车前向式建模与仿真[J].轻型汽车技术,2007(05):19-22.
    [31]杜爱民,冯旭云.四轮驱动混合动力汽车能量管理策略仿真[J].同济大学学报(自然科学版),2006(06):800-803.
    [32]陆玉佩,许思传,陆渊.四轮驱动混合动力汽车动力系统设计[J].汽车技术,2006(08):1-4.
    [33]朱建新,申其壮,姜国权,等.四轮驱动混合动力汽车整车控制策略优化[J].上海交通大学学报,2008(08):1314-1318.
    [34]万钢,余卓平,尹东晓,等.四轮驱动混合动力微型汽车[P].200510110502.2006-05-03.
    [35] Luo Y., Zhou S., Deng Z. Four wheel driving hybrid system based on dual-rotor electricmotor [J]. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering,2007,43(8):123-128.
    [36]邹广才,罗禹贡,李克强.四轮独立电驱动车辆全轮纵向力优化分配方法[J].清华大学学报(自然科学版),2009(05):111-115.
    [37]王博,罗禹贡,邹广才,等.四轮独立电驱动越野车辆研究实验平台[J].清华大学学报(自然科学版),2009(11):1838-1842.
    [38]余卓平,张立军,熊璐.四驱电动车经济性改善的最优转矩分配控制[J].同济大学学报(自然科学版),2005(10):1355-1361.
    [39] Sciarretta A., Guzzella L. Control of hybrid electric vehicles [J]. Control SystemsMagazine, IEEE,2007,27(2):60-70.
    [40]杨宏亮,陈全世.混联式混合动力汽车控制策略研究综述[J].公路交通科技,2002(01):103-107.
    [41]于秀敏,曹珊,李君,等.混合动力汽车控制策略的研究现状及其发展趋势[J].机械工程学报,2006(11):10-16.
    [42]舒红,秦大同,胡建军.混合动力汽车控制策略研究现状及发展趋势[J].重庆大学学报(自然科学版),2001(06):28-31.
    [43]黄振邦,吴森.混合动力电动汽车研究开发及前景展望[J].城市车辆,2007(07):1-4.
    [44] Bayindir K.C., Gozukucuk M.A., Teke A. A comprehensive overview of hybrid electricvehicle: Powertrain configurations, powertrain control techniques and electronic controlunits [J]. Energy Conversion and Management,2011,52:1305-1313.
    [45] Crolla D.A., Ren Q., Eldemerdash S., et al. Controller design for hybrid vehicles-stateof the art review [C]. Vehicle Power and Propulsion Conference,2008. VPPC '08. IEEE2008:1-6.
    [46] Gurkaynak Y., Khaligh A., Emadi A. State of the art power management algorithms forhybrid electric vehicles [C].5th IEEE Vehicle Power and Propulsion Conference, VPPC'09Dearborn, MI, United states:2009:388-394.
    [47] Baumann B.M., Washington G., Glenn B.C., et al. Mechatronic design and control ofhybrid electric vehicles [J]. Mechatronics, IEEE/ASME Transactions On,2000,5(1):58-72.
    [48] Ehsani M., Gao Y., Gay S.E., et al. Modern Electric, Hybridelectric, and Fuel CellVehicles: Fundamentals, Theory, and Design [M]. FL: CRC press,2005:111-115.
    [49] Trummel M.C., Mazor S.D., Freema R.J. DOE Hybrid test vehicle-results of fueleconomyemission and engineering characterization testing [C]. Passenger Car MeetingDearborn:1984:313-325.
    [50] Burke A.F. On-off engine operation for hybrid/electric vehicles [J]. Electric and Hybrid,1993, SP-969:17-34.
    [51] An F., Barth M., Scora G. Impacts of diverse driving cycles on electric and hybridelectric vehicle performance [J]. Society of Automotive Engineers (Sae) TechnicalPaper,1997,972646:2020-2032.
    [52] L K B., M S.K. A versatile computer simulation tool for design and analysis of electricand hybrid drivetrains [J]. Sae Paper,1997(970199):22-24.
    [53] Johnson V.H., Wipke K.B., Rausen D.J. HEV control strategy for real-time optimizationof fuel economy and emissions [J]. Sae Transactions,2000,109(3):1677-1690.
    [54] Phillips A.M., Jankovic M., Bailey K.E. Vehicle system controller design for a hybridelectric vehicle [C]. IEEE Conference on Control Applications-Proceedings Anchorage,USA:2000:297-302.
    [55] Hyeoun-Dong L., Seung-Ki S. Fuzzy-logic-based torque control strategy forparallel-type hybrid electric vehicle [J]. Industrial Electronics, IEEE Transactions On,1998,45(4):625-632.
    [56] Lee H., Koo E., Sul S., et al. Torque control strategy for a parallel-hybrid vehicle usingfuzzy logic [J]. IEEE Industry Applications Magazine,2000,6(6):33-38.
    [57] Won J.S., Langari R. Fuzzy torque distribution control for a parallel hybrid vehicle [J].Expert Systems,2002,19(1):4-10.
    [58] Schouten N.J., Salman M.A., Kheir N.A. Fuzzy logic control for parallel hybridvehicles [J]. IEEE Transactions On Control Systems Technology,2002,10(3):460-468.
    [59] Kheir N.A., Salman M.A., Schouten N.J. Emissions and fuel economy trade-off forhybrid vehicles using fuzzy logic [J]. Mathematics and Computers in Simulation,2004,66(2-3):155-172.
    [60] Langari R., Jong-Seob W. Intelligent energy management agent for a parallel hybridvehicle-part I: system architecture and design of the driving situation identificationprocess [J]. Vehicular Technology, IEEE Transactions On,2005,54(3):925-934.
    [61] Jong-Seob W., Langari R. Intelligent energy management agent for a parallel hybridvehicle-part II: torque distribution, charge sustenance strategies, and performanceresults [J]. Vehicular Technology, IEEE Transactions On,2005,54(3):935-953.
    [62] Yuan Z., Yaobin C., Guangyu T., et al. A four-step method to design an energymanagement strategy for hybrid vehicles [C]. American Control Conference,2004.Proceedings of the2004Boston:2004:156-161.
    [63] Brahma A., Guezennec Y., Rizzoni G. Optimal energy management in series hybridelectric vehicles [C]. American Control Conference,2000. Proceedings of the2000Chicago:2000:60-64.
    [64] Chan-Chiao L., Huei P., Grizzle J.W. A stochastic control strategy for hybrid electricvehicles [C]. American Control Conference,2004. Proceedings of the2004Boston,Massachusetts:2004:4710-4715.
    [65] Delpart S., Paganelli G., Guerra T.M., et al. Algorithm optimization tool for theevaluation of HEV control strategies [C]. Electric Vehicle Symposium, EVS16, Beijing:1999:
    [66] Piccolo A., Ippolito L., Zo Galdi V., et al. Optimisation of energy flow management inhybrid electric vehicles via genetic algorithms [C].2001IEEE/ASME InternationalConference on Advanced Intelligent Mechatronics Proceedings, July8,2001-July12,2001Como, Italy: Institute of Electrical and Electronics Engineers Inc.,2001:434-439.
    [67] Gielniak M.J., Shen Z.J. Power management strategy based on game theory for fuel cellhybrid electric vehicles [C]. IEEE Vehicular Technology Conference Los Angeles, CA,United states:2004:4422-4426.
    [68] Tate E.D., Boyd S.P. Finding ultimate limits of performance for hybrid electric vehicles[J]. Sae Transactions,2000,109(6):2437-2448.
    [69] Pisu P., Koprubasi K., Rizzoni G. Energy Management and Drivability ControlProblems for Hybrid Electric Vehicles [C]. Decision and Control,2005and2005European Control Conference. CDC-ECC '05.44th IEEE Conference on Seville, Spain:2005:1824-1830.
    [70] Rimaux S., Delhom M., Combes E. Hybrid vehicle powertrain: modeling and control
    [C]. Electric Vehicle Symposium Beijing:1999.
    [71] Gao W., Porandla S.K. Design optimization of a parallel hybrid electric powertrain [C]//Vehicle Power and Propulsion,2005IEEE Conference2005:530-535.
    [72] Oh K., Kim J., Kim D., et al. Optimal power distribution control for parallel hybridelectric vehicles [C].2005IEEE International Conference on Vehicular Electronics andSafety Proceedings Xi'an, Shaan'xi, China: Inst. of Elec. and Elec. Eng. ComputerSociety,2005:79-85.
    [73] Paganelli G., Ercole G., Brahma A., et al. General supervisory control policy for theenergy optimization of charge-sustaining hybrid electric vehicles [J]. Jsae Review,2001,22(4):511-518.
    [74] Paganelli G., Delprat S., Guerra T.M., et al. Equivalent consumption minimizationstrategy for parallel hybrid powertrains [C]. Vehicular Technology Conference,2002.VTC Spring2002. IEEE55th Birmingham, AL, United states:2002:2076-2081.
    [75] Delprat S., Guerra T.M., Rimaux J. Optimal control of a parallel powertrain: fromglobal optimization to real time control strategy [C]. Vehicular Technology Conference,2002. VTC Spring2002. IEEE55th2002:2082-2088.
    [76] Paganelli G., Tateno M., Brahma A., et al. Control development for a hybrid-electricsport-utility vehicle:strategy, implementation and field test results [C]. AmericanControl Conference,2001Arlington, VA:2001:5064-5069.
    [77] Rodatz P., Paganelli G., Sciarretta A., et al. Optimal power management of anexperimental fuel cell/supercapacitor-powered hybrid vehicle [J]. Control EngineeringPractice,2005,13(1):41-53.
    [78] Musardo C., Rizzoni G., Guezennec Y., et al. A-ECMS: An adaptive algorithm forhybrid electric vehicle energy management [J]. European Journal of Control,2005,11(4-5):509.
    [79] Barbarisi O., Westervelt E.R., Vasca F., et al. Power Management Decoupling Controlfor a Hybrid Electric Vehicle [C]. Decision and Control,2005and2005EuropeanControl Conference. CDC-ECC '05.44th IEEE Conference on2005:2012-2017.
    [80] Salman M., Chang M.F., Chen J.S. Predictive energy management strategies for hybridvehicles [C].2005IEEE Vehicle Power and Propulsion Conference, VPPC Chicago, IL,United states:2005:21-25.
    [81] Kutter S., Baker B. Predictive online control for hybrids: Resolving the conflict betweenglobal optimality, robustness and real-time capability [C].2010IEEE Vehicle Powerand Propulsion Conference, VPPC2010Lille, France:2010:1-7.
    [82] Kutter S., Baker B. An iterative algorithm for the global optimal predictive control ofhybrid electric vehicles [C].7th IEEE Vehicle Power and Propulsion Conference, VPPC2011Chicago, IL, United states: IEEE Computer Society,2011:1-6.
    [83] Pisu P., Rizzoni G. A comparative study of supervisory control strategies for hybridelectric vehicles [J]. IEEE Transaction On Control Systems Technology,2007,15:506-518.
    [84] Jeon S., Jo S., Park Y., et al. Multi-mode driving control of a parallel hybrid electricvehicle using driving pattern recognition [J]. Journal of Dynamic Systems Measurementand Control-Transactions of the Asme,2002,124:141-149.
    [85] Serrao L. A comparative analysis of energy management strategies for hybrid electricvehicles [D]. Columbus,USA: The Ohio State University,2009.
    [86] Paganelli G., Delprat S., Guerra T.M., et al. Equivalent consumption minimizationstrategy for parallel hybrid powertrains [C]. Vehicular Technology Conference,2002.VTC Spring2002. IEEE55th Birmingham, AL, United states:2002:2076-2081.
    [87] Gu B. Supervisory control strategy development for a hybrid electric vehicle [D].Columbus,USA: The Ohio State University,2006.
    [88]李忠剑,张俊智,卢青春,等.运用特征参数对汽车驾驶循环的研究[J].汽车技术,2001(7):13-16.
    [89] Fotouhi A., Montazeri G.M. An Investigation on Vehicle's Fuel consumption andExhaust Emissions in Different Driving Conditions [J]. International Journal ofEnvironment Research,2012,6(1):61-70.
    [90]张俊智,卢青春,王丽芳.驾驶循环对车辆能量经济性影响的研究[J].汽车工程,2000(5):320-323.
    [91]田毅,张欣,张昕,等.计及行驶工况影响的混合动力汽车控制策略[J].汽车工程,2010(8):659-663.
    [92] Montazeri Gh M., Ahmadi A., Asadi M. Driving condition recognition for genetic-fuzzyHEV control [C].20083rd International Workshop on Genetic and Evolving FuzzySystems, GEFS Witten-Bommerholz, Germany:2008:65-70.
    [93] Yi T., Xin Z., Liang Z., et al. Intelligent energy management based on driving cycleidentification using fuzzy neural network [C].2009International Symposium onComputational Intelligence and Design, ISCID2009, December12,2009-December14,2009Changsha, Hunan, China: IEEE Computer Society,2009:501-504.
    [94] Chen Z., Kiliaris L., Murphey Y.L., et al. Intelligent power management in SHEV basedon roadway type and traffic congestion levels [C].5th IEEE Vehicle Power andPropulsion Conference, VPPC '09, September7,2009-September10,2009Dearborn,MI, United states: IEEE Computer Society,2009:915-920.
    [95]朱道伟,谢辉,严英,等.基于道路工况自学习的混合动力城市客车控制策略动态优化[J].机械工程学报,2010(6):33-38.
    [96]林歆悠,孙冬野.基于工况识别的混联式混合动力客车控制策略研究[J].中国机械工程,2012(7):869-874.
    [97] Hajimiri M.H., Salmasi F.R. A fuzzy energy management strategy for series hybridelectric vehicle with predictive control and durability extension of the battery [C].2006IEEE Conference on Electric and Hybrid Vehicles, ICEHV Pune, India:2006:
    [98] Ripaccioli G., Bernardini D., Di Cairano S., et al. A stochastic model predictive controlapproach for series hybrid electric vehicle power management [C]. Proceedings of the2010American Control Conference, ACC2010Baltimore, MD, United states:2010:5844-5849.
    [99]舒红.并联型混合动力汽车能量管理策略研究[D].重庆:重庆大学,2008.
    [100] Huang X., Li X., Zhao K., et al. Study of combined energy supervisory control strategyon axis-split four wheel drive hybrid electric vehicle [C].29th Chinese ControlConference, CCC'10, July29,2010-July31,2010Beijing, China: IEEE ComputerSociety,2010:4933-4938.
    [101] Pisu P., Cantemir C., Dembski N., et al. Evaluation of powertrain solutions for futuretactical truck vehicle systems [C]. Modeling and Simulation for Military Applications,April18,2006-April21,2006Kissimmee, FL, United states: SPIE,2006:SPIE.
    [102]于永涛.混联式混合动力车辆优化设计与控制[D].长春:吉林大学,2010.
    [103] Kh H. Analysis tool for fuel cell vehicle hardwareand software(controls) with anapplication to fuel economy comparisons of alternative system designs [D]. Davis:University of California Davis,2001.
    [104] Mathworks. Simulink/Stateflow technical examples—using Simulink and State.flow inautomotive applications [DB/CD].1998.
    [105] R C.P. Cook J A.A nonlinear engine model for drivetrain system development [C].Procof’91IEEE International Control Conference Edinburgh.UK:1991:921-925.
    [106] Van Mierlo J., Van den Bossche P., Maggetto G. Models of energy sources for EV andHEV: fuel cells, batteries, ultracapacitors, flywheels and engine-generators [J]. Journalof Power Sources,2004,128(1):76-89.
    [107]韦静思.内燃机燃烧过程中热声耦合机理的研究[D].天津大学,2010.
    [108]温苗苗,吕林,江国华. CNG发动机工作过程的一维数值模拟[J].武汉理工大学学报(交通科学与工程版),2007(3):476-479.
    [109]黄豪中.柴油均质压燃(HCCI)发动机燃烧过程数值模拟和实验研究[D].天津大学,2007.
    [110]莫春兰.基于化学反应动力学的DME发动机燃烧与排放特性研究[D].华中科技大学,2007.
    [111]文华.基于CFD的柴油机喷雾混合过程的多维数值模拟[D].华中科技大学,2004.
    [112]蒋勇,范维澄.计算直喷式柴油机螺旋进气道与缸内空气运动的大型微机化程序:IPIC-CFD(Ⅰ)[J].燃烧科学与技术,2000,6(2):150-153.
    [113]蒋勇,范维澄.计算直喷式柴油机螺旋进气道与缸内空气运动的大型微机化程序:IPIC-CFD(Ⅱ)[J].燃烧科学与技术,2000,6(4):342-345.
    [114]杜爱民,朱埏章,姜树李,等.涡流室式柴油机工作过程的三维模拟程序[J].燃烧科学与技术,2000,6(3):270-274.
    [115]赵亚男,赵福堂,刘碧荣.汽车发动机特性仿真研究[J].北京交通大学学报,2008(1):97-100.
    [116]詹樟松,刘兴春,孙登兴,等.基于MATLAB的发动机特性实时处理和计算系统[J].内燃机,2002(5):9-12.
    [117]周云山,钟勇.汽车电子控制技术[M].北京:机械工业出版社,2004:187-194.
    [118]周云山,于秀敏.汽车电控系统理论与设计[M].北京:北京理工大学出版社,1999:253-257.
    [119]何仁.汽车动力性燃油经济性模拟计算方法及应用[M].北京:机械工业出版社,1996:135-138.
    [120]刘瑞芳.基于电磁场数值计算的永磁电机性能分析方法研究[D].东南大学,2002.
    [121]王振,刘建国,王爱凤.基于ANSOFT的永磁同步电机有限元分析[J].能源研究与管理,2010(3):26-27.
    [122]洪乃刚.电力电子、电机控制系统的建模和仿真[M].北京:机械工业出版社,2010:205-209.
    [123]孙文军,阎慧,高永明,等.基于MapleSim的永磁同步电机矢量控制仿真[C]//第13届中国系统仿真技术及其应用学术年会中国安徽黄山:2011:841-845.
    [124]张冰战.插电式混合动力电动汽车能量管理策略研究[D].合肥工业大学,2011.
    [125]陈汉玉.基于Matlab/Simulink的ISG混合动力车控制策略仿真与试验研究[D].江苏大学,2010.
    [126]王保华.混合动力城市客车控制策略与试验研究[D].上海交通大学,2008.
    [127]浦金欢.混合动力汽车能量优化管理与控制策略研究[D].上海交通大学,2004.
    [128]戴海峰,魏学哲,孙泽昌.基于等效电路的内阻自适应锂离子电池模型[J].同济大学学报(自然科学版),2010(1):98-102.
    [129] Johnson V.H. Battery performance models in ADVISOR [J].2002,110:321-329.
    [130]麻友良,陈全世,齐占宁.电动汽车用电池SOC定义与检测方法[J].清华大学学报(自然科学版),2001(11):95-97.
    [131]何坚勇.最优化方法[M].北京:清华大学出版社,2007:365-370.
    [132]李卫民.混合动力汽车控制系统与能量管理策略研究[D].上海:上海交通大学,2008.
    [133] Paganelli G., Guerra T.M., Delprat S., et al. Simulation and assessment of power controlstrategies for a parallel hybrid car [J]. Proceedings of the Institution of MechanicalEngineers, Part D: Journal of Automobile Engineering,2000,214(7):705-717.
    [134] Paganelli G., Tateno M., Brahma A., et al. Control development for a hybrid-electricsport-utility vehicle:strategy, implementation and field test results [C]. AmericanControl Conference,2001. Proceedings of the2001Arlington, VA:2001:5064-5069.
    [135]胡红斐.混合动力电动汽车参数匹配与控制策略优化研究[D].广州:华南理工大学,2006.
    [136]阴晓峰,谭晶星,雷雨龙,等.基于神经网络发动机模型的动态三参数换挡规律[J].机械工程学报,2005(11):178-182.
    [137]郭福军.基于单片机的工程车辆3参数自动换档技术研究[D].吉林大学,2004.
    [138]雷英杰,张善文,李续武,等. MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005:324-327.
    [139]张煜东,吴乐南,王水花.基于遗传算法与模式搜索的混合优化算法[J].南京信息工程大学学报(自然科学版),2012(1):34-39.
    [140]吴兴远.模式搜索法在最优化问题中的应用[J].软件导刊,2009(8):122-123.
    [141]余莲. MATLAB并行计算:让高性能计算资源的利用更加高效[J].电子技术应用,2009(1):4.
    [142]张帆,邵之江,仲卫涛,等.基于Matlab的分布式并行优化计算环境[J].系统仿真学报,2002(9):1145-1148.
    [143] Chakravarti A., Ivanov P.S., Rorison J.使用并行MATLAB扩展桌面计算环境[J].中国电子商情(基础电子),2010(4):38-39.
    [144]袁舒,黄学超,杨烜. Windows环境下的Matlab并行机群计算配置及应用[J].计算机与现代化,2010(5):189-194.
    [145] Jones D.R., Perttunen C.D., Stuckman B.E. Lipschitzian optimization without theLipschitz constant [J]. Journal of Optimization Theory and Applications,1993,79(1):157-181.
    [146]何洪文,黄贤广,张亚明,等.基于DIRECT算法的混合动力汽车参数优化研究[J].汽车工程学报,2011(2):35-41.
    [147] Zhang Y., Sun F., He H. Control Strategy Optimization for Hybrid Electric Vehiclebased on DIRECT Algorithm [C]. Vehicle Power and Propulsion Conference Harbin,Hei Longjiang, China:2008:5.
    [148]杨淑莹.模式识别与智能计算:Matlab技术实现[M].第二版.北京:电子工业出版社,2011.
    [149]田毅,张欣,张良,等.神经网络工况识别的混合动力电动汽车模糊控制策略[J].控制理论与应用,2011(3):363-369.
    [150]骆元,王杰,王犹松.武汉城市公交车工况测定及分析[J].机械工程学报,2005(12):96-100.
    [151]杨延相,蔡晓林,杜青,等.天津市道路汽车行驶工况的研究[J].汽车工程,2002,24(3):200-204.
    [152]潘姝月,周雅夫.城市公交车行驶工况的研究[J].机械设计与制造,2010(2):263-265.
    [153]朱西产, Meng-Liang L.I.,马志雄,等.车辆行驶工况开发方法[J].江苏大学学报(自然科学版),2005,26(2):110-113.
    [154] Ericsson E. Independent driving pattern factors and their influence on fuel-use andexhaust emission factors [J]. Transportation Research Part D: Transport andEnvironment,2001,6(5):325-345.
    [155] Huang X., Tan Y., He X. An intelligent multi-feature statistical approach fordiscrimination of driving conditions of hybrid electric vehicle [C]. Proceedings of theInternational Joint Conference on Neural Networks Atlanta, GA, United states:2009:1286-1293.
    [156] Wang Z., Xu G., Li W., et al. Driving load forecasting using cascade neural networks
    [C].4th International Symposium on Neural Networks Nanjing, China: Springer Verlag,2007:988-997.
    [157] Yang J., Huang X., Tan Y., et al. Forecast of driving load of hybrid electric vehicles byusing discrete cosine transform and support vector machine [C].2008InternationalJoint Conference on Neural Networks Hong Kong, China: Institute of Electrical andElectronics Engineers Inc.,2008:2227-2234.
    [158]朱道伟,谢辉,严英.基于道路工况预测混合动力公交车SOC开环控制策略[J].天津大学学报,2012(5):386-392.
    [159]况菲,王耀南,余洪山,等.一种基于学习向量量化神经网络的图象分割方法[J].计算机工程与应用,2005,41(14):34-36.
    [160]王波,杜晓昕,金梅. LVQ神经网络在乳腺肿瘤诊断中的应用[J].计算机仿真,2012(8):171-174.
    [161]罗志增,熊静,刘志宏.一种基于WPT和LVQ神经网络的手部动作识别方法[J].模式识别与人工智能,2010,23(5):695-700.
    [162]田光宇,彭涛,林成涛,等.混合动力电动汽车关键技术[J].汽车技术,2002(01):8-11.
    [163]魏学哲,戴海峰.汽车嵌入式系统原理、设计与实现[M].北京:电子工业出版社,2010:205-208.
    [164]祝轲卿,王俊席,吴晨楠,等.基于Targetlink的嵌入式系统控制软件开发[J].系统仿真学报,2007(7):1476-1479.
    [165]刘巍,赵向东,李幼德,等. ESP硬件在环试验平台的研究与开发[J].汽车工程,2007(09):809-811.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700