用户名: 密码: 验证码:
纯电动汽车动力总成系统匹配技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纯电动汽车具有高效、节能、终端零排放等特点,是解决能源危机和环境污染的重要途径。但电动汽车受电池能量密度和驱动系统效率的限制,续驶里程短,充电时间长,制约了纯电动汽车的推广应用。因此,对动力总成系统关键部件进行选型和匹配,确保这些部件高效区域与电动汽车频繁运行区域之间的合理匹配,并开发合适的控制策略,能够提高车辆驱动系统工作效率,有效延长纯电动汽车的续驶里程。
     围绕纯电动汽车动力总成系统的匹配技术,本文开展了以下研究工作:
     1.纯电动汽车动力总成系统性能测试试验台开发
     为测试纯电动汽车动力总成关键部件及动力总成系统的性能,评价动力总成系统的匹配效果,验证电力驱动系统各控制单元的有效性,建立了由电源系统、驱动电机系统、测功机系统及数据采集控制系统构成的纯电动汽车动力总成系统性能测试试验台;试验台集成的各设备分别采用了CAN总线、485总线或232总线等不同的通信方式,为实现试验台数据的集中采集及对试验台各设备的远程控制,以英飞凌XC164CM单片机为核心,开发了基于CAN总线的信息采集及通信方式转换信息单元,将各设备通信方式统一转化为CAN总线通信方式,构建了试验台CAN总线通信网络;根据试验台所要实现的功能,参考SAEJ1939协议,对试验台各CAN节点源地址进行了分配,并定义了各节点的CAN报文内容,制订了试验台CAN通信网络应用层协议,构建了试验台数据采集及控制系统的基本结构框架,实现了所需的通讯、控制功能。论文以智能型放电仪为例,对数据采集及控制过程的实现方法进行了详细描述,并讨论了试验台的报警及保护机制。动力电池组的放电试验和基本城市循环工况下动力总成系统性能的测试结果表明,开发的试验台实现了纯电动汽车动力总成系统测试所需的功能,达到了设计要求。
     2.纯电动汽车动力总成关键部件特性分析
     对车辆动力总成系统进行优化匹配和控制策略开发时,需充分了解动力电池、驱动电机等关键部件的效率特性。为此,在试验台上,以320V/100A·h磷酸铁锂电池组为研究对象,对电池组开路电压、容量效率及电压性效率等特性进行了测试研究,结果表明磷酸铁锂电池组在不同充、放电电流下的容量效率达99%以上;电压性效率随电池组工作电流和SOC而变化,电池组在充电电流较小和SOC处于20%-80%时充电效率较高,达92%以上;在放电电流较低且SOC较高时,电池组放电效率较高。基于试验数据构建了电池组充、放电效率模型,用以描述电池组效率与充、放电电流及SOC之间的关系,利用实车测试的电池组工作电流对建立的电池组效率模型进行了验证,结果表明,模型计算值与实测值的最大相对误差为0.57%,表明建立的模型是有效的。
     以32kW交流异步电机为研究对象,在试验台上对驱动电机系统常用工况范围和高速弱磁范围内的效率特性进行了测试分析。指出,在不同工况点,电机系统效率相差很大,在低速或低负荷时电机系统效率很低;在电机输出功率0.3Pe≤P≤1.4Pe的中等转速及中等转矩区域内效率较高,维持适当的电机负荷率可显著提高电机系统运行效率;在电机输出功率存在较大过载时,电机系统效率急剧降低。基于实测数据构建了驱动电机系统效率模型;利用驱动电机额定转矩下部分工况点的实测数据对模型进行了验证,结果表明:模型计算值与实测值的最大相对误差为3.4%,建立的模型是有效的。
     对电力驱动系统的能量回馈效率特性和驱动效率特性进行了测试分析,结果表明,电力驱动系统高效区域主要集中在电机额定转速附近的中等负荷区域。基于实测数据构建了电力驱动系统能量回馈和驱动效率模型,并通过台架试验验证了模型的有效性。
     3.济南市道路工况下车辆动力系统运行区域测试分析
     不同城市的车辆行驶工况具有不同的特点,通过构建济南市车辆行驶工况,统计得到车辆实际行驶过程中电力驱动系统常用工作区域,可为动力总成系统匹配设计以及控制策略的优化开发提供依据。本文开发了车载信息单元,通过车辆CAN总线获取车辆实时运行数据,并将有效数据打包,通过GPRS远程无线通信网络发送至监控中心,实现车辆运行信息的实时采集。考虑车道数量、道路坡度及车流密度等因素,选择了济南市典型道路,利用纯电动微型客车连续进行了15天的数据采集,获得了260万条有效数据。本文提出了基于车辆能耗状态构建济南市道路行驶工况的思路,对道路坡度、瞬时比功率、车速及车辆加速度等反映车辆能耗状态的关键因素进行了分析,定义了27个参数反映运动学片段特征;运用主成分分析、快速聚类分析等方法,构建出候选工况,并综合考虑相关系数、相对误差及关键参数概率分布,选出了代表性行驶工况,即济南市车辆行驶工况。通过对济南市车辆行驶工况的统计分析,得到车辆行驶工况点主要集中在车速为10km/h~40km/h、车轮转矩为-200N·m~300N.m、需求功率为-2kW~3.5kW的区域内。
     4.动力总成系统软件在环仿真分析
     开发了纯电动汽车动力总成系统软件在环仿真系统,用于进行动力总成系统参数匹配研究。以MATLAB/Simulink为基础,搭建了包括道路工况描述模块、车辆行驶动力学模块、整车控制器模块、动力总成关键部件选型模块、驱动电机模块、电机控制器模块以及动力电池组模块在内的动力总成系统在环仿真系统。仿真结果与试验结果以及与ADVISOR仿真结果的对比表明,建立的软件在环仿真系统是有效的。基于所建立的仿真系统,结合台架试验和底盘测功机试验,对一辆纯电动轿车动力总成系统中电池组、电机及传动系统参数进行了选型匹配,实现了电力驱动系统高效区域与车辆实际道路行驶工况点密集区域相吻合。对匹配额定功率7.5kW电机,192V/100A-h磷酸铁锂电池组,传动比6.18的车辆实测结果表明,车辆40km/h匀速行驶时的续驶里程达169km;在基本城市循环工况下百公里能耗为12.01kW.h,续驶里程达160km。
     5.电力驱动系统控制单元及控制策略开发
     基于Infineon TC1782F微控制器和Hybrid PACK1功率模块开发了电机控制单元,并基于矢量控制算法开发了电机控制策略,控制策略包括坐标变换、转子磁通角计算、电压空间矢量扇区定位、电压矢量作用时间计算等模块。针对纯电动汽车用驱动电机的特点,分析了电机控制器直流母线电压波动、电机温升引起的转子电阻变化、电机高速弱磁控制、转速控制环的PI参数整定及供电电源电压和放电电流对电机系统性能的影响规律,并在试验台上通过转矩动态响应试验和电机转速闭环控制试验,验证了电机控制系统的有效性。
     对车辆运行模式进行了划分,并利用Matlab软件中的Simulink、Stateflow建立了驱动模式识别和转换控制模型。设计开发了纯电动汽车驱动控制策略,对加速踏板信号进行了抗干扰、防抖动及滤波处理;车辆在稳态模式下,采用基于车速偏差的增量式PID控制;在瞬态模式下,按照效率最优路径进行控制;在失效模式下,限制电机输出功率。为了最大限度地提高驱动系统效率,提出了基于动力总成系统效率模型实现车辆变工况下转矩轨迹最优的控制策略。模型仿真分析和实车测试结果表明,开发的驱动控制策略是有效的。
     在试验台上,以交流异步驱动电机及LiFePO4/C锂离子电池组为研究对象,测试分析了电机转速、制动转矩、电池组SOC及电池组温度对能量回馈效率的影响规律;讨论了电机温度对能量回馈最大制动转矩的限制:针对滑行能量回馈,开发了基于动态矩阵预测控制算法的滑行能量回馈控制策略,参考传统车辆滑行时发动机产生的阻力和电动汽车能量回馈效率模型,确定滑行能量回馈时电机制动转矩参考轨迹,在确保司机驾驶舒适性的前提下,有效回收车辆滑行时的能量;制动能量回馈时,考虑驱动电机最大制动转矩的限制,基于滑动率合理分配机械制动力和电机制动力,确保车辆制动安全性。
     实测结果表明,纯电动汽车行驶过程中,驾驶特性对车辆能耗的影响很大。利用济南市区实际运行的纯电动物流用车,对比分析了不同司机驾车行驶时的能耗及其影响因素;对车辆加速度、车速、制动减速度及电机过载特性等对车辆能耗的影响进行了测试分析;在保证车辆性能指标的前提下,通过增加电机极限参数控制模式降低了车辆能耗对驾驶特性的敏感度。试验结果表明,优化后车辆的能耗较原车最高可降低34.9%。
     6.匹配车辆性能的试验验证
     对匹配开发的车辆进行了底盘测功机试验和实车道路验证试验。在底盘测功机上的测试结果表明,车辆最高车速满足设计指标ua>80km/h,城市工况下的百公里能耗为10.71kW.h,续驶里程为177km。实车道路试验表明,转矩限值为120N-m时,车辆0-60km/h加速时间为10.88s,满足车辆设计指标要求。对驱动模式管理系统功能测试结果表明,车辆运行模式识别准确,模式间切换平稳,整车控制策略达到了预期的效果。在底盘测功机上对动力总成系统安全保护功能进行了测试,结果表明,电池管理系统和电机控制器能根据设定的极限参数对动力总成系统关键部件进行有效保护。
With the advantages of high-energy efficiency and no tail emission pollution, an electric vehicle (EV) is an important way of resolving energy crisis and environmental pollution.Inadequate endurance mileage and long charging period are the main restriction factors to hinder the development of EV due to the poor energy density of battery and low efficiency of electric drive system. In order to improve the efficiency of EV drive system and prolong EV endurance mileage, the reasonable match of battery pack, driving motor and transmission system parameters of power-train should be carried out to suit for EV most common driving conditions, and proper control strategy should be developed.
     The main works around the matching techniques of EV power-train are described in the following sections.
     1. Development of test bench for the performance testing of power-train
     A test bench for the performance testing of power train system of EV has been developed. The bench consisted of motor power supply and battery energy consumption system, driving motor and its controller, dynamometer and its control system as well as bench's control and data acquisition system. The characteristic test for key parts of the power-train system, the performance test and matching effect evaluation for the power-train system and electronic control units' validity verification of EV power-train could be conducted using the bench. The communication modes of equipments with that test bench constructed include CAN bus communication, RS-485series communication and RS-232series communication. In order to meet the demands of data concentrated acquisition and equipment remote control, a communication mode changing system has been developed for data sharing between different communication modes using processor infineon XC164CM and the test bench communication network is constructed based on CAN bus. To realize the communication functions of the test bench, the application layer protocol of CAN bus has been designed, the nodes' source address and parameter groups are all defined clearly according to the protocol of SAE J1939. The functions of data acquisition and equipments' control have been achieved by means of communication network. The control program flow of equipment control and data acquisition has been discussed with the example of battery discharge process through intelligent battery discharge unit, and the protection strategy of the test bench is also discribed.
     Tests, such as battery pack discharging and power train performance following the basic urban test cycle, are carried out at the bench, and the results show that the test bench works well and satisfies the requirements for EV studying.
     2. Characteristic analysis of key components of EV power-train
     To guide EV power-train's optimal matching and developing suitable control strategy, the efficiency characteristics of battery pack, driving motor and other key parts of power-train should be understood. The coloumbic efficiency, the open circuit voltage and the voltaic efficiency of a320V/100A·h LiFePO4/C li-ion battery pack are investigated using the test bench. The results indicate that the coloumbic efficiency exceeds99%for different charge current and discharge current, the voltaic efficiency changes with the battery pack's current and its state of charge (SOC). The battery has a high charging efficiency of over92%at small charge current and in the range of20%-80%of SOC, and a high discharging efficiency with small discharge current and high SOC. A model that descibes the relationship of the battery charge and discharge efficiency to current and SOC is established based on the measured data. The comparisons between modeled results and measured values indicate that the model is valid and the maximum relative error is within0.57%at some typical points which are selected according to vehicle opretion conditions.
     The efficiency characteristics of a32kW AC asynchronous motor during the high-frequency operation time area and the field-weakening region are tested and analyzed using the test bench. The test results show that the efficiency of a traction motor varies with the motor speed and torque. There is an area in which the efficiency is high and the most efficient region locates in the middle of the speed and torque range, corresponding to the power output between0.3and1.4of rated power(Pe). Contrast to the high efficiency region, lower power output at low-speed or light load leads to low efficiency, and the efficiency will also decrease significantly when the load power is much greater than the rated power. A model to describe the efficiency of the motor system is established using quartic function based on the test results and the model is validated by comparing measured results that are obtained at the rated torque of the motor to the simulation values, and the results show that the maximum relative error is within3.4%.
     The efficiency characteristics of electric driving system under driving and braking energy recovering process are tested and results indicate that there is an optimal efficiency region nearby the rated speed and middle torque. Prediction models of energy recovering efficiency and driving efficiency are developed based on measured data and the models' validity are verified by testing results.
     3. Test and analysis of power-train running conditions in Jinan's drive cycle
     The driving cycle has specific characteristics in different city. To master the characteristics that in Jinan, a driving cycle of Jinan is constructed, and according to that the ordinary EV running conditions are contoured. The running conditions are helpful to optimally match power train and develop proper control strategy. An on-vehicle data acquisition unit is developed to acquire vehicle real-time running data, and the valid data was packed and transmitted to monitoring center based on GPRS network. Typical roads in Jinan are selected considering lane number, road grade, traffic flow density and other factors, and then the running data of pure electric microbuses driving in the roads is acquired for up to15days and2.6million groups data are collected. A driving cycle constructing method is proposed in which vehicle energy consumption status is included. Key factors that affected vehicle's energy consumption, such as road grade, vehicle transient specific power, vehicle speed, and vehicle acceleration rate are analyzed. Taking vehicle's energy consumption and road grade into consideration,27characteristic values of kinematic sequences are proposed. Candidate driving cycles are constructed according to the analysis result of kinematic sequences by using tools such as principal composition analysis and clustering analysis etc. And the actual driving cycle for Jinan is selected from candidate driving cycles by comprehensive consideration of the correlation coefficient, relative error and key parameters probability distribution. By statistical analysis for Jinan's driving cycle, the area of the greatest operation time is within the vehicle speed of10km/h~40km/h, wheel torque demands of-200N·m~300N·m and power demands of-2kW~3.5kW.
     4. Research on software in the Loop simulation technology for EV power-train
     Software in the Loop simulation system for EV power-train is developed for the purpose of matching the parameters of power-train. And the simulating system is established using MATLAB/simulink, which includ driving cycle model, vehicle kinematics model, vehicle controller model, traction motor model, motor controller model, battery pack model and selection model which used to select key parts of power-train. The simulating system is validated by comparing the modeled value with the measured data and by comparing the modeled value with the result that are obtained from simulation model developed using ADVISOR software. The parameters of a motor, a battery pack and a manual transmission are selected for a power-train by simulation using the simulating system. The efficiency characteristics of the traction motor and the battery pack are measured on the EV test bench. The electrical driving system and the mechanical transmission system are matched using a chassis dynamometer and the results show that the most efficient region of the power train overlaps the greatest operation time area. With a7.5kW AC asynchronous motor, a192V/100Ah LiFePO4/C battery pack and a constant gear ratio6.18, the EV endurance mileage reaches169km under40km/h testing by constant speed metering method, and reaches160km, costing12.01kW·h/100km, according to basic urban driving cycle.
     5. Development of controller and control strategy for electric driving system
     A motor controller unit is designed using Infineon TC1782F microcontroller and Hybrid PACK1IGBT module, and the motor control strategy is developed based on the vector control. And in the strategy, coordinate transformation module, rotor flux angle calculation module, voltage space vector location calculation module and basic voltage vector acting time calculation module are included. In real-word operation, some factors that affect EV drive performance, such as DC voltage ripple, rotor resistance varying with motor temperature, field weakening control at high-speed range, proportional-integral (PI) parameters tuning in the motor speed control loop, voltage supply and discharge current of the power system are analyzed. Tests about motor torque response to a step change in the torque demand and closed loop speed control performance are carried out and the results show that the motor controller could work effectively.
     EV's driving modes are established, mode identifying and mode switching pattern are constructed using Matlab/simulink&stateflow. The driving control strategy of EV's power-train is developed, in which the signal of accelerator pedal is smoothed and filtered; the incremental PID control based on speed deviation and the optimal efficiency path control are adopted in steady mode and transient mode respectively; power output is limited in failure mode. Under transient conditions, in order to further improve power-train's efficiency, an optimizing power-train's control strategy is proposed based on the power-train efficiency model. Simulating results and testing results indicate that the control strategy is valid.
     With the tests of AC asynchronous motor and a LiFePO4/C battery pack on the test bench, the relationship of energy recovery efficiency to motor speed, brake torque, battery pack's SOC, battery pack's temperature is studied. The restriction of motor's temperature to the maximum brake torque setting is discussed. For recovering energy effectively, under the premise of driving comfort, the dynamic matrix control (DMC) algorithm is adopted to develop the strategy of coasting condition according to energy recovery efficiency model and conventional vehicle's coasting resistance. To ensure vehicle safety, a braking control strategy is designed that distributes the required braking forces among regenerative braking and frictional braking referring to wheel slip rate.
     The test results indicate that driver's driving characteristics have great influence on EV energy consumption. The difference of energy consumption driving by different drivers is tested and driving characters of affecting the difference are discussed according to test results of electric vans running in Jinan city. Factors influencing EV energy consumption, such as vehicle acceleration rate, speed, braking deceleration rate and motor power overload are tested and analyzed. By adding a control mode, in which motor torque and over-speed are limited, and therefore the driving parameters to that energy consumption is sensitive are optimized. The test of optimized electric vans is carried out, and results indicated that energy consumption of optimized vans could be decreased as more as34.9%when compared with the original vehicle.
     6. Performance examination of matched EV
     Chassis dynamometer test and vehicle road test are carried out using the matched EV. Results of chassis dynamometer tests show that the vehicle maximum speed satisfies the EV's design index requirement of umax>80km/h, and the endurance mileage reaches177km, costing10.71kW·h/100km, over the urban driving cycle. The vehicle test indicates that time used to accelerate the vehicle from zero speed to60km/h is10.88s when the motor torque is limited to the range less than120N-m, and the time also meet the demands of vehicle acceleration performance. The test results about driving modes'management strategy show that the operation mode can identify operation status accurately, operation mode can switch smoothly and the control strategy works well. The safety protection function for power-train is tested on chassis dynamometer and the results indicate that the battery management system and the motor controller can provide effective protection for the key components of power-train according to user's settings.
引文
[1]马俊睿.2011年中国原油进出口贸易回顾[J].当代石油石化,2012,(3):11-15.
    [2]田春荣.2011年中国石油和天然气进出口状况分析[J].国际石油经济,2012,(3):56-66.
    [3]李东卫.我国新能源汽车产业化过程中面临的挑战及对策[J].中国科技投资,2011,(3):61-64.
    [4]孟晨.浅析原油高对外依存条件下的新能源汽车发展[J].经济视角,2012,(1):87-88.
    [5]朱伽林.节能减排是交通运输行业的重点[J].运输经理世界,2010,(7):14-15.
    [6]国科发计[2012]195号文件电动汽车科技发展“十二五”专项规划[Z].2012.
    [7]冯飞.纯电动车才是方向性技术[N].新京报,2010-06-07(B02).
    [8]余春瑜.万钢:纯电驱动是重点[J].商用汽车新闻,2012,(9):1.
    [9]陈安红.电动汽车电机驱动控制系统研究[D].西安:长安大学,2006.
    [10]Hori Y. Future Vehicle driven by Electricity and Control Research on Four Wheel Motored "UOT Electric March II "[C]. AMC2002-Maribor, Slovenia, 2002,1-14.
    [11]杨祖元.电动汽车能量和传动系统特性仿真研究[D].重庆:重庆大学,2002.
    [12]李珂.电动汽车高效快响应电驱动系统控制策略研究[D].济南:山东大学,2007.
    [13]张毅.纯电动轿车动力总成控制系统的研究[D].上海:上海交通大学,2007.
    [14]宋强,王志福,张承宁.电动汽车电机驱动系统效率测试方法研究[J].微特电机,2006,34(6):4-6.
    [15]杨洋,郑刚.一种电动汽车驱动控制器控制策略研究与设计[J].变频器世界,2012,(6):75-78.
    [16]Abrahamsen F, Blaabjerg F, Pedersen J K, et al. Efficiency Optimized Control of Medium-Size Induction Motor Drives[J]. IEEE Transactions on Industrial Application,2001,37(6):1761-1767.
    [17]Sousa G C D, Simonetti D S L, Norena E E C. Efficiency Optimization of a Solar Boat Induction Motor Drive[C] Industry Applications Conference, 2000.2000,3:1424-1430.
    [18]PeresadaS, Tilli A, Tonielli A. Indirect Field-Oriented Control of Induction Motor:New Design Leads to Improved Performance and Efficiency[C]. Proceedings of the 24th Annual Conference of the IEEE, Industrial Electronics Society,1998,3:1609-1614.
    [19]Kim G K, Ha I J, Ko M S. Control of induction motors for both high dynamic performance and high power efficiency[J]. IEEE Transactions on Industrial Electronics,1992,39(4):323-333.
    [20]Vukosavic S N, Levi E. A Method for Transient Torque Response Improvement in Optimum Efficiency Induction Motor Drives[J]. IEEE Transactionsons Energy Conversion,2003,18(4):484-493.
    [21]Vukosavic S N, LeviE. Robust DSP-based Efficiency Optimization of a Variable Speed Induction Motor Drive[J]. IEEE Transactions on Industrial Electronics,2003,50(3):560-570.
    [22]Fukushige T, Tanaka D, Shibukawa Y. Influence of the Coil Pitch and the Slot/Pole Number Combination upon the Performance of Permanent Magnet[C]. SAE paper No.2012-01-0336,2012,177-186.
    [23]Pryymak B, Moreno-Eguilaz J M, Peracaula J. Neural network flux optimization using a model of losses in induction motor drives [J]. Mathematics and Computers in Simulation,2006.71(4-6):290-298.
    [24]Pryymak B, Moreno-Eguilaz J M, Peracaula J. A neural networks approach to an energy saving problem solution in an asynchronous electric drive[J]. Tekhnichna electrodynamika 2003,19-23.
    [25]Sepahvand H, Farhangi S. Enhancing performance of a fuzzy efficiency optimizer for induction motor drives[C]. Power Electronics Specialists Conference, PESC'06.37th. Piscataway, USA:IEEE,2006:1-5.
    [26]Zidani F, Behbouzid M E H, Diallo D. Loss Minimization of a Fuzzy Controlled Induction Motor Drive[C]. Electric Machines and Drives Conference,2001,629-633.
    [27]Lubin T, Razik H, Rezzoug A. On-line efficiency optimization of a synchronous reluctance motor[J]. Electric Power Systems Research,2007, 77(5-6):484-493.
    [28]Ta C M, Hori Y. Convergence Improvement of Efficiency-optimization Control of Induction Motor Drives[J]. IEEE Transactions on Industry Applications,2001,37(6):1746-1753.
    [29]Hajian M, Arab Markadeh G R, Soltani J, et al. Energy optimized sliding-mode control of sensor-less induction motor drives [J]. Energy Conversion and Management,2009,50(9):2296-2306.
    [30]Veluvolu K C, Soh YC, Cao W. Robust observer with sliding mode estimation for nonlinear uncertain systems[J]. Control Theory & Applications, 2007, 1(5):1533-1540.
    [31]Kaboli S, Zolghadri M R, Vahdati-Khajeh E. A fast flux search controller for DTC-based induction motor drives[J]. IEEE Transactions on Industrial Electronics,2007,54(5):2407-2416.
    [32]Dong G, Ojo O. Efficiency optimizing control of induction motor using natural variables[J]. IEEE Transactions on Industrial Electronics,2006,53(6): 1791-1798
    [33]Sousa G C D, Bose B K, Cleland J G. Fuzzy logic based on-line efficiency optimization control of an indirect vector-controlled induction motor drive[J]. IEEE Transactions on Industrial Electronics, 1995,42(2):192-198.
    [34]Wang J B, Liaw C W. Indirect Field-oriented Induction Motor Drive with Fuzzy Detuning Correction and Efficiency Optimisation Controls[J]. Electric Power Applications,1997,144(1):37-45.
    [35]Kioskeridis I, Margaris N. Loss Minimization in Scalar-controlled Induction Motor Drives with Search Controllers[J]. IEEE Transactions On Power Electronics,1996,11 (2):213-220.
    [36]Wasynczuk O, Sudhoff S D, Corzine K A, ea al.. A Maximum Torque per Ampere Control Strategy for Induction Motor Drives[J]. IEEE Transactions on Energy Conversion,1998,13(2):163-169.
    [37]Sakthivel V P, Bhuvaneswari R, Subramanian S. An accurate and economical approach for induction motor field efficiency estimation using bacterial foraging algorithm [J].Measurement,2011,44(4):674-684.
    [38]Tripathy M, Mishra S. Bacteria foraging-based solution to optimize both real power loss and voltage stability limit[J]. IEEE Transactions on Power Systems,2007,22(1):240-248.
    [39]Lin W, Liu P X. Hammerstein model identification based on bacterial foraging[J]. Electronics Letters,2006,42(23):1332-1333.
    [40]Mishra S, Bhende C N. Bacterial foraging technique-based optimized active power filter for load compensation[J], IEEE Transactions on Power Delivery,2007,22(1):457-465.
    [41]Cunkas M, Sag T. Efficiency determination of induction motors using multi-objective evolutionary algorithms [J].Advances in Engineering Software, 2010,41(2):255-261.
    [42]Zhang Guirong, Zhang Henghai, Li Houyu. The Driving Control of Pure Electric Vehicle[J]. Procedia Environmental Sciences,2011,10:433-438.
    [43]王红梅,徐顺余,吴兵.插电式混合动力汽车用动力蓄电池探析[J].上海汽车,2007,(11):8-10.
    [44]刑树佩,胡立祥,候岩,等.电动汽车用电池及其进展[J].山东机械,2004,(5):44-46.
    [45]钱良国,郝永超,肖亚玲.锂离子等新型动力蓄电池成组应用技术和设备研究最新进展[J].机械工程学报,2009,45(2):2-11.
    [46]张宾,林成涛,陈全世.电动汽车用LiFePO4/C 锂离子蓄电池性能[J].电源技术,2008,32(2):95-98.
    [47]PADHI A K, NANJUDASWAMY K S, GOODENOUGH J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J Electrochem Soc,1997,144(4):1188-1193.
    [48]张剑波,卢兰光,李哲.车用动力电池系统的关键技术与学科前沿[J].汽车安全与节能学报,2012,3(2):87-104.
    [49]吴铁洲,张永飞,吴麟章,等.蓄电池的建模与能量管理研究[J].华中科技大学学报(自然科学版),38(4):31-33.
    [50]Johnson V H. Battery Performance Models in ADVISOR[J]. Journal of Power Sources,2002,110 (2):321-329.
    [51]林成涛,仇斌,陈全世.电动汽车电池非线性等效电路模型的研究[J].汽车工程,2006,28(1):38-47.
    [52]Thevenin J. Passivating films on lithium electrodes.An approach by means of electrode impedance spectroscopy J]. Journal of Power Sources, 1985,14(1/3):45-52.
    [53]FreedomCAR Battery TestManual for Power-Assist Hybrid Electric Vehicles. DOE/ID-11069[R]. Washington, DC:US Departmant of Energy, 2003.
    [54]He H W, Xiong R, Guo H Q. Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles[J]. Applied Energy, 2012,89(1):413-420.
    [55]张宾,郭连兑,李宏义,等.电动汽车用磷酸铁锂离子电池的PNGV模型分析[J].电源技术,2009,33(5):417-421.
    [56]胡国珍,段善旭,蔡涛,等.基于模型参数拟合的锂离子电池充电电源控制性能[J].电工技术学报,2012,27(2):146-152.
    [57]Abu-Sharkh S, Doerffel D. Rapid test and non-linear model characterisation of solid-state lithium-ion batteries[J]. Journal of Power Sources,2004,130(1-2):266-274.
    [58]林成涛,仇斌,陈全世.电动汽车电池功率输入等效电路模型的比较研究[J].汽车工程,2006,28(3):229-234.
    [59]张頔,马彦,柏庆文.基于自适应卡尔曼滤波的锂离子电池SOC估计[J].汽车技术,2011,(8):42-50.
    [60]李德东,王振臣,郭小星.基于模糊卡尔曼滤波的HEV氢镍电池SOC估计[J].电源技术,2011,35(2):192-194.
    [61]蔡正英,桂长清.电动自行车电池开路电压与放电容量的关系[J].电池工业,2007,12(6):366-369.
    [62]Safari Yazd M, Molazemi A, Moayed M H. The effects of different additives in electrolyte of AGM batteries on self-discharge[J]. Journal of Power Sources,2006,158(1):705-709.
    [63]Miyamoto H, Morimoto M, Morita K. On-line SOC Estimation of Battery for Wireless Tram Car[C].7th International Conference on Power Electronics and Drive Systems,2007. PEDS'07,2007:1624-1627.
    [64]李哲,卢兰光,欧阳明高.提高安时积分法估算电池SOC精度的方法比较[J].清华大学学报(自然科学版),2010,50(8):1293-1296.
    [65]Lee S J, Kim J H, Lee J M, et al. The state and parameter estimation of an Li-ion battery using a new OCV-SOC concept[C]. Proceedings of 2007 IEEE Power Electronics Specialists Conference. Orlando, USA,2007:2799-2803.
    [66]雷肖,陈清泉,刘开培,等.电动车电池SOC估计的径向基函数神经网络方法[J].电工技术学报,2008,23(5):81-87.
    [67]Tsutomu Y, Kazuaki S, Ken-Ichiro M. Estimation of the residual capacity of sealed lead-acid batteries by neural network[C]. Proceedinds of the 20th International Telecommunications Energy Conference,1998:210-214.
    [68]高明煜,何志伟,徐杰.基于采样点卡尔曼滤波的动力电池SOC估计[J].电工技术学报,2011,26(11):161-167.
    [69]Gregory L P. Kalman-filter SOC estimation for LIB cells[C]. Proceedings of the 19th International Electric Vehicle Symposium,2002: 527-538.
    [70]Plett G L. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Part1. Background [J]. Journal of Power Sources,2004,134(2):252-261.
    [71]Rudolph van der Merwe, Eric Wan. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[C]. Proceedings of the Workshop on Advances in Machine Learning,2003:1-27.
    [72]Ehsani M. Gao Y M, Emadi A. Modern Electric, Hybrid Electric, and Fuel Cell Vehicles Fundamentals, Theory, and Design[M]. Boca Raton:CRC Press,2010.
    [73]Dubarry M, Vuillaume N, Liaw B Y. From single cell model to battery pack simulation for Li-ion batteries[J]. Journal of Power Sources,2009,186(2): 500-507.
    [74]钱良国,郝永超,肖亚玲,等.锂离子动力蓄电池充电技术和设备研究最新进展[J].新材料产业,2007,(8):17-23.
    [75]黄万友,程勇,王宏栋,等.纯电动汽车磷酸铁锂电池组放电效率模型[J].华中科技大学学报(自然科学版),2012,40(5):129-132.
    [76]胡建军,国琛,秦大同,等.驱动工况下最佳效率的电力驱动系统控制分析[J].重庆大学学报,2008,31(4):365-370.
    [77]杜全辉,胡平,马云辉.全方位优化电动汽车的控制策略技术[J].当代汽车,2010,(2):89-91.
    [78]王佳,杨建中,蔡志标,等.基于模糊控制的纯电动轿车整车优化控制策略[J].汽车工程,2009,31(4):362-365.
    [79]窦国伟,刘奋,程浩,等.纯电动轿车整车驱动控制策略开发实践[J].上海汽车,2010,(5):8-11.
    [80]秦大同,周孟喜,胡明辉,等.电动汽车的加速转矩补偿控制策略[J].公路交通科技,2012,(5):146-151.
    [81]Huang J C, Li W L. A bidirectional DC-DC converter for fuel cell electric vehicle driving system[J]. IEEE Trans. on Power Electronics, 2006,21(4):950-958.
    [82]Peng F Z. Z-source inverter[J]. IEEE Trans. on Industry Applications, 2003,39(2):504-510.
    [83]刘和平,刘平,胡银全.改善电动汽车动力性能的双向Z源逆变器控制策略[J].电工技术学报,2012,27(2):139-145.
    [84]安强,叶敏,曹秉刚.基于神经网络PID的电动汽车能量回收技术[J].军事交通学院学报,2008,10(2):65-70.
    [85]姚国春,陈寿孙,韩聚奎,等新型混合动力汽车再生制动控制系统的实现[J].公路交通科技,2007,,24(4):150-154.
    [86]Gao Y M, Ehsani M. Electronic braking system of EV and HEV-integration of regenerative braking, automatic braking force control and ABS[C]. SAE paper No.2001-01-2478.
    [87]Oba H, Yamanaka A, Katsata H, et al. Development of a hybrid powertrain system using CVT in a minivan[C]. SAE paper No.2002-01-0991.
    [88]谢长君,全书海,姚玲.基于粒子群优化模糊控制器的电动汽车再生制动控制策略研究[J].武汉理工大学学报(交通科学与工程版),2008,32(4):669-672.
    [89]冯能莲,么居标,俞黎明,等.电动汽车再生制动控制策略[J].北京工业大学学报,2008,34(12):1332-1338.
    [90]彭栋,殷承良,张建武.混合动力汽车制动力矩动态分配控制策略研究[J].系统仿真学报,2007,19(22):5254-5259.
    [91]杜爱民,步曦,陈礼璠.上海市车辆实际运行工况的调查与分析[J].同济大学学报(自然科学版),2005,33(1):52-57.
    [92]Espinosa F, Jimenez J A, Santiso E, et al. Design and implementation of a portable electronic system for vehicle-driver-route activity measurement[J] Measurement,2011,44(2):326-337.
    [93]Jie Lin. A Markov process approach to driving cycle development[D] University of California,2002.
    [94]Shi Q, Zheng Y B, Wang R S, et al. The study of a new method of driving cycles construction[J]. Procedia Engineering,2011,16:79-87.
    [95]杜爱民,步曦,陈礼璠,等.上海市公交车行驶工况的调查和研究[J].同济大学学报(自然科学版),2006,34(7):943-946.
    [96]庄继晖,谢辉,严英.基于GPRS的电动汽车道路行驶工况自学习[J].天津大学学报,2010,43(4):283-286.
    [97]Kamble S H, Mathew T V, Sharma G K. Development of real-world driving cycle:Case study of Pune, India[J]. Transport and Environment, 2009,14(2):132-140.
    [98]Hung W T, Tong H Y, Lee C P, et al. Development of a practical driving cycle construction methodology:A case study in Hong Kong[J]. Transport and Environment,2007,12(2):115-128.
    [99]Eisinger D S, Niemeier D A, Stoechenius T, et al. Collecting driving data to support mobile source emissions estimation[J] Journal of Transportation Engineering,2006,132(11):845-854.
    [100]张小琴.混合动力电动汽车多能源动力总成仿真分析与优化[D].广州:华南理工大学,2003.
    [101]Cuddy M. A Comparison of Modeled and Measured Energy Use in Hybrid Electric Vehicles[C]. SAE International Congress and Exposition, Detroit, Michigan,1995.
    [102]邹渊,孙逢春,王军,等.电动汽车用仿真软件技术发展研究[J].机械科学与技术,2004,23(7):761-764.
    [103]Chan C C, Chau K T. Modern Electric Vehicle Technology[M]. Oxford University Press,2001.
    [104]Senger R D, Merkle M A, Nelson D J. Validation of ADVISOR as a Simulation Tool for a series Hybrid Electric vehicle[C]. SAE paper No.981133.
    [105]Markel T, Rousseau A. Overview of DOE's Vehicle Systems Analysis Tools with a Focus on Emissions Modeling [R]. NREL, Argonne National Laboratory,2001.
    [106]Larsen B, Hardy K. Argonne's Hybrid Electric Vehicle Technology Development Program[R]. Argonne National Laboratory, NREL, Oak Ridge National Laboratory,2001.
    [107]Gao D W, Mi C, Emadi A. Modeling and Simulation of Electric and Hybrid Vehicles[J]. Proceedings of the IEEE,2007,95(4):729-745.
    [108]羌嘉曦,敖国强,何建辉,等.电动汽车动力电池特性仿真系统[J].上海交通大学学报,2009,43(8):1196-1200.
    [109]陈勇,张大明,姜丕杰.电动汽车用异步电机矢量控制系统仿真分析[J].2007,19(16):3761-3765.
    [110]Rahman Z, Ehsani M, Butler K L. An Investigation of Electric Motor Drive Characteristics for EV and HEV Propulsion Systems[C]. SAE paper No.2000-01-3062.
    [111]Xu C H, Niu J G, Pei F L. Design and Simulation of the Power-train System for an Electric Vehicle[C]. Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC),2nd International Conference. 2011,3868-3871.
    [112]姬芬竹,高峰.电动汽车驱动电机和传动系统的参数匹配[J].华南理工大学学报(自然科学版),2006,34(4):33-37.
    [113]Kowal J, Gerschler J B, Schaper C, et al. Efficient battery models for the design of EV drive trains[C].14th International Power Electronics and Motion Control Conference,2010,31-38.
    [114]Spichartz M, Steimel A, Staudt V. Stator-flux-oriented control with high torque dynamics in the whole speed range for electric vehicles[C]. Vehicle Power and Propulsion Conference (VPPC),2010 IEEE.2010,1-6.
    [115]Gonzalez M A, Escalante M F. Traction System for an EV Based on Induction Motor and 3-Level NPC Inverter Multilevel Converters[C]. Power Electronics Congress (CIEP),2010 12th International.2010,73-77.
    [116]Tu C J, Wei X Z, Dai H F. Selection of power train components and simulation of dynamic performance of electric vehicles[J]. Applied Mechanics and Materials,2010,29-32:2138-2143.
    [117]朱正礼,殷承良,张建武.基于遗传算法的纯电动轿车动力总成参数优化[J].上海交通大学学报,2004,38(11):1907-1912.
    [118]陈晓明.电动汽车试验台测控系统研究与开发[D].西安:长安大学,2006.
    [119]Schupbach R M, Balda J C. A Versatile Laboratory Test Bench for Developing Powertrains of Electric Vehicles[C] IEEE Vehicular Technology Conference, Canada:Vancouver,2002,56(3),1666-1670.
    [120]Lungoci C, Bouquain D, Mirapoui A. Modular test bench for a hybrid electric vehicle with multiples energy sources[C].11th International Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2008, Romania:Brasov.2008:299-306.
    [121]蒲磊.电动汽车试验台电机驱动及控制系统技术研究[D].西安:长安大学,2008.
    [122]孙善辉.电动汽车电机驱动特性评价试验台架的设计与开发[D].天津:天津大学,2005.
    [123]Li W, Zhang C N, Song Q. Dual-test bench for high-power traction motor propulsion system on EV[C] 2008 IEEE Vehicle Power and Propulsion Conference, VPPC 2008. China:Harbin.
    [124]MAN Y M, ZHAI Y, CHEN H Y. Design and realization of dynamic performance detection test bench for automatic mechanical transmission electric control system[C].2009 International Workshop on Intelligent Systems and Applications, ISA 2009, China:Wuhan
    [125]Zhao H, Li C, Zhang G J, et al. Design of a Versatile Test Bench for Hybrid Electric Vehicles[C] 2008 IEEE Vehicle Power and Propulsion Conference, VPPC 2008, China:Harbin.
    [126]ZHA H S, ZONG Z J. Emulating electric vehicle's mechanical inertia using an electric dynamometer[C] 2010 International Conference on Measuring Technology and Mechatronics Automation, ICMTMA 2010, China: Changsha,2010:100-103.
    [127]张付义.电动汽车试验台总体设计与技术研究[D].西安:长安大学,2006.
    [128]赵树朋.混合动力汽车能量利用实验与仿真及评价方法研究[D].保定:河北农业大学,2007.
    [129]占锐.轻型纯电动客车动力系统的建模仿真及测试评价的研究[D].武汉:武汉理工大学,2011.
    [130]李腾腾.重型混合动力车辆排放能耗评价方法研究[D].武汉:武汉理工大学,2011.
    [131]李芳,张俊智,王丽芳,等.电动汽车动力总成系统控制器局域网(CAN)总线通信协议[J].机械工程学报,2008,44(5):102-107.
    [132]钟勇,钟志华,余群明,等.电动汽车CAN总线通用协议的应用研究[J].汽车工程,2006,28(5):422-426.
    [133]崔润龙.电动汽车CAN总线车载记录仪及数据分析系统的开发研究[D].天津:天津大学,2005.
    [134]高卫东,姜巍,胡莎莎.济南市旅游气候的舒适度研究[J].2009,23(1):94-98.
    [135]程军,崔继波,苟凯英.车辆控制系统CAN总线通信的实施方法[J].汽车工程,2001,23(5):300-305.
    [136]SAE Standard. Recommended Practice for a Serial Control and Communications Vehicle Network J1939[Z].2007-10.
    [137]中华人民共和国国家标准.GB/T 27930-2011电动汽车非车载传导 式充电机与电池管理系统之间的通信协议[S].2011.
    [138]毛国君,段立娟,王实,等.数据挖掘原理与算法[M].北京:清华大学出版社,2005.
    [139]姬芬竹,高峰,周荣.纯电动汽车传动系参数匹配的研究[J].汽车科技,2005,(6):22-24.
    [140]Mark D, Andy B, Timthy L, et al. Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Mode[M]. Davis:University of California Publications,2000,213-214.
    [141]文锋,姜久春,张维戈,等.电动汽车用锂离子电池组充电方法[J].汽车工程,2008,30(9):792-795.
    [142]Roscher M A, Vetter J, Sauer D U. Characterisation of charge and discharge behaviour of lithium ion batteries with olivine based cathode active material[J]. Journal of Power Sources,2009,191 (2):582-590.
    [143]时玮,姜久春,李索宇,等.磷酸铁锂电池SOC估算方法研究[J].电子测量与仪器学报,2010,24(8):769-774.
    [144]蔺小林,蒋耀林.现代数值分析[M].北京:国防工业出版社,2004,245-248.
    [145]中华人民共和国国家标准.GB/T 18488.2-2006,电动汽车用电机及其控制器第2部分:试验方法[S].2006.12.
    [146]王虎,李孟良,乔维高一种汽车源排放模型-IVE模型简介[J].中国环境监测,2007,23(5):78-81.
    [147]余志生汽车理论[M].北京:机械工业出版社,2000.
    [148]许伍洲.纯电动汽车驱动系统设计及其参数优化匹配的研究[D].武汉:武汉理工大学,2007.
    [149]JJF 1221—2009.汽车排气污染物检测用底盘测功机校准规范[S].
    [150]韩磊,杨厚福.春节期间济南市区主要易堵区域交通流量分析公布[N].济南时报,2012-01-16(A07).
    [151]郑与波,石琴,王世龄.合肥市汽车行驶工况的研究[J].汽车技术,2010,(10):34-38.
    [152]马志雄,李孟良,张富兴,等.主成分分析法在车辆实际行驶工况开发中的应用[J].武汉理工大学学报(信息与管理工程版),2004,26(4):32-35.
    [153]姜平,石琴,陈无畏.基于马尔科夫的城市道路行驶工况构建方法[J].农业机械学报,2009,40(11):26-30.
    [154]郑玉全.微型抢占式多任务实时内核设计[J].单片机与嵌入式系统应用,2004,(1):21-25.
    [155]兰欣.电控柴油机控制模拟平台的研究[D].济南:山东大学,2008.
    [156]张鹏,孔峰,王忠,等.电控柴油机工况判别和转换策略的仿真研究[J].车用发动机,2007(2):54-57.
    [157]陈伯时.电力拖动自动控制系统-运动控制系统(第三版)[M].北京:机械工业出版社,2009.
    [158]黄万友,程勇,李闯,等.纯电动汽车驱动电动机系统效率模型的试验[J].江苏大学学报(自然科学版),2012(3):259-263.
    [159]伍庆龙,刘忠途,宗志坚.基于ADVISOR的纯电动汽车动力性能仿真[J].轻型汽车技术,2010,(10):13-16.
    [160]王孝全,赵国霖,肖泽辉,等.基于ADVISOR的DE纯电动汽车仿真[J].海峡科学,2010,(12):60-63.
    []61]黄万友,程勇,曹红,等纯电动汽车能量回馈效率特性测试分析[J].机械工程学报,2012,48(12):88-95.
    [162]伍理勋.电动汽车用异步电动机矢量控制系统[D].长沙:中南大学,2006.
    [163]Patrick W, Craig W S E, Automation P.勾建完整工业ADC接口的微控制器和调制器[J].电子设计技术,2007,(10):123-124.
    [164]励国旦.谈英飞凌1ED020I12在IGBT驱动电路中的应用[J].电子元件及应用,2012,14(3):9-11.
    [165]Dave R, John T, Steve B使用dsPIC30F实现交流感应电机的矢量控制[Z].2005.
    [166]朱良淼.异步电机矢量控制变频调速系统的研究与设计[D].长沙:湖南大学,2009.
    [167]程若发,彭辉,居慧.基于单片机同步发电机转子温度监控系统的设计[J].电气传动,2008,38(6):52-55.
    [168]阎璐,胡欲立.温度升高对永磁直流电机效率的影响[J].微电机,2007,40(3):58-60.
    [169]马华,王迅.高速列车牵引感应电机弱磁控制方法的研究[J].微计算机信息,2010,26(12-1):66-68.
    [170]刘杨.基于双核MC9S12XE的纯电动汽车整车控制器研究与开发[D].济南:山东大学,2012.
    [171]曹莹瑜,齐铂金,郑敏信.电动汽车电池管理系统抗干扰设计[J].工业控制计算机,2005,18(12):67-68.
    [172]张宾,何勇灵,陈全世.电动汽车用锂离子电池的能量功率特性分析[J].电源技术,2010,34(10):1076-1079.
    [173]诸静.智能预测控制及其应用[M].杭州:浙江大学出版社2000.12:35-40.
    [174]闵永军.车辆排气污染物测试技术研究与工程实现[D].南京:东南大学,2006.
    [175]杨风和.VMAS195汽车排放测试工况控制系统的研究[D].南京:南京林业大学,2007.
    [176]周磊,罗禹贡,杨殿阁,等.基于滑移率试探的电动车辆制动控制策略[J].清华大学学报(自然科学版),2008,,48(5):883-887.
    [177]GB12676-1999汽车制动系统结构、性能和试验方法[S].武汉:武汉理工大学,1999.
    [178]马艳丽,裴玉龙.基于实验心理学的驾驶员驾驶特性及其综合评价[J].哈尔滨工业大学学报,2008,40(12):2003-2006.
    [179]李启朗,邝华,谭惠丽,等.驾驶员的驾驶特性对交通流的影响[J].广西科学,2006,13(1):27-30.
    [180]王震坡,姚利民,孙逢春.纯电动汽车能耗经济性评价体系初步探讨[J].北京理工大学学报,2005,25(6):479-486.
    [181]GB/T 18385-2005电动汽车动力性能试验方法[S].2005.
    [182]刘忠途,伍庆龙,宗志坚.基于台架模拟的纯电动汽车能耗经济性研究[J].2011,50(1):44-48.
    [183]GB/T 18386-2005电动汽车能量消耗率和续驶里程试验方法[S].2005.
    [184]熊茂.基于DSP的电动汽车交流驱动电机矢量控制研究[D].武汉:武汉理工大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700