用户名: 密码: 验证码:
基于作业疲劳度的活塞生产线规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于汽车行业的发展、消费者需求的多变性和市场竞争的需要,活塞品种越来越多,形状越来越复杂,加工精度要求越来越高,批次更换时耗费大量的手工劳动,作业难度增加,工人的疲劳程度也越来越大,由此面临的各种职业危害可能性也日益增大,生产率降低、生产质量下降、严重时甚至发生工伤甚至死亡事故等,给企业和社会造成不可估量的经济损失。因此,论文以活塞生产性作业疲劳度为切入点,对活塞生产线的规划设计研究,以减少工人作业疲劳度、使活塞生产线的规划设计和运行更加可靠、有效,最终提高活塞企业对产品市场和劳动力市场变化趋势的快速反应能力。
     基于活塞工艺路线以及主要工序操作分析,提出活塞生产线的作业疲劳评价体系,建立作业疲劳多指标量化模型。结果表明:在活塞生产线上,作业难度是影响作业疲劳的最主要因素,依次为心理负荷、用力负荷、作业姿势,同时利用血氧饱和度实验证实了该评价量化模型能够反映活塞生产线上的作业疲劳程度。
     通过对活塞加工工艺过程的分析,建立以加工要求、加工方法、定位方式和夹紧方式为作业疲劳特征的聚类方式,实现活塞最小工艺单元的作业疲劳特征聚类,达到以工序复杂程度和难度为控制目标的同类作业疲劳程度工艺单元不能聚类的工艺规划建模,从而有效降低工序作业时间和作业疲劳。通过对生产线A进行工艺分析聚类,结果表明:重新组合后基于时间均衡的新生产线B总的作业疲劳度指数由42.8636减少到37.6619,且不同工序间的作业疲劳负荷较为均衡。
     结合生产线平衡优化目标,建立了基于作业疲劳度的活塞生产线平衡新模型,引入了作业疲劳度平滑系数SI和平衡延迟率Ω用来反映作业疲劳负荷平衡程度和作业人员的数量。针对新生产线B,建立基于作业疲劳度的生产线平衡模型,利用遗传算法求解,构建新生产线C。结果表明:新生产线C的工人数量最少为5人,作业疲劳度平滑系数和平衡延迟率均比生产线B降低,工人的作业疲劳负荷得到了改善。对原生产线A,新生产线B和新生产线C进行仿真分析,结果表明:生产线C上作业疲劳平滑率为484.10,比生产线B降低83.57%,工人疲劳负荷最均衡,标准差为722.8176,有效作业疲劳得到均衡,标准差为47.72,生产能力最高,能耗总量为1776.60Kcal,低于生产线B,且工人能耗均衡,标准差为20.2650Kcal。
     应用物流优化和人员配置优化的基本思想,结合生产线布局的优化目标,提出了基于作业疲劳的活塞生产线多目标优化模型,利用遗传算法进行求解,并采用DELMIA软件按照不同的布局形式对其进行仿真。结果表明:利用新模型求解得到的布局C,与原生产线A相比,占地面积为128.95m2,比原生产线A减少了61.11m2;作业疲劳度为5899.0589,比原生产线A降低36.67%;通过对不同的布局形式下设备利用率、工人工时利用率、面积利用率、物料传输成本以及能量消耗量分析;利用层次分析法,得到不同布局形式下的物流成本和作业疲劳度优化结果。调整θ1,θ2的取值,各种不同布局形式下物流优化目标和作业疲劳优化目标随之改变,所获得的全局最优的布局形式也会不同。
With the development of automobile industry, the variety of consumer demand and the increasingly fierce competition, the piston types are more and more, piston shape is more complicated, the machining precision requirement is more high, and a large amount of manual labor are consumed when piston batch replacing, so as to increase the fatigue degree of workers, even possibility make workers face the various occupation hazard, decline production, result in injury or death accidents, to cause inestimable economic losses for the enterprise and the society. Therefore, this paper takes the job fatigue degree of piston production as the breakthrough point, studies the planning design of piston production line, to reduce the job fatigue degree of workers, and make the planning design and running of piston production line more reliable, efficient, and ultimately improve the rapid reaction capability of piston enterprises on the product and labors market.
     After analyzing on the processing route of piston and main processes, the job fatigue evaluation system of piston production line is advanced and the job fatigue multiple quantitative model is established. The results show that operation difficulty is the most important factor to affect the fatigue for the piston production line, followed by mental load, force load, and operational posture. And the oxygen saturation experiment also demonstrates that the evaluation quantitative models can show the job fatigue level of the production line.
     Aimed at the process of piston production, the clustering way is built based on job fatigue such as processing requirements, processing method, positioning and clamping to realize the job fatigue features clustering of the piston minimum process, in order to achieve the process planning model where the similar job fatigue level process units don't cluster taking the process complexity and difficulty as the control target, so as to effectively reduce the process time and job fatigue. Taken piston production line A as an example, the results show that:the production line B after recombinated based on the time balanced, whose total job fatigue degree decreases from42.8636to37.6619, and job fatigue loads between different processes are more balanced.
     Combined with the goals of balancing and optimization, a new balancing model of piston production line establishes based on the job fatigue; the fatigue smoothness coefficients SI and balancing delay rate Ω are introduced to reflect the degree of load balancing and the quantity of workers. For balanced time-based production line B, a model was established based on the job fatigue, and solved by Genetic Algorithm to design the new production line C. The results show that:the number of workers is at least5based on the job fatigue balanced production line C, and both SI and Ω are lower than that of the production line B, and the job fatigue loads of workers has been improved. Simulating and analyzing the production line A, B, C, the results show that: SI of the production line C is484.1, lower than that of B, decreased by83.57%; the standard deviation of job fatigue degree is722.8176and most balanced; the standard deviation of effective job fatigue is47.72, and most balanced; the production capacity is highest; and the total energy consumption is1776.60Kcal, lower than that of the production line B.
     A multi-objective optimization model of piston production line is advanced based on job fatigue with the application of logistics and staffing optimization theory, which is solved by Genetic Algorithm and simulated by DELMIA software. The results show that:for the new piston production line C, an covers area is128.95m2, lower than that of A, and decreased by61.11m2; job fatigue degree is5899.0589, compared with the original production line A, decreased by36.67%; according to analyzing the equipment utilization, labor utilization, area utilization, material transmission cost and energy consumption of different layout forms and using the Analytic Hierarchy Process, the different layouts' optimization results of the logistics cost and the job fatigue degree are obtained; if θ1,θ2values changed, the logistics optimization goals and job fatigue optimization goals of different layouts are transformed, and the obtained whole optimal layout styles will be different.
引文
[1]Panel on Musculoskeletal Disorders and the Workplace, Commission on Behavioral and Social Sciences and Education, National Research Council. Musculoskeletal Disorders and the Workplace:Low Back and Upper Extremities [M]. The National Academies Press,2001.
    [2]孙栩,傅后胜.机械工人慢性肌肉骨骼损伤流行病调查与研究[J].中国工业医学杂志,1994,7(5):260.
    [3]肖国兵,雷玲.金属加工作业的工效学负荷与肌肉骨骼疾患的关系[J].中华劳动卫生职业病杂志,2004,(4):81-86.
    [4]Alena O, Armin S. Incorporating ergonomic risks into assembly line balancing [J]. European Journal of Operational Research,2011,212:277-286.
    [5]林嗣豪.工作场所工效学负荷综合评估及其应用研究[D].四川大学博士学位论文,2006.
    [6]于瑞峰.基于人因学的工作地设施布局的优化设计研究[D].清华大学博士学位论文,2004.
    [7]Bureau of Labor Statistics. Nonfatal occupational injuries and illnesses requiring days away from work,2008. Economic news release.
    [8]刘达利,齐丕骧.新型铝活塞[M].北京:国防工业出版社,1999.
    [9]山东滨州渤海活塞股份有限公司.山东滨州:活塞制造技术培训教材,2001.
    [10]佟景桂.国外内燃机活塞的制造[J].工程设计与应用研究,1999,(1):23-29.
    [11]Sharma S C, Satish B M, Girish B M, et al. Wear characteristics of phosphor-bronze/silicon carbide particulate composites [J]. Journal of Materials Processing Technology,2001, 118(1-3):65-68.
    [12]Lee H S, Yeo J S, Hong S H, et al. The fabrication process and mechanical properties of SiCp/Al-Si metal matrix composites for automobile air-conditioner compressor pistons [J]. Journal of Materials Processing Technology,2001,113(1-3):202-208.
    [13]Haque M M, Maleque M A. Effect of process variables on structure and properties of aluminium-silicon piston alloy [J]. Journal of Materials Processing Technology,1998,77(1-3): 122-128.
    [14]Wang S, Dudek H J. Fibre-matrix interaction in the 8-Al2O3-fibre reinforced aluminium piston alloy [J]. Materials Science and Engineering,1996,205(1-2):180-186.
    [15]Huang Y D, Hort N, Kainer K U. Thermal behavior of short fiber reinforced AlSi12CuMgNi piston alloys [J]. Composites Part A:Applied Science and Manufacturing,2004,35(2): 249-263.
    [17]孙连胜,宁汝新,王新永.虚拟制造中生产线可视化设计[J].北京理工大学报,2002,(1):32-35.
    [18]侯扬,范秀敏,严隽琪,等.基于仿真的制造系统对象建模及其应用[J].计算机集成制造系统-CIMS,2001,(7):42-46.
    [19]李培根,张国军.关于CAPP的实践与思考[J].中国工程科学,2005,7(3):13-16,34.
    [20]赵良才.计算机辅助工艺设计[M].北京:机械工业出版社,1994.
    [21]胡于进,张正义,蔡力钢,等.基于三维加工特征的工艺优化设计系统[J].机械设计与制造, 2009,(6):74-76.
    [22]周炜.基于图的边界模型的加工特征识别技术[D].南京航空航天大学硕士论文,2006.
    [23]刘长毅.基于图的体积分解的加工特征识别方法[J].计算机集成制造系统,2006,12(7):1013-1017.
    [24]牛文铁,刘玲,高卫国.基于特征的液压集成块CAPP系统建模[J].天津大学学报,2007,(5):605-610.
    [25]黄正东,谢波,马露杰.设计特征向加工特征转换的扫体重构法[J].计算机辅助设计与图形学学报,2006,1 8(10):1574-1580.
    [26]张晓峰.可重构智能制造系统的基础研究[D].南京航空航天大学博士学位论文,2001.
    [27]倪中华,易红.敏捷制造模式下面向快速重组制造系统的CAPP原型系统研究[J].计算机集成制造系统-CIMS,2000,6 (2):61-64.
    [28]Detand J, Leuben K U. The generation of non-linear process plans [J]. The 22nd CIRP International Seminar on Manufacturing System, Section,1990.
    [29]Kruth J P, Detand J. A CAPP system for nonlinear process planning [J]. Annals CIRP,1992, 42(1):489-92.
    [30]Tiwari M K, Vidyarthi N K. An integrated approach to solving the process plan selection problem in an automated manufacturing system [J]. International Journal of Production Research,1998,36(8):2,167-184.
    [31]邢建国.定制生产下工艺可重用理论、方法及关键技术研究与应用[D].浙江大学博士学位论文,2001.
    [32]Marefat M. Case-based process planning using an object-oriented model representation [J]. Robotics & Computer-Integrated Manufacturing.1997,13(3):229-251.
    [33]张晓峰.可重构智能制造系统的基础研究[D].南京航空航天大学博士学位论文,2001.
    [34]周军.可重组活塞生产线虚拟仿真设计理论与应用研究[D].山东大学博士学位论文,2004.
    [35]龙峰,任军海.活塞加工技术现状分析与研究[J].时代机械,2011,(5):4-7.
    [36]梁睦,杨保国.活塞内圆表面光整加工工艺探讨[J].中原工学院学报,2008,19(3):69-71.
    [37]郭书刚,李岩,刘耀东.活塞加工粗基准选择分析与工艺改进[J].内燃机与动力装置,2010,(5):49-51
    [38]王立芳.异形活塞数控加工技术的仿真研究[D].山东大学硕士学位论文,2008.
    [39]张庆远,周军,刘战强,等.活塞加工该工艺分解与重组设计[J].工具技术,2008,42(12):33-35.
    [40]杨大鹏.活塞加工生产计划与生产调度的研究[D].山东大学硕士学位论文,2007.
    [41]查靓.精益生产方式下U型流水线平衡的优化模型预算法研究[D].华南理工大学博士学位论文,2011.
    [42]Boysen N, Fliedner M, Scholl A. A classification of assembly line balancing problems [J]. European Journal of Operational Research,2007,183(2):674-693.
    [43]Boysen N, Fliedner M, Scholl A. Assembly line balancing:which model to use when? [J]. International Journal of Production Economics,2008,111(2):508-528.
    [44]Boysen N, Fliedner M. A versatile algorithm for assembly line balancing [J]. European Journal of Operational Research,2008,184(1):39-56.
    [45]Ege Y, Azizoglu M, Ozdemirel E N. Assembly line balancing with station paralleling [J]. Computers&Industrial Engineering,2009,57(4):1218-1225.
    [46]Gokcen H, Agpak K, Benzer R. Balancing of parallel assembly lines [J]. International Journal of Production Economics,2006,103(2):600-609.
    [47]Becker C, Scholl A. Balancing assembly lines with variable parallel workplaces:Problem definition and effective solution procedure [J]. European Journal of Operational Research, 2009,199(2):359-374.
    [48]宋华明,韩玉启.多目标装配线平衡的优化算法[J].运筹与管理,2002,11(3):55-63.
    [49]郭伏.模特法在生产线能力平整中的作用[J].东北大学学报(社会科学版),2003,(1):31-34.
    [50]郭伏,杨学涵.人因工程学[M].沈阳:东北大学出版社,2001.
    [51]孙建华,高广章,蒋志强.生产线平衡的手段与方法研究[J].成组技术与生产现代化,2004,(4):34-37.
    [52]鲁建厦,(?)秀菊,陈勇,等.工作研究在生产装配线优化设计的应用[J].工业工程与管理,2004,(1):83-85.
    [53]孙建华,高广章,蒋志强,等,程序分析法在产线平衡中的应用[J].机械设计与制造,2005,(5):148-149.
    [54]蒋祖华,卓明良,孙一苇,等.氦气漏检恭维的作业仿真与改善[J].人类工效学,2006,(3):1-3.
    [55]顾涛,周炳海.动作分析法在缸体生产线平衡改善中的应用[J].机械制造,2009,(8):54-57.
    [56]吴尔飞,金烨,胡小锋,等.双边装配线平衡的一种分支定界算法[J].上海交通大学学报,2008,(11):4-8.
    [57]BowMan E H. Assembly line balancing by linear programming [J]. Operations Research, 1960, (8):385-389.
    [58]沈维蕾,谢峰,柴畅.基于启发式平衡搜索法的装配线平衡方法[J].组合机床与自动化加工技术,2008,(11):86-89.
    [59]陆叶,苏平.混合装配线平衡问题的建模与分析[J].机电产品开发与创新,2007,(9):110-112.
    [60]童艺川,吴锋.U型装配线的启发式平衡算法[J].南京理工大学学报,2000,(5):394-397.
    [61]吕慧娟,胡亚辉,滕献银.装配线平衡问题改进算法[J].机床与液压,2008,(12):28-36.
    [62]陈晓峰,肖田园.应用遗传算法解决装配线平衡问题[J].计算机工程与应用,2001,(23):81-83.
    [63]宋华明,韩玉启.基于GA-SA的混合U型装配线平衡[J].运筹与管理,2002,(4):69-76.
    [64]宋华明,韩玉启.基于遗传算法的U型生产线平衡[J].系统工程学报,2002,(17):424-429.
    [65]周亮.装配线平衡的最优化模型与算法研究[D].南京理工大学博士学位论文,2010.
    [66]于蕾蕾.双种群遗传算法的改进及其研究应用[D].合肥工业大学硕士学位论文,2009.
    [67]王红军,赵建辉.基于遗传算法的装配线平衡系统研究[J].计算机工程与应用,2008,44(10):195-197.
    [68]Zhao X B, Katsuhisa O. Algorithms for sequencing mixed on an assembly line in a JIT production system [J]. Computers Industrial Engineering,1997, (1):47-56.
    [69]Caridi M, Sianesi A. Multi-agent systems in production planning and control:an application to the scheduling of mixed-model assembly lines [J]. International Journal of Production Economics,2000, (68):29-42.
    [70]朱琼,陈雪芳等.基于仿真技术的生产线平衡优化研究与应用[J].工业工程与管理,2008,(4):110-113.
    [71]陈城和.基于仿真优化的制造企业生产线平衡问题研究[D].合肥工业大学硕士学位论文,2007.
    [72]扈静,刘明周,雷经发,等.基于仿真的车间生产线动态平衡方法[J].农业机械学报,2009,(3):194-198,207.
    [73]唐一,周炳海.基于witness仿真的生产线规划评价[J].组合机床与自动化加工技术,2009,(7):5-8.
    [74]魏安立,胡小建,孙太生.基于witness轿车焊接生产线仿真研究[J].现代焊接,2011,(7):18-19.
    [75]张卫德,严洪森,徐成.基于Flexsim的生产线仿真和应用[J].工业控制计算机,2005,(9):46-47.
    [76]王建青,邵延君,刘永姜.基于Flexsim的炼镁生产线仿真与优化[J].工业工程,2009,(2):78-81.
    [77]董娜,刘胧,徐克林,等.基于Flexsim的面膜生产线仿真与优化[J].精密制造与自动化,2009,(4):26-28.
    [78]孙星.基于Petri网和eM-Plant的飞机装配线建模与仿真研究[D].南京航空航天大学硕士学位论文,2011.
    [79]姚海凤,冯勋省,郭丁俊.基于eM-plant的汽车零部件生产线平衡技术的仿真研究[J].物流技术,2010,(12):114-117.
    [80]张启忠.基于eM-Plant可重入钢管生产线的仿真与调度[D].重庆大学硕士学位论文,2009.
    [81]魏玲.基于eM-Plant的家具自动化生产线的仿真研究[J].哈尔滨理工大学学报,2010,(2):110-114.
    [82]谭健.凸轮轴生产线布局仿真及优化研究[D].北京工业大学硕士论文,2011.
    [83]张靳,胡霏凌,郭聪,等.基于Delmia/Quest的煤机生产线规划仿真与应用[J].机械工程与自动化,2012,(4):26-29.
    [84]唐自玉.基于多色集合理论的柔性生产线及车间规划方法研究[D].合肥工业大学博士学位论文,2009.
    [85]锁晓红.基于制造系统功能的设施布局设计研究[D].山东大学博士学位论文,2008.
    [86]Amine D, Henri P, Sonia H G. Facility layout problems:A survey [J]. Annual Reviews in Control,2007, (31):255-267.
    [87]Dilworth J B. Operation management [M]. New York:McGraw Hill,1996.
    [88]Muther R. Practical Plant Layout [M]. New York:McGraw-Hill,1995.
    [89]刘第新.机械加工设备布局方法及其仿真技术研究[D].大连理工大学硕士学位论文,2006.
    [90]Yang T, Peters B A, Tu M. Layout design for flexible manufacturing systems considering single-loop directional flow patterns [J]. European Journal of Operational Research,2005, 164(2):440-455.
    [91]林立千.设施规划与物流中心设计[M].北京:清华大学出版社,2003.
    [92]张旭.具有拓扑结构布局优化的理论及算法[D].大连理工大学博士学位论文,2004.
    [93]李广强.布局方案设计的若干理论、方法及其应用[D].大连理工大学博士学位论文,2003.
    [94]Djellab H, Gourgand A. A new heuristic procedure for the single-row facility layout problem [J]. International Journal of Computer Integrated Manufacturing,2001,14(3):270-280.
    [95]Ficko M, Brezocnick M, Balic J. Designing the layout of single-and multiple-rows flexible manufacturing system by genetic algorithms [J]. Journal of Materials Processing Technology, 2004,157-158:150-158.
    [96]Kim C B, Kim S S, Bobbie L F. Assignment problems in single-row and double-row machine layouts during slow and peak periods [J]. Computers & Industrial Engineering,1996,30(3): 411-422.
    [97]Chen D S, Wang Q, Chen H C. Linear sequencing for machine layouts by a modified simulated annealing [J]. International Journal of Production Research,2001,39(8): 1721-1732.
    [98]Nearchou A C. Meta-heuristics from nature for the loop layout design problem [J]. International Journal of Production Economics,2006,101(2):312-328.
    [99]Cheng R, Gen M. Loop layout design problem in flexible manufacturing systems using genetic algorithms [J]. Computers & Industrial Engineering,1998,34(1):53-61.
    [100]Potts C N, Whitehead J D. Workload balancing and loop layout in the deign of a flexible manufacturing system [J]. European Journal of Operational Research,2001,129(2):326-336.
    [101]陈友玲,刘文科,严键.基于RMC的可重构制造系统设备布局优化研究[J].计算机应用研究,2011,28(12):4550-4554.
    [102]Harmonosky C M, Tothero G K. A multi-factor plant layout methodology [J]. International Journal of Production Research,1992,30(8):1773-1789.
    [103]Yang T, Kuo C. A hierarchical AHP/DEA methodology for the facilities layout design problem [J]. European Journal of Operational Research,2003,147:128-136.
    [104]Chen C W, Sha D Y. Heuristic approach for solving the multi- objective facility layout problem [J]. International Journal of Production Research,2005,43(21):4493-4507.
    [105]郑晓军.生产车间设施布局优化方法研究[D].大连理工大学博士学位论文,2010.
    [106]查建中,唐晓君,陆一平.布局及布置设计问题求解自动化的理论与方法综述[J].计算机辅助设计与图形学报,2002,14(8):705-709.
    [107]Koopmans, Beckmann. Assignment Problems and the Location of Economic Activities [J]. Econometrica,1957, (1):53-57.
    [108]唐晓君,查建中,陆一平.布局问题的复杂性和建模方法[J].北方交通大学学报,2003,27(1):12-15.
    [109]滕弘飞,孙守林,葛文海,等.转动圆桌平衡摆盘—带平衡性能约束的Packing问题[J].中国科学(A辑),1994,24(7):754-760
    [110]于洋,查建中,唐晓君.基于学习的遗传算法及其在布局中的应用[J].计算机学报,2001,24(12):1242-1245.
    [111]Manuel E S. Optimal packing of three dimensional shapes using genetic algorithms [D]. Cambridge, MA:Massachusetts Institute of Technology,1996.
    [112]李火生,李志华,钟毅芳,等.生产车间设备布局线性模型及算法研究[J].计算机工程与应用,2002,(11):221-224.
    [113]周亦波,李志华,戴同,等.单元制造系统布局模型及其求解[J].华中科技大学学报(自然科学版),2002,30(1):65-67.
    [114]Kmpke T. Simulated annealing:Use of a new tool in bin packing[J]. Annals of Operations Research,1988,16:327-332
    [115]Hansen P. Tabu search for multiobjective optimization:MOTS [R]. Denmark:Technical University of Denmark,1997
    [116]竺长安,齐继阳,曾议.基于遗传禁忌混合搜索算法的设备布局研究[J].系统工程与电子技术,2006,28(4):630-633.
    [117]郝理想,蒋增强,葛茂根,等.基于可视化仿真的车间设施布局研究[J].合肥工业大学学报(自然科学版),2006,29(10):1204-1207.
    [118]万举勇,刘志峰,刘光复.废旧冰箱回收工厂设施布置设计的研究[J].成组技术与生产 现代化,2005,22(4):14-18.
    [119]侯文皓,马东彦,陈锋,等.多单元柔性制造系统的人机比建模与仿真[J].工业工程与管理,2005,(6):37-41.
    [120]陈建武,毕春波,廖海江,等.作业疲劳测量方法对比研究[J].中国安全生产科学技术,2011,(5):63-66
    [121]迟焕众,侯军府,王凡,等.精密机械加工中人的生理状态研究[J].中北大学学报(自然科学版),2008,(5):417-421.
    [122]Johnston V, Souvlis T, Jimmieson N, et al. Associations between individual and workplace risk factors for self-reported neck pain and disability among female office workers [J]. Applied Ergonomics,2008, (39):171-182.
    [123]Adams N. Occupational stress and workplace stress:identifying and ameliorating the stress [J]. Ergonomics,1988, (88):514-516.
    [124]Ayoub M M, Selan J L, Liles D H. An ergonomics approach for the design of manualmaterial handling tasks [J]. Human Factors,1983, (25):507-516.
    [125]Grandjean E. Fitting the task to the man-an ergonomic approach [D]. London:Taylor and Francis,1985.
    [126]Hancock P A. A dynamic model of stress and sustained attention [J]. Human Factors,1989, 31(5):519-537.
    [127]Sanders M S, Mccormick E J. Human factors in engineering and design [M]. New York: McGraw-Hill Incorporation,1992.
    [128]方少波,黄丽静,李林涛.珠宝加工行业不良工效学因素流行病学调查[J].现代预防医学,2009,(16):3025-3028.
    [129]雷玲,肖国兵,徐建国,等.造型作业体力负荷接触评估[J].中国工业医学杂志,2005,(6):321-324.
    [130]雷玲,高艳华,程旻娜,等.不良工效学因素对缝纫女工的健康效应调查[J].劳动医学,2001,(4):199-203.
    [131]徐建国.铸造工人腰背痛患病率调查与危险因素研究[D].浙江大学硕士学位论文,
    [132]胥志峰,蒋祖华,韦进,等.汽车装配生产线手工搬运作业的工效学分析[J].人类工效学,2006,(4):4-8.
    [133]张俊,孔庆华.流水线作业姿势的疲劳分析[J].现代制造工程,2009,(10):58-62.
    [134]Bidanda B, Ariyawongratt P, Needy K L, et al. Human-related issues in manufacturing cell design, implementation, and operation:a review and survey [J]. Comput Ind Eng,2005, (48): 507-523.
    [135]Song B L, Wong W K, Fan J T, et al. A recursive operator allocation approach for assembly line-balancing optimization problem with the consideration of operator efficiency [J]. Computers & Industrial Engineering,2006, (51):585-608.
    [136]Christian B, Cristobal M. On solving the assembly line worker assignment and balancing problem via beam search [J]. Computers & Operations Research,2011, (38):328-339.
    [137]Huang H Y, Wang Z. Solving coupled task assignment and capacity planning problems for a job shop by using a concurrent genetic algorithm [J]. International Journal of Production Research,2010, (48):7507-7522.
    [138]Balakrishnan J, Cheng C H. Multi-period planning and uncertainty issues in cellular manufacturing:a review and future directions [J]. Eur J Oper Res,2007,177(1):281-309.
    [139]Askin R G, Huang R Y. Forming effective work teams for cellular manufacturing [J]. International Journal of Production Research,2001, (39):2431-2451.
    [140]Aryanezhad M B, Deljoo V, Mirzapour Al-e-hashem S M J. Dynamic cell formation and the worker assignment problem:a new model [J]. Int J Adv Manuf Technol,2009, (41):329-342.
    [141]Iraj Mahdavi, Amin Aalaei, Mohammad Mahdi Paydar, et al. Designing a mathematical model for dynamic cellular manufacturing systems considering production planning and worker assignment[J]. Computers and Mathematics with Applications,2010, 60(4):1014-1025.
    [142]肖国兵.手工操作的工效学评价及提举重量限值的研究[D].复旦大学博士学位论文,2004.
    [143]郑培.机动车驾驶员驾驶疲劳测评方法的研究[D].中国农业大学博士学位论文,2001.
    [144]Stevens S S. The psychophysical of sensory function [J]. An Scienist,1960, (48):226-253.
    [145]Jackson A S, Borg G, et al. Role of physical work capacity and load weight on psychophysical lift ratings[J]. International Journal of Industrial Ergonomics,1997, (20):181-190.
    [146]罗仕鉴.基于生物学反应的驾驶舒适度研究[D].浙江大学博士学位论文,2005.
    [147]Cao X L, Miao D M, Liu L H. Assessment methods on mental fatigue [J]. Fourh MilMed Univ,2006,27(4):382-384.
    [148]Hu W Q, Ma J, Han W D. Prevention and monitoring means of flying fatigue [J]. Chinese Journal of Clinic Rehabilitation,2004,8(3):542-543.
    [149]Murata A, Takasawa Y, Takasawa Y. Evaluation of mental fatigue using feature parameter extracted from event-related potential [J]. International Journal of Industrial Ergonomics, 2005,35(8):761-770.
    [150]Jung T P, Makeig S, Stensm M. Estimating alertness from the EEG power spectrum [J]. IEEE Trans on Biomedical Engineering,1997,4(1):60-69.
    [151]李增勇,代世勋,张小印等.驾驶员疲劳态下脑氧饱和度的近红外光谱法检测及其分析[J]光谱学与光谱分析,2009,30(1):58-61.
    [152]http://www.rula.co.uk/
    [153]酒小涛,徐琪.基于层次分析法和熵值法的综合模型对ABC分类法的改进[J].物流科技,2009,(10):108-110
    [154]陆添超,康凯.熵值法和层次分析法在权重确定中的应[J].软件开发与设计,2009,(9):19-22.
    [155]郭显光.改进的熵值法及其在经济效益评价中的应用[J].系统工程理论与实践,1998,(12):98-103.
    [156]Hunter R J, Patterson M S, Farrell T J, et al. Haemoglobin oxygenation of a two-layer tissue-simulating phantom from time-resolved reflectance:effect of top layer thickness [J]. Phys Med Biol,2003,47:193-208
    [157]Hamaoka T, Osada T, Murasei N, et al. Quantitative Evaluation of Oxygenation and Metabolism in the Human Skeletal Muscle [J]. Optical review,2003,10(5),493-497.
    [158]杨志超,王益民.机械加工零件模糊聚类分析[J].昆明工学院学报,1991,16(3):67-78.
    [159]石旭东,付宜利,代勇,等.基于模糊聚类的设备分组技术[J].哈尔滨工业大学学报, 2001,33(3):287-290.
    [160]杨纶标,高英仪.模糊数学原理及应用(第四版)[M].华南理工大学出版社,2006.
    [161]陈国良,王煦法,庄镇泉,等.遗传算法及其应用[M].人民邮电出版社,2001.
    [162]宋华明,韩玉启.基于遗传算法的U型生产线平衡[J].系统工程学报,2002,(5):424-430.
    [163]陈星宇.基于改进遗传算法的装配生产线平衡技术研究[D].上海交通大学硕士学位论文,2011.
    [164]Garg A, Chaffin D B, Herrin G D. Prediction of metabolic rates for manual materials handling jobs[J]. American Industrial Hygiene Association (S0002-8894),1978,8(39):661-674.
    [165]Kalamazoo. Modular Arrangement of Predetermined Time Standard[R/OL]. International MODAPTS Association, Inc. http://www.modapts.org/index.htm,2007
    [166]姜旭东.盟威工业园生产物流分析与原因[D].山东大学硕士学位论文,2006.
    [167]潘家轺.现代生产管理学(第二版)[M].北京:清华大学出版社,2003.
    [168]飞思科技产品研发中心.Matalab6.5(?)甫助优化计算与设计.北京:电子工业出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700