用户名: 密码: 验证码:
非公路车辆前轴油气悬架系统动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与小汽车、客车和载重车相比,农用车辆、林业车辆、拖拉机、部分工程车辆等无悬架非公路车辆的振动尤为剧烈。随着车辆行驶速度的逐渐提高,这一问题将会更加突出,同时随着车辆向着大型化、高速化、舒适性方向发展,其舒适性已经成为消费者关注的主要内容之一。研究表明,结合无悬架非公路车辆的结构特点,就目前经济和技术水平来看,安装合适的前轴悬架系统特别是前轴油气悬架系统是改变这种现状的有效措施之一。因此,深入研究前轴油气悬架系统设计理论及其振动特性,对前轴油气悬架车辆的研究与开发具有重要的意义。
     本文以江苏常发集团生产的CF200拖拉机作为样车,在试验测定车辆系统的质量属性参数、轮胎刚度与阻尼系数等的基础上,建立了无悬架和前轴悬架非公路车辆系统振动的数学模型,分析了系统的固有频率,运用Matlab/Simulink进行了系统的振动特性仿真研究和前轴悬架系统的参数匹配研究。结合样车的结构特点和参数特征,研制了适用于样车的阻尼可调前轴油气悬架系统,建立了其数学模型,并进行了油气悬架系统的静刚度、阻尼特性、输出力特性的仿真研究和油气悬架系统的动态输出力特性试验,同时通过台架试验进行了前轴油气悬架车辆的动态特性的试验研究。所完成的主要工作以及取得的主要结论如下
     1、参照有关国家标准,对样车的质量、质心位置、车辆绕质心位置的俯仰转动惯量等质量属性参数和车辆前、后轮胎的刚度与阻尼系数等进行了测定。
     2、在分析了无悬架车辆系统的振动微分方程和车辆系统固有频率的基础上,结合测得的车辆自身参数计算得到车辆的垂直振动固有频率和俯仰角振动固有频率;以积分白噪声D级随机路面作为激励,利用MATLAB/Simulink软件,分析研究了无悬架车辆系统质心位置的垂直振动加速度、俯仰振动角位移、角加速度,并对车辆前、后轴处的垂直振动位移、垂直振动加速度进行了比较,结果表明:前、后轴处垂直振动位移幅值基本接近,而前轴的垂直振动加速度明显高于后轴。
     3、考虑到驾驶员重量对非公路车辆的质心位置和绕质心的俯仰转动惯量的影响,建立了与样车结构参数相匹配的前轴悬架非公路车辆振动数学模型,运用MATLAB/Simulink通过改变前轴悬架的参数,对前轴悬架车辆的振动特性和悬架系统的阻尼和刚度参数的匹配问题进行了仿真研究。
     4、基于流体力学和气体状态方程等相关理论,建立了阻尼可调油气悬架的数学模型,并对油气悬架的静刚度特性进行了理论分析,通过改变蓄能器气体的初始工作压力和体积、正弦激振频率和幅值、活塞阻尼孔直径、单向阀直径、可调阻尼阀直径等参数,应用MATLAB/Simulink对油气弹簧的阻尼、动态输出力和悬架缸各腔压力等非线性特性进行了仿真研究。
     5、构建了前轴油气悬架车辆振动特性综合试验台,基于LabVIEW开发了试验台测控系统,可进行油气悬架静刚度、动态输出力等特性试验和油气悬架系统的位移传递率、垂直振动加速度、悬架动挠度、悬架动载荷、油气悬架各腔动压力等动态性能的试验研究工作。
     6、确定了阻尼可调式前轴油气悬架的整体结构和主要零部件参数,进行了蓄能器内气体不同初始工作压力和初始工作体积下的油气悬架静特性试验,通过改变气体初始工作压力和体积、正弦激振幅值和频率、可调阻尼阀阀芯转角和单向阀组阀口开度,进行了油气悬架的动态特性试验。
     7、在构建和分析了车辆前轴1/2悬架振动系统数学模型的基础上,进行了车辆前轴油气悬架系统的台架试验,通过改变蓄能器内气体初始工作体积、可调阻尼阀阀芯转角、单向阀组阀口开度、正弦激励幅值等参数,试验研究了各参数对簧上质量垂直振动的位移传递率、加速度均方根值以及车轮动载荷等振动特性的影响规律。
     通过本课题的研究,为前轴油气悬架非公路车辆系统的研究提供了理论基础和技术支持。
The vibration of non-suspension off-road vehicles, such as agricultural vehicles, forestry vehicles, tractors and some engineering vehicles, is more poignant than cars, buses and trucks. With the increasing of running speed, this problem is increasingly outstanding. More attention will be paid to the comfort of vehicle with the development direction aimed to large-scale, highspeed and comfort. Some investigations indicated that one of the effective methods to change present situation is to fix suitable front axle suspension, based on the structural characteristics of non-suspension off-road vehicle and the present economy and technology level. To deeply study the design theory and vibration characteristics of front axle hydro-pneumatic suspension system has important significance to the research and development of front axle hydro-pneumatic suspension vehicle.
     Taken CF200tractor made in Changfa Groupe of Jiangsu province as prototype, based on the parameters of mass properties of vehicle system and vibrational characteristics of tires obtained by test, the vibrational mathematical models of non-suspension and front axle suspension vehicle system were put forward in this paper. At the same time, the natural frequencies of system were analysized and the research of vibrational characteristics of vehicle system and parameter matching of front axle suspension system were made using MATLAB/Simulink. Taken the structural and parameter characteristics of model vehicle into account, damping-adjustable front axle hydro-pneumatic suspension suitable for model vehicle was designed and machined. The simulation investigation of static stiffness and damping characteristics and output force characteristics and the experiment investigation of output force characteristics of hydro-pneumatic suspension system were made, and the experimental dynamic characteristic research of front axle hydro-pneumatic suspension vehicle system was made by test. The finished work and achieved results are generalized as following:
     1. Referring to relevant national standard, the mass parameters, such as quality, centroid position and pitching rotational inertia etal, and stiffness and damping coefficients of front and rear tires were determined.
     2. The natural frequencies of vertical vibration and pitching angle vibration were calculated, based on the analysis of vibrational differential equation and natural frequencies of non-suspension vehicle system. Taken integral white noise random road of grade D as excitation, the displacement and acceleration of vertical vibration and pitching angle vibration were studied using MATLAB/Simulink. The comparison of displacement and acceleration of vertical vibration was made in this paper, the result showed that the amplitude of vertical vibration displacement of front axle was nearly equal to that of rear axle, but the vertical vibration acceleration of front axle was greater than that of rear axle obviously.
     3. Taken the influence of driver's mass on centroid position and pitching rotational inertia of off-road vehicle into account, the vibrational mathematical model of front axle suspension vehicle system suitable to structural parameters was put forward. Changing parameters of front suspension, the simulation of vibrational characteristics of front axle suspension and parameter matching problem of damping and stiffness of suspension system were studied using MATLAB/Simulink.
     4. Based on related theories of fluid mechanics and gas state equation, the mathematical model of damping-adjustable hydro-pneumatic suspension was established, and the static stiffness characteristics of hydro-pneumatic suspension was analyzed. Non-linear characteristics of damping, dynamic output force and pressure of every cavity of hydro-pneumatic suspension were simulated using MATLAB/Simulink by changing initial working pressure and volume of Nitrogen, frequency and amplitude of sine excitation, the diameter of piston damping, check valve and adjustable damping valve.
     5. The test-bed of vibrational characteristics was constructed, and the measurement and control system of test-bed was developed based on Lab VIEW, through which the characteristics experiment of hydro-pneumatic such as static stiffness and dynamic output can be completed. The experiment of dynamic parameters such as dynamic amplification factor and vertical vibration acceleration of hydro-pneumatic suspension, dynamic deflection and dynamic load of suspension system, dynamic pressure of every cavity etal also can be completed on this test-bed.
     6. The whole structure of hydro-pneumatic suspension with adjustable damping and the parameters of main parts were determined. The static characteristic experiment of hydro-pneumatic under various initial working pressures and volume of Nitrogen was carried out. The experiment of dynamic parameters was carried out by changing initial working pressure and volume of Nitrogen, frequency and amplitude of sine excitation, the diameter of piston damping, check valve and adjustable damping valve etal.
     7. Based on the construction and analysis of mathematical model for front axle half suspension system of vehicle, the experiment of front axle hydro-pneumatic suspension system was carried out using a test set. Effect of various parameters of suspension system on the dynamic amplification factor and root mean square value of acceleration of sprung mass and dynamic load of wheel were studied, and these parameters include the initial working volume of Nitrogen, amplitude of sine excitation, the diameter of check valve and adjustable valve of damper.
     This work provides theoretical basis and technical support for the research of off-road vehcile with front axle hydro-pneumatic suspension system.
引文
[1]Moreau X., Altet O. and Oustaloup A.. The CRONE Suspension:Management of the Dilemma Comfort-Road Holding[J]. Nonlinear Dynamics,2004,38:461-484.
    [2]吴仁智.混合与分离式油气悬架动力学试验研究[D].上海:同济大学,2003.
    [3]张洪欣.汽车设计[M].北京:机械工业出版社,1996.
    [4]郑凯.浅析车辆动态特性对路面损坏的影响[J].当代建设,2003(05):88.
    [5]骆知俭,毛晓全.全身振动对人体腰椎的影响[J].职业医学,1989,16(5):7-9.
    [6]段骊,张祥春,程宏等.全身振动对人体肾脏位置的影响[J].中国公共卫生学报,1996,15(1):37-38.
    [7]张祥春,程宏,张新生等.全身振动对人体脊柱的损害[J].中华劳动卫生职业病杂志,1993,11(6):321-324.
    [8]熊敏如,吴维生,何兴轩等.全身振动对农用拖拉机驾驶员心血管系统影响的研究[J].职业医学,1994,21(3):24-26.
    [9]武丽杰,陈力,马龙滨.全身振动对林业集、运材作业工作的职业危害作用[J].森林工程,1998,14(1):20-22.
    [10]巴福森.长时间全身振动对作业人员胃的影响的跟踪研究[J].航天医学与医学工程,1993,6(4):274-281.
    [11]Wilder D.G. The biomechanics of vibration and low back pain[J]. American Journal of industrial medicine,1993(23):577-588.
    [12]Hoy J., Mubarak N. and Nelson S. etc. Whole body vibration and posture as risk factors for low back pain among forklift truck drivers[J]. Journal of sound and vibration,2005(284):933-946.
    [13]Olivera C.G., Simpson D.M. and Nadal J.. Lumbar back muscle activity of helicopter pilots and whole-body vibration[J]. Journal of Biomechanics,2001,34(10):1309-1315.
    [14]Morrison J.B., Martin S.H. and Robinson D.G.. Development of a comprehensive method of health hazard assessment for exposure to repeated mechanical shocks[J]. Journal of low frequency noise, vibration and active control,1997,16(4):245-255.
    [15]Lines J., Stiles M. and Whyte R.. Whole body vibration during tractor driving[J]. Journal of low frequency noise and vibration,1995,14(2):87-95.
    [16]徐晓美.基于磁力弹簧的非公路车辆驾驶员座椅悬架系统研究[D].南京农业大学,2006.
    [17]南宁兰乔科技有限公司-服务-问题与解答:胎压与爆胎的关系.http://www.nnsme.com/qyzc/wjjx/lanqiao/services/index-2.htm
    [18]朱思洪,缪小红,尹文庆等.德国拖拉机发展现状与趋势[J].农业机械学报,2002,33(1):111-114.
    [19]Mayr S., Wagner W.. Development of a front axle suspension for special purpose tractors [C]. Conference on Agricultural Engnineering 2004:41-48.
    [20]陈家瑞.汽车构造(下册)[M].机械工业出版社,2000.
    [21]刘惟信.汽车设计[M].清华大学出版社.2001.
    [22]Elbeheiry E.M., Karnopp D.C. and Elaraby M.E. etc. Advanced ground vehicle suspension systems-a classified bibliography[J], Vehicle System Dynamics,1995,24(3):231-258.
    [23]陈兵.车辆智能悬架系统发展趋势研究[J].起重运输机械,2005(6):4-9.
    [24]Federspiel-Labross J.M..Beitrag zum studium und ur Vervollkommnung der Aufhangung der fahrzeuge[J].Automobiltechnische Zeitschrift,1955,57(3):63-70.
    [25]Thompson A.G..Design of active suspension[C].Proceedings of IMechE Automobile Division, 1970(71).
    [26]喻凡,林逸.汽车系统动力学[M].机械工业出版社,2005.
    [27]董波.主要类型可控悬架的原理简介及发展[J].汽车技术,2002(5):14-17.
    [28]Gordan M.B., Bachrach B.I. and Smith R.E..The design and development of a broad bandwidth active suspension concept car[C].XXIV FISITA Congress,London,UK,1992.
    [29]Aoyama Y., Kawabate K. and Hasegawa S..Development of the full active suspension by Nissan[J]. SAE Paper 901747.
    [30]Tetsuya L., Yosuke A. and Kenrou T. etc.Development of a Hydraulic Active Suspension[J]. SAEPaper 931971.
    [31]陈翔.基于模糊控制的半主动悬架的研究[D].哈尔滨工业大学,2005.
    [32]Karnopp D.C.. Theoretical limitations in active vehicle suspensions[J].Vehicle System Dynamics, 1986,15:41-54.
    [33]Karnopp D.C.. Power requirements for vehicle dynamics[J]. Vehicle System Dynamics,1992, 21(2):65-71.
    [34]Crolla D.A., Aboul-Nour A.M.A..Theoretical comparisons of various active suspension systems in term of performance and power requirements[C].Proceeding of ImechE,Int.Conference on Advanced Suspension,London,1988:1-9.
    [35]Karnopp D.C., Crodby M.J. and Harwood R.A.. Vibration control using semi-active force generators[J]. ASME Journal of Engineering for Industry,1974,96(2):619-626.
    [36]Giliomee C.L., Els P.S.. Semi-active hydropneumatic spring and damper system[J].Journal of Terramechanics,1998,35(2):109-117.
    [37]喻凡,Dave Crolla,车辆动力学及其控制[M].北京:人民交通出版社,2004.
    [38]Choi S.B., Lee H.S. and Park Y.P.. H infinity control performance of a full-vehicle suspension featuring magnetorheological dampers[J].Vehicle System Dynamics,2002,38(5):341-360.
    [39]Choi S.B., Choi Y.T. and Chang E.G. etc. Control characteristics of a continuously variable ER damper[J].Mechatronics,1998,8(2):143-161.
    [40]Tsuruga Y. Study on hydraulic active suspension for wheeled hydraulic excavator[C].Fluid Power, Thrid JHPS International Symposium,1996:367-372.
    [41]吴仁智.油气悬架系统动力学建模仿真和试验研究[D].杭州:浙江大学,2000.
    [42]陆有林.带反压气室油气弹簧悬架的研究[J].汽车技术,1989(11):1-6.
    [43]封士彩,王国彪.工程车辆油气悬架的现状与发展[J].矿山机械,2000.12:32-33.
    [44]甄龙信,张文明,王国彪.国内油气悬架的研究方法、现状与发展[J].矿山机械,2004(8):19-20.
    [45]甄龙信,张文明,王国彪.油气悬架综述[J].有色金属(矿山部分),2004,56(4):36-38,44.
    [46]秦家升,游善兰,王增民.油气悬架系统及其数学模型研究[J].流体传动与控制,2004(3):16-19.
    [47]王智明,殷琨,万文滨.油气悬挂系统及其在钻掘车辆中的应用前景[J].矿山机械,2004(8):21-22.
    [48]梁贺明,陈思忠,游世明.油气悬架数学建模及仿真研究[J].计算机仿真,2006,23(4):241-244,293.
    [49]马国清,王树新,檀润华.汽车油气悬挂系统数学模型与计算机仿真研究[J].中国机械工程,2003,14(11):978-981.
    [50]特立独行的液压魔术师——雪铁龙citroen.[2007-04-26] http://auto.jh.zj.cn/News/auto_brand2/2007-4-26/8226.shtml
    [51]Crolla D.A,Horton D.N.L. and Pitcher J.A. etc.Active suspension control for an off-road vehicle[J]. Journal of Automobile Engineering,1987,201 (Part D):1-10.
    [52]陆盾2000改弹炮合—防空系统.http://www.chinabaike.com/article/96/jszs/2007/20071013580090.html
    [53]全地面起重机油气悬挂简介.[2007-03-19]http://www.6300.net/news/2007-03-19/020070319143134.html
    [54]Fendt 200 S:the 100% compact tractor. http://www.fendt.com/int/200-s.asp
    [55]Koen Deprez, Dimitrios Moshou and Jan Anthonis etc. Improvement of vibrational comfort on agricultural vehicles by passive and semi-active cabin suspensions[J]. Computers and electronics in agriculture,2005,49(3):431-440.
    [56]拖拉机:以舒适度开拓市场.[2008-08-13]http://news.machine365.com/arts/080813/2/268281_l.html
    [57]Patel R., Kumar A. and Mohan D.. Development of an ergonomic evaluation facility for Indian tractors[J].Applied Ergonomics,2000,31 (3):311-316.
    [58]Massimo Martelli, Roberto Paoluzzi and Luca G. Zarotti. The front suspension of agricultural tractors[C].14th International Conference of the International Society for Terrain-Vehicle Systems Vicksburg,2002(10):20-24.
    [59]Deprez K., Ramon H.. Design of a passive suspension for cabins of agricultural machinery[C]. Proceedings of the 25th International Conference on Noise and Vibration Engineering, ISMA, 2000:1605-1608.
    [60]Nellell S., Steyn J.L.. Development and experimental evaluation of translational semi-active dampers on a high mobility off-road vehicle[J]. Journal of Terramechanics,2003,40:25-32.
    [61]Lehtonen J.J., Juhala M.. Predicting the ride behaviour of a suspended agricultural tractor[J]. International Journal of Vehicle Systems Modelling and Testing,2005,1(1-3):131-142.
    [62]Mazhei A.A., Uspenskiy A.A. and Ermalenok V.G.. Dynamic analysis of the hydro-pneumatic front axle suspension of agriculture tractor[J]. SAE2006-01-3526.
    [63]Moulton A.E. and Best A.. Hydragas suspension[J].SAE 790474:1307-1327.
    [64]Worden K.,Tomlinson G.R.. Parametric and nonparametric identification of automotive shock absorber[C].Proceedings of the 10th International Modal Analysis Conference,San Diego,California, 1992:764-771.
    [65]Joo F.R. Dynamic analysis of a hydro-pneumatic suspension system[D].Concordia University,1991
    [66]Kwangjin Lee. Numerical modeling for the hydraulic performance prediction of automotive monotube dampers[J].Vehicle system Dynamics,1997,28:25-39.
    [67]Koenraad Reybrouck. A non linear parametric model of an automotive shock absorber[J]. SAE940869:1170-1177.
    [68]Rideout G.. Dynamic testing and modeling of the interconnected moulton hydragas suspension system[D]. Queen's University at Kingston,1999.
    [69]Rideout G. and Anderson R.J..Experimental testing and mathematical modeling of interconnected hydragas suspension system[J],SAE2003-01-0312.
    [70]Liu Peijun.An analytical study of ride and handling performance of an interconnected vehicle suspension[D].Concordia University,1995.
    [71]Surface C, Worden K. and Tomlinson G.. On the non-linear characteristic of automotive shock absorbers[C]. Proceedings of ImechE(part D):Journal of Automobile Engineering,1992,206:3-16.
    [72]Lang H.H.. A study of the characteristics of automotive hydraulic dampers at highstroking frequencies[D].The University of Michigan,1977.
    [73]Surface C, Storer D. and Tomlinson G.. Characterising an automotive shock absorber and the dependency on the temperature,Proceedings of the 10th International Modal Analysis Conference,San Diego,1992:1317-1326.
    [74]Segel L.,Lang H.. The mechanics of automotive hydraulic danpers at high stroking frequencyes[J]. Vehicle System Dynamics,1981(10):82-85.
    [75]Giacomin J.. Neural network simulation of an automotive shock absorber[J].Engineering Application Artificial Intelligence,1991,4(1):59-64.
    [76]Pracny V., Meywerk M. and Lion A.. Full vehicle simulation using thermomechanically coupled hybrid neural network shock absorber model [J]. Vehicle System Dynamics,2008,46(3):229-238.
    [77]Mark Burnett. Damper modelling using neural networks[M].New Technology:2003.
    [78]Duym S., Stiens R. and Reybrouck K.. Evaluation of shock absorber models[J].Vehicle System Dynamics,1997,27:109-127.
    [79]Lang R., Sonnenburg R.. A detailed shock absorber model for full vehicle simulation[C], Proceeding of the 10th European ADAMS Users'Conference,Frankfurt,1995(11):14-15.
    [80]Yung V.Y.B., Cole D.J.. Analysis of high frequency forces generated by hydraulic automotive dampers[J], Vehicle System Dynamics,2003,37(S):441-452.
    [81]Lang H.H.. A study of the characteristics of automotive hydraulic dampers at high stroking frequencies[D].Michigan University,1977.
    [82]Yabuta K., Hidaka K. and Fukushima N..Effects of suspension on vehicle riding comfort[J].Vehicle System Dynamics,1981(10):85-88.
    [83]E1S P.S., Grobbelaar B.. Heat transfer effects on hydropneumatic suspension systems[J].Journal of Terra mechanics.1999,36(4):197-205.
    [84]E1S P.S. and Grobbelaar B.. Investigation of the time Temperature Dependency of hydro-pneumatic suspension[J]. SAE930265:318-328.
    [85]Copper H.W.,Goldfranck J.C.. B-W-R constants and new correlations[J].Hydrocarbon Processing, 1967,46(12):141-146.
    [86]Felez J.,Vera C..Bond graph assisted models for hydro-pneumatic suspension in crane vehicles[J]. Vehicle System Dynamics,1987,(16):313-332.
    [87]El-Demerdash S.M.Performance of limited bandwidth active suspension based on a half car model[J].SAE paper No.981118.
    [88]Theron N.J., Els P.S.. Modelling of a semi-active hydropneumatic spring-damper unit[J]. International Journal of Vehicle Design,2007,45(4):501-521.
    [89]Chaudhaury S.. Ride and Roll Dynamics of Vehicle with Spring Loaded Hydro-Pneumatic Suspension[D]. Concordia University:1999
    [90]Rosam N.,Darling J. Modeling and Testing of the Interconnected Hydragas Suspension [C].Proceedings of 6th International Congress on Hydraulic Engineering in the Vehicle,SAE, Angers,France.1994.
    [91]Sujatha C.,Tejesu P.. Heavy vehicle dynamics-comparison between leaf spring and hydropneumatic suspensions [C]. Proceedings of SPIE-The International Society for Optical Engineering,2002: 311-317.
    [92]Belingardi G., Campanile P.. Improvement of the shock absorber dynamic simulation by restoring force mapping method[C].Proceeding of the 15th International Seminar on Modal Analysis,Heverlee,Belgium,1990:441-454.
    [93]Duym S.J.Schoukens and P.Guilliaume,A local restoring force surface method[C].Proceedings of the 13th International Modal Analysis Conference, Nashville,Tennessee,1995:1392-1399.
    [94]Pevsner J.M..Equaizing types of suspension[J].Automobile Engineer,1957(1):10-16.
    [95]吴涛,过学迅.重型越野车辆油气悬架的设计[J].专用汽车,2000(1)8-11.
    [96]Els P. Schalk, Van Niekerk and Johannes L.. Dynamic modelling of an off-road vehicle for the design of a semi-active, hydropneumatic spring-damper system[J]. Vehicle System Dynamics, 2000,33(S):566-577.
    [97]Felez J., Vera C..Bond graph assisted models for hydro-pneumatic suspension in crane vehicles[J].Vehicle System Dynamics,1987.16:313-332.
    [98]韩波,王庆丰,路甬祥.非线形液压阻尼悬架的优化设计及最优控制[J].汽车工程.1998(2):96-100.
    [99]陶又同.液压悬挂系统的示功图及模型辨识[J].武汉水运工程学院学报,1985(4):95-101.
    [100]孙求理.油气悬挂系统的理论研究与优化[D].上海:同济大学,1994.
    [101]高凌风.连通式油气悬架动刚度分析及发射车行车振动响应计算[D].北京:北京理工大学,1994.
    [102]赵春明,油气悬架系统动力学理论及其相关控制技术研究[D].大连:大连理工大学,1998.
    [103]赵春明,高艳明.多桥油气悬挂全路面起重机的随机振动分析[J].机械科学与技术,1999,18(1):83-85.
    [104]檀润华.汽车减振器及乘座动力学非线性建模研究[D].杭州:浙江大学,1998.
    [105]张庙康,翁建生,胡海岩.一种新型油气弹簧悬架的理论分析和试验研究[J].振动、测试与诊断,1999,(4):327-331.
    [106]陈志林,金达锋,马国新等.基于变结构与PID联合控制策略的车身高度控制仿真.清华大学学报(自然科学版),1999,39(8):72-75.
    [107]陈志林,金达峰,赵六奇等.油气主动悬架非线性模型的建立、仿真与试验验证[J].汽车工程,2000,22(3):162-165,213.
    [108]金达锋,黄兴惠,陈志林等.主动油气悬架试验模型的研制[J].汽车工程,2000,22(2):100-103,108.
    [109]中国坦克研制揭密:与”挑战者”坦克比武.[2003-06-30]http://www.southcn.com/news/china/zgkx/200306300537.htm
    [110]王文林,可调式线性油压减振器阻尼孔的精度设计研究[J].中国机械工程.2002,13(1):12-14.
    [111]封士彩,CXP1032起重机油气悬挂系统减振性能的研究[D].徐州:中国矿业大学,2000.
    [112]封士彩,王国彪.起重机油气悬挂系统非线性刚度和阻尼特性的研究[J].非线性动力学学报,2001,8(2):171-175.
    [113]封士彩.油气悬挂非线性数学模型及性能特性的研究[J].中国公路学报,2002,15(3):122-126.
    [114]仝军令,李威,傅双玲.油气弹簧主要参数对悬架系统性能的影响分析[J].系统仿真学报,2008,20(9):2271-2274.
    [115]左军.重型越野车油气弹簧的研制和油气悬架模型的慢主动控制研究[D].武汉:华中科技大学,2000.
    [116]杨平,刘勇,钟毅芳,周济.油阻尼减振器计算机仿真研究[J].系统仿真学报.2001,12(3):350-352.
    [117]张再红,易孟林,曹树平.重型越野车半主动油气悬架的研究[J].汽车研究与开发,2002,(2):42-46.
    [118]戴清桥.油气弹簧及其悬架系统的特性研究[D].武汉:华中科技大学,2003.
    [119]马国清.起重机油气悬挂系统数学模型与计算机仿真研究[D].天津:河北工业大学,2000.
    [120]马国清,檀润华,武一民.基于油气悬挂系统的1/4车数学模型与仿真研究[J].河北工业大学学报,2002,31(6):30-34.
    [121]马国清,檀润华,吴仁智.油气悬挂系统非线性数学模型的建立及其计算机仿真[J].机械工程学报,2002,(38)5:95-99.
    [122]刘延庆.车用液压减振器的异常噪声及动力学特性研究[D].上海:上海交通大学.2002.
    [123]刘福成.基于多体动力学分析的油气悬架车辆平顺性研究[D].上海:上海交通大学,2005.
    [124]孙涛,喻凡,邹游.工程车辆油气悬架非线性特性的建模与仿真研究[J].系统仿真学报,2005,17(1):210-213,219.
    [125]庄德军.主动油气悬架车辆垂向与侧向动力学性能研究[D],上海:上海交通大学,2007.
    [126]孙涛,张振东.油气主动悬架不确定性对重载车辆平顺性的影响分析[J].振动工程学报,2007,20(6):629-634.
    [127]王汉平,张聘义,邵自然.混合连通式油气悬挂重型车辆的振动性能研究[J].导弹与航天运载技术.2003(4):7-11.
    [128]周泽军.某型装甲车油气悬挂系统研究和试验分析[D].北京:北京理工大学,2003.
    [129]赵凯辉.高速橡胶履带车辆油气悬架仿真研究[D].洛阳:河南科技大学,2005.
    [130]甄龙信.油气悬架系统仿真、优化与设计计算研究[D].北京:北京科技大学,2005.
    [131]甄龙信,王国彪.单气室油气悬架的阻尼特性及其对设计的影响[J].矿山机械,2006,34(8):51-53.
    [132]于英.多轴越野车辆油气悬架系统参数仿真[J].农业机械学报,2005,36(11):25-29.
    [133]于英,田晋跃.多轴工程车辆油气悬架系统参数仿真[J].中国工程机械学报,2006,4(1):47-52.
    [134]狄勇,田晋跃.油气悬架非公路车辆的行驶平顺性研究[J].工程机械,2006(6):21-24.
    [135]田晋跃,狄勇,向华荣.油气分离式单气室悬架刚度与阻尼性能研究[J].农业机械学报,2007,38(2):35-38.
    [136]杨斌,范文杰,张子达等.油气悬架动态力的识别[J].农业机械学报,2007,38(4):16-18,80.
    [137]赵登峰,自卸汽车油气悬挂系统动态特性仿真与试验研究[D].长春:吉林大学.2003.
    [138]赵登峰,王国强,周德成等.自卸车油气悬挂数学模型仿真研究[J].农业机械学报,2003,34(6):40-43.
    [139]张进平.矿用自卸车油气悬挂系统动态特性试验与仿真研究[D].长春:吉林大学.2003.
    [140]周德成,王国强,刘玉臣等.油气悬挂缸参数对车辆平顺性影响的理论研究[J].农业机械学报,2004,35(5):25-28.
    [141]周德成.矿用自卸汽车油气悬挂系统动力学仿真及试验研究[D].吉林大学,2005.
    [142]吕景忠,杨永海,王勋龙等.油气悬架的振动特性分析[J].农业机械学报,2005,36(4):412-143,141.
    [143]王智明.车装钻机油气悬挂系统仿真分析与试验研究[D].长春:吉林大学,2005.
    [144]陈国椿,基于ADAMS的油气消扭悬架系统仿真分析[D].长春:吉林大学,2005.
    [145]郭建华.全路面起重机油气悬架系统建模与动力学仿真研究[D].长春:吉林大学,2005.
    [146]王飞.油气悬架系统动态特性仿真[D].长春:吉林大学,2005.
    [147]李俊玲.全地面起重机油气悬挂系统仿真研究[D].长春:吉林大学,2006.
    [148]韩钢强.高速挖掘装载机油气悬挂系统性能仿真研究[D].长春:吉林大学,2006.
    [149]王云超,高秀华,杨旭等.油气悬挂系统参数对多桥转向特性的影响[J].吉林大学学报(工学版),2007,37(2):269-274.
    [150]周长城,郑志蕴.油气弹簧阻力特性计算机仿真[J].系统仿真学报,2006,18(8):2303-2306.
    [151]周长城,顾亮,陈轶杰.油气弹簧节流阀片设计与研究[J].机械设计,2006,23(6):21-24.
    [152]周长城,顾亮.筒式减振器叠加节流阀片开度与特性试验[J].机械工程学报,2007,43(6):210-215.
    [153]周长城,焦学健.簧上质量对油气弹簧阀系设计参数的影响[J].中国机械工程,2008,19(8):998-1002.
    [154]周长城.悬架杠杆比对油气弹簧阀系设计参数的影响[J].农业工程学报,2007,23(12):135-139.
    [155]周长城,顾亮.油气弹簧阀系参数设计及特性试验[J].汽车工程,2008,30(1):53-56,90.
    [156]刘汉光,吕文泉,吴仁智.全路面起重机油气悬架系统原理分析与试验[J].建筑机械化,2003(5):17-19.
    [157]张庆志.SGA3722矿用汽车的研制、改进及创新[J].金属矿山,2001(8):28-30.
    [158]Matthias Hauck. Geregelt Daemfung fuer Traktor Fahrersitze(D).TU Berlin,Institut fuer Konstruktion von Maschinensystemen,2001.
    [159]Masaaki Kawana, Taro Shimogo. active suspension of truck seat[J]. Shock and Vibration,1998, 5:35-41.
    [160]Frank Himmelhuber.Die aktiv geregelte Luftfederung fuer den Traktorsitz. Landtechnik,2006, 61(3):132-133.
    [161]Friedrich Uhlig,Rudiger Kaiser. John Deere"Active Seat".DLG-Prufbericht 5175F.
    [162]Thomas B..Simulation eines passiven Kabinenfederungssystems[C].2001 Agricultural Engineering Conference, Hannover, Germany,9-10 November 2001:69-76.
    [163]Takayuki Koizumi,Nobutaka Tsujiuchi and Yoshifumi Nabeshima etal. The decreasing of vibration of the tractor cabin using semi active suspension[C].2002年自动车技术会秋季大会学术讲演会,2002:17-20.
    [164]Martelli M., Paoluzzi R. and Zarotti L.G... The Front Suspension of Agricultural Tractors[C].14th International Conference of the International Society for Terrain-Vehicle Systems, Vicksburg, Ms USA October 20-24,2002.
    [165]Weigelt H.. Front axle suspension for agricultural tractors[C]. Internationale Tagung Landtechnik, Braunschweig (Germany, F.R.),7-8 Nov 1985:47-49.
    [166]Lehtonen T.J., Juhala M.. Predicting the Ride Behaviour of a Suspended Agricultural Tractor[J]. International Journal of Vehicle Systems Modeling and Testing,2005,1 (1/2/3):131-142.
    [167]Ullrich Hoppe. Einfluss der Hinterachsfederung von Traktoren auf Fahrsicherheit und -Komfort. Landtechnik,2002,57(2):108-109.
    [168]周一鸣,应达先.农用车辆驾驶座椅悬架系统非线性特性的研究[J].农业机械学报,1989,(3):22-28.
    [169]邹建林,钱志坚.小型拖拉机驾驶座椅结构的研究[J].北京农业工程大学学报,1989,9(1):13-18.
    [170]王锦雯.上海—50型拖拉机驾驶室振动的试验研究[J].江苏工学院学报,1989,10(2):13-19.
    [171]刘星荣,陈龙.拖拉机驾驶室振动疲劳试验研究[J].农业机械学报,1991(3):5-10.
    [172]Matthies H.J.,Meier F.Jahrbuch Agrartechnik(11)[M].Muenster:Landwirtachaftsverlag,1999:2-27
    [173]Leucner S.System einer hydropneumatische Vorderaehsfederung fuer Standard—und Systemschlepper.Tagungsband(VDI Berichte 1211),Tagung"Landteehnik",Braunschweig:VDI Verlag,1995.
    [174]Bergmann E.Entwicklung von Hard-und Softwarewerkzeugen zur Leistungs und Einsatzoptimierung vorl Traktoren (FORTSCHRITTBERICHTE VDI.Reihe 14,Landtechnik/ Lebenstechnik, Nr.399).Duesseldorf:VDI—Verlag,1988.
    [1]江苏常发集团.CF200轮式拖拉机技术参数与使用说明.
    [2]GB/T 3871.15—2006农用拖拉机质心测定方法.
    [3]GB/T 12674-90汽车质量(重量)参数测定方法.
    [4]GB/T 12538-90汽车重心高度测定方法.
    [5]刘敏,张小发.汽车三轴转动惯量测量装置的设计[J].北京汽车,2006(4):9-12.
    [6]GB4783—84汽车悬挂系统的固有频率和阻尼比测定方法.
    [7]葛剑敏,刘春辉,郑联珠.轮胎垂直滚动动态刚度和阻尼的研究[J].轮胎工业,2000,20(12):707-709.
    [8]余志生.汽车理论(第3版)[M].北京:机械工业出版社,2004.
    [9]靳晓雄,张立军,江浩.汽车振动分析[M].上海:同济大学出版社,2006.
    [10]屈维德,唐恒龄.机械振动手册(第2版)[M].北京:机械工业出版社,2000.
    [11]王银芝.农用车辆整车振动特性研究[D].南京农业大学,2003.
    [12]陈南.汽车振动与噪声控制[M].北京:人民交通出版社,2005.
    [13]GB7031-86车辆振动输入路面平度表示方法.
    [14]王辉.车辆半主动悬架神经网络自适应控制的研究[D].南京农业大学,2004.
    [15]吴仁智.混合与分离式油气悬架动力学试验研究[D].浙江大学,2000.
    [16]陈燕虹,刘宏伟,黄治国等.基于空气悬架客车1/2模型的模糊控制仿真[J].吉林大学学报(工学版),2005,35(3):254-257,251.
    [1]《汽车工程手册》编辑委员会.汽车工程手册(基础篇)[M].北京:人民交通出版社,2001.
    [2]刘豹.现代控制理论(第2版)[M].北京:机械工业出版社,1998.
    [3]张洪欣.汽车设计(第2版)[M].北京:机械工业出版社,1999.
    [4]余志生,.汽车理论(第3版)[M].北京:机械工业出版社,2000.
    [5]靳晓雄,张立军,江浩.汽车振动分析[M].上海:同济大学出版社,2002.
    [6]余淼,李锐,廖昌荣等.基于磁流变减振器的汽车前悬架半主动控制研究[J].中国机械工程,2005No.6:545-549.
    [7]Levesley, M.C.,Ramli, R.,Stembridge, N. etal. Multi-body co-simulation of semi-active suspension systems[C]. Proceedings of the Institution of Mechanical Engineers, Part K:Journal of Multi-body Dynamics,2007,221(1):99-115.
    [8]Ramli, R.,Pownall, M.,Levesley, M. etal. Dynamic analysis of semi-active suspension systems using a co-simulation approach[J]. Multi-Body Dynamics:Monitoring and Simulation Techniques-Ⅲ, 2004:391-399.
    [9]崔晓利,杨岳,陈龙等.半主动悬架及其控制系统的设计与研究[J].中国机械工程,2007,18(8):998-1000.
    [10]陈兵,曾鸣,尹忠俊.车辆半主动悬架的模糊控制策略设计与仿真研究[J].系统仿真学报,2008,20(2):420-424.
    [11]Redfield, R.C. Performance of low-bandwidth, semi-active damping concepts for suspension control[J]. Vehicle System Dynamics,1991,20(5):245-267.
    [12]李迪,郭忠菊,王军方等.利用MATLAB的汽车主动悬架动力学仿真[J].山东理工大学学报(自然科学版),2003,17(6):22-25.
    [1]Nellell S., Steyn J.L..Development and experimental evaluation of translational semi-active dampers on a high mobility off-road vehicle[J]. Journal of Terramechanics,2003,40:25-32.
    [2]Lehtonen J.J., Juhala M..Predicting the ride behaviour of a suspended agricultural tractor[J]. International Journal of Vehicle Systems Modelling and Testing,2005,1(1-3):131-142.
    [3]Mazhei A.A., Uspenskly A.A. and Ermalenok V.G.. Dynamic analysis of the hydro-pneumatic front axle suspension of agriculture tructor[J], SAE2006-01-3526.
    [4]Deprez K., Maertens K.. Comfort improvement by passive and semi-active hydro-pneumatic suspension using global optimization technique[C].Proceedings of the American Control Conference, Anchorage,2002.
    [5]吴仁智.混合与分离式油气悬架动力学试验研究[D].上海:同济大学,2003.
    [6]颜荣庆,李自光,贺尚红.现代工程机械液压与液力系统——基本原理·故障分析与排除[M].北京:人民交通出版社,2001.
    [7]赵孝保,周欣.工程流体力学[M].南京:东南大学出版社,2004.
    [8]张也影.流体力学(第2版)[M].北京:高等教育出版社,1999.
    [9]范基,吴劲.蓄能器的蓄能性能研究[J].液压工业,1990(2).
    [10]陶又同.蓄能器的状态特性及热损失[J].武汉水运工程学院学报,1985(1).
    [11]庄德军,柳江,喻凡等.汽车油气弹簧非线性数学模型及特性[J].上海交通大学学报,2005,39(9):1441-1444.
    [12]El-Tawwab A.M.A.,Abou-El-Seoud S.A..Theoretical study of the hydro-pneumatic semi-active suspension system with preview[J]. Heavy Vehicle Systems,1998,5(2):167-180.
    [13]张庙康,翁建生,胡海岩.一种新型油气弹簧悬架的理论分析和试验研究[J].振动、测试与诊断,1999,19(4):327-331.
    [14]李芳民.工程机械液压与液力传动[M],北京:人民交通出版社,2005.
    [15]封士彩,徐勇,鹿洪禹.工程车辆油气悬挂蓄能器性能的试验研究[J].工程机械,2001,32(9):8-11.
    [16]Els P. S., Grobbelaar B.. Investigation of the Time-and Temperature Dependency of Hydro-pneumatic Suspension System[J]. SAE 930265:318-328.
    [17]华自强编,工程热力学(第2版)[M].北京:高等教育出版社,1985.
    [18]袁金良,岳丹婷.高等工程热力学[M].大连:大连海事大学出版社,1998.
    [19]封士彩,CXP1032起重机油气悬挂系统减振性能的研究[D].徐州:中国矿业大学,2000.
    [16]杨斌,范文杰,张子达等.油气悬架动态力的识别[J].农业机械学报,2007,38(4):16-18,80.
    [17]Vladimir Popovic,Dimitrije Jankovic and Branko Vasic.Design and Simulation of Active Suspension System by Using Matlab[C]. FISITA 2000(Automotive Innovation for the New Millennium), Seoul, Korea,2000:23-30.
    [18]孙涛,喻凡,邹游.工程车辆油气悬架非线性特性的建模与仿真研究[J].系统仿真学报,2005,17(1):210-213,219.
    [19]Rakheja S.,Liu Peijun,Ahmed A.K.W. etc.Analysis of an interlinked hydro-pneumatic suspension [C]. American Society of Mechanical Engineers, Dynamic Systems and Control Division,1993,52: 279-287.
    [20]陈志林,金达锋,黄兴惠等.油气主动悬架车身高度非线性控制仿真和试验研究[J].中国机械工程,2000,11(11):1228-1231.
    [21]Schumann A.R.,Anderson R.J.. Optimal control of an active anti roll suspension for an off-road utility vehicle using interconnected hydragas suspension units[J]. Vehicle System Dynamics,2003, 37(S):145-156.
    [22]甄龙信.油气悬架系统仿真、优化与设计计算研究[D].北京:北京科技大学,2005.
    [1]Rosam N.,Darling J. Modeling and Testing of the Interconnected Hydragas Suspension [C].Proceedings of 6th International Congress on Hydraulic Engineering in the Vehicle,SAE, Angers,France.1994.
    [2]吴仁智.混合与分离式油气悬架动力学试验研究[D].上海:同济大学,2003.
    [3]Rideout G.Dynamic testing and modeling of the interconnected moulton hydragas suspension system[D].Queen's University at Kingston,1998
    [4]周德成.矿用自卸汽车油气悬挂系统动力学彷真及试验研究[D].长春:吉林大学,2005.
    [5]冯立阳,乐渭清.油气弹簧设计中的几个关键问题[J].液压与气动,1996(1)6-8.
    [6]郭建华.全路面起重机油气悬架系统建模与动力学仿真研究[D].长春:吉林大学,2005.
    [7]李凯旋.矿用重型自卸车的油气悬架[J].金属矿山,1983(3):24-27
    [8]贺亮.带附加空气室空气弹簧垂向刚度及阻尼特性试验研究[D].南京:南京农业大学,2006.
    [9]新三思集团CMT5105型电子万能试验机(大门式机)主机和Power Test软件使用指南.
    [10]徐晓美.基于磁力弹簧的非公路车辆驾驶员座椅悬架系统研究[D].南京:南京农业大学,2006.
    [11]王辉.车辆半主动悬架神经网络自适应控制的研究[D].南京:南京农业大学,2004.
    [12]Feng Shicai,Xu Yong,Lu Hongyu.Testing research of accumulator performance in the hydro-pneumatic suspension of a vehicle[J]. International Journal of Plant Engineering and Management,2001,6(3):118-123.
    [13]Abd-El-Tawwab A.M. and Abou-El-Seoud S.A..A theoretical study of the hydro-pneumatic semi-active suspension system with preview[J]. Heavy vehicle systems,1998,5(2):167-180.
    [14]Mazhei A.A., Uspenskiy A.A. and Ermalenok V.G.Dynamic analysis of the hydro-pneumatic front axle suspension of agriculture tractor[C]. Commercial Vehicle Engineering Congress and Exhibition,2006:25920-25928.
    [15]Wu Renzhi,Dong Shuanlao,Liu Hanguang etc. Dynamics simulation & experimental research on hydro-pneumatic suspension system of construction vehicles[C].5th International Conference on Vibration Engineering, Sep 18-20,2002:310-314.
    [16]张庙康,翁建生,胡海岩.一种新型油气弹簧悬架的理论分析和试验研究[J].振动、测试与诊断,1999,19(4):327-331.
    [1]马国新.车辆悬挂系统参数对传动系统扭振的影响规律[J].兵工学报(坦克装甲车与发动机分册),1995(3):17-24,53.
    [2]姚嘉凌,郑加强,蔡伟义.车辆半主动悬架模型参考滑模控制[J].农业机械学报,2008,39(4):5-8,38.
    [3]赵亮,文桂林,韩旭等.基于磁流变阻尼器的车辆半主动悬架最优控制的研究[J].汽车工程,2008,30(4):340-344.
    [4]G.Georgiou,G.Verros,S.Natsiavas.Multi-objective optimization of quarter-car models with a passive or semi-active suspension system[J].Vehicle System Dynamics,2007,45(26):77-92.
    [5]Daniel A. Mantaras,Pablo Luque.Ride comfort performance of different active suspension systems[J]. International Journal of Vehicle Design,2006,40(1-3):106-125.
    [6]于英,田晋跃.多轴越野车辆油气悬架系统参数仿真[J].农业机械学报,2005,36(11):25-28.
    [7]刘豹.现代控制理论(第2版)[M].北京:机械工业出版社,1998.
    [8]贺亮.带附加空气室空气弹簧垂向刚度及阻尼特性试验研究[D].南京:南京农业大学,2006.
    [9]徐晓美.基于磁力弹簧的非公路车辆驾驶员座椅悬架系统研究[D].南京:南京农业大学,2006.
    [10]郭大蕾,胡海岩.基于磁流变阻尼器的车辆悬架半主动控制研究—间接自适应控制与试验[J].振动工程学报,2002,15(3):285-289.
    [11]Ramsbottom M., Crolla D. A..Simulation of an adaptive controller for a limited-bandwidth active suspension[J]. International Journal of Vehicle Design,1999,21(4-5):355-371.
    [12]王辉.车辆半主动悬架神经网络自适应控制的研究[D].南京:南京农业大学,2004.
    [13]Teixeira R.L.,Neto F.P.L.,Ribeiro J.F..Modelling and experimental investigation of an active damper[J]. Shock and Vibration,2006,13(4-5):343-354.
    [14]Han S.J., Lee S.B. and Jeon Y.W. etc.Simulation and experiemntal study of semi-active suspension with electro-rehological shock absorber[C].1999:235-241.
    [15]Porumamilla H.,Kelkar A.G., Vogel J.M..Modeling and verification of an innovative active pneumatic vibration isolation system[J]. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,2008,130(3):031001.
    [16]丁能根,薄颖,冉晓凤等.基于协同仿真技术的车辆非线性平顺性分析[J].北京科技大学学报,2006,28(11):1047-1051.
    [17]Lauwerys C.,Swevers J.,Sas P..Design and experimental validation of a linear robust controller for an active suspension of a quarter car[C]. Proceedings of the 2004 American Control Conference (AAC),2004,2:1481-1486.
    [18]朱思洪,吕宝占,王辉等.汽车半主动空气悬架的神经网络控制方法[J].交通运输工程学报,2006,6(4):66-70.
    [19]邹游,喻凡,孙涛.非线性油气悬架的平顺性仿真研究[J].计算机仿真,2004,21(10):157-159,110.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700