用户名: 密码: 验证码:
深水桥梁动水压力分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着交通事业的快速发展,国内建设了大量的深水桥梁。这些深水桥梁多处于西部山区,这些地区是我国地震高发区。深水桥墩在水中振动时,桥墩的水下部分将受到动水压力作用。动水压力不仅会影响深水桥梁的动力特性,对动力响应也有较大的影响。地震作用下动水压力对桥梁结构的影响不可忽视。目前国内外对深水桥梁动水压力的研究,以及墩-水耦合作用的研究相对较少。国外规范对动水压力的计算结果不尽相同,国内相关规范仅能对跨径小于150米的简单截面类型深水桥梁的动水压力进行简化计算,不能满足当前大跨度深水桥墩动水压力计算的需要。目前广泛使用的动水压力计算方法都存在一些缺陷,对深水桥梁动水压力计算方法展开深入研究势在必行。
     本文主要针对辐射波浪法、Morison方程和流体单元法存在的不足展开研究,分别对上述三种方法进行简化、扩展、改进,并提出了两种新的计算方法。主要内容如下:
     1.简要介绍了线性辐射波浪理论,以及基于辐射波浪法的圆形空心桥墩内、外域水动水压力表达式,基于辐射波浪法的矩形空心墩内域水动水压力表达式,并建立了相应的墩-水耦合计算模型。简要介绍了Morison方程,并建立了基于Morison方程的墩-水耦合计算模型。简要介绍了流体单元法原理,并建立了墩-水耦合有限元模型。对上述三种方法的计算效率、精度及适用范围进行了对比分析。
     2.对流体单元法中流体域边界条件进行了简化,对流体域取值范围、流体域网格划分精度进行了研究,得到了常用深水桥墩理想流体域范围及合理的网格划分精度,并建立了改进的流体单元法墩-水耦合有限元模型。
     3.传统Morison方程只能计算小尺寸墩柱外域水动水压力,文中推导了能够同时计算小尺寸圆形空心墩、矩形空心墩内外域水动水压力的扩展Morison方程,验证了扩展Morison方程的合理性。并将扩展Morison方程与流体单元法、辐射波浪法计算结果进行了对比,以判定扩展Morison方程的正确性和计算精度。
     4.基于辐射波浪法的圆形空心墩内、外域水动水压力表达式,以及矩形空心墩内域水动水压力表达式极其复杂,难于计算。通过参数分析、数值拟合等方式,对基于辐射波浪法的动水压力表达式进行了简化,得到了相应的简化表达式。算例表明简化表达式有很高的计算精度。
     5.直接使用辐射波浪理论推导矩形墩外域水动水压力,将会遇到棘手的数学问题。文中提出了一种新的计算矩形墩外域水动水压力的方法——基于辐射波浪法与流体单元法的混合法。该方法使用流体单元法获得正方形桥墩相对于圆形桥墩的形状系数,并与基于辐射波浪法的圆形桥墩外域水动水压力表达式相乘,得到正方形桥墩外域水动水压力表达式。再使用流体单元法求解矩形桥墩长宽比系数,并与正方形桥墩外域水动水压力表达式相乘,得到矩形桥墩外域水动水压力表达式。文中将混合法与流体单元法、Morison方程的计算结果进行了对比,结果表明该方法具有较高的精度与计算效率。
     6.圆端形桥墩、椭圆形桥墩也是工程中常见的桥墩类型。为了解决圆端形桥墩、椭圆形桥墩以及任意截面形状桥墩外域水动水压力计算,文中提出了另一种新的计算方法:基于频率降低率的附加质量比法。在动水压力对桥墩刚度无影响、动水附加质量沿着水深均匀分布的假设条件下,推导了桥墩在水中一阶频率降低率与附加质量之间的关系。利用流体单元法计算出各种截面类型桥墩的一阶频率降低率,从而得到附加质量比,进一步得到动水附加质量。使用该方法,文中提出了基于附加质量比法的圆形桥墩、正方形桥墩、矩形桥墩、圆端形桥墩、椭圆形桥墩外域水动水附加质量表达式。文中建立了基于附加质量比法的墩-水耦合计算模型,对每一种类型桥墩的动水附加质量表达式,使用流体单元法、辐射波浪法与混合法中的一种或两种进行对比,以验证附加质量比法的计算精度。
     7.为了检验文中提出的两种新方法:混合法、附加质量比法在实际深水桥梁工程中应用时的正确性与精度,分别使用上述两种方法与流体单元法,对岷江庙子坪大桥连续刚构主桥进行了动力特性与地震响应对比分析。结果表明:流体单元法建模繁杂,单元、节点数量庞大,计算效率低,计算结果偏于保守;混合法与附加质量比法建模方便快捷,单元、节点数量小,计算效率很高,并有较高的计算精度。计算结果还表明:动水压力对连该桥的动力特性影响很小,而对该桥的地震影响很大,应该引起足够的重视。
With the development of transportation, many deep-water bridges have been built in our country. Most of these bridges locate in western mountainous area, where are zones of high earthquake probability. The submerged part of pier suffers hydrodynamic pressure when deep-water piers shake in water. Not only dynamic characteristic but also dynamic response of deep-water bridges would be affected by hydrodynamic pressure. So the hydrodynamic pressure caused by earthquakes can not be ignored. While fully research on hydrodynamic pressure and pier-water coupled vibration under earthquakes haven't been done, and codes about hydrodynamic pressure calculation both at home and abroad are imperfect. For example the calculation results of foreign codes are obviously different with each other, and codes in our country are only valid for those piers with span shorter than150m, and those with simple cross sections. So it is urgent to study the problem intensively.
     The radiation wave method, Morison equation method and fluid element method are three hydrodynamic pressure calculation methods which are widely used nowadays. The hydrodynamic pressure expressions based on the radiation wave method are too complicated to apply in practice. Morison equation method is available for out-water hydrodynamic pressures, but unavailable for in-water ones. The fluid method can only be employed to calculate single pier because of poor calculation efficiency. The study manly focuses attention on how to modify these defects. Also two news methods have been proposed for the first time. The main achievements are described as follows:
     1. Linear radiation theory is introduced, out-water and in-water hydrodynamic pressure expressions of circular hollow piers, and in-water hydrodynamic pressure expressions of rectangular hollow piers based on linear radiation theory have been deduced briefly. Then numerical calculation model of the pier-water interaction have been built respectively. The theory of Morison equation has been described and related numerical calculation model of pier-water interaction has been built also. The fluid element method theory has been presented and its FE model has been built too. At last comparison has been made between three methods to distinguish the calculation precision, calculation efficiency and application cope between them.
     2. For fluid element method, fluid domain boundary has been simplified, and fluid domain scope and fluid domain mesh size have been studied. Then modified FE model has been built, appropriate fluid domain scope for commonly used deep-water piers and proper mesh size have been proposed.
     3. Traditional Morison equation is efficient in out-water hydrodynamic pressure calculation for solid small piers. The expand Morison equation which considers both in-water and out-water hydrodynamic pressures are deduced for circular and rectangular hollow piers. Based on which, numerical calculation model of pier-water interaction is founded. And comparison has been made between fluid element method, radiation wave method and the expand Morison equation method in order to check validation and precision of the expand Morison equation.
     4. The in-water and out-water hydrodynamic pressure expressions of circular hollow piers based on the radiation wave theory are too complicated to apply in practice. The in-water hydrodynamic pressure expressions of rectangular hollow piers are as complicated as the circular's. Simplifications have been done by parameter analysis and curve fitting, base on which the simple expressions have been advised respectively. Test results show that the simple expressions are as exact as the old ones, and are more efficient.
     5. The math problems would become more difficult if the radiation wave method is used again to deduce out-water hydrodynamic pressure expressions of rectangular piers. Then a new method named hybrid method, which based on the fluid element method and the radiation wave method is proposed. The out-water hydrodynamic pressure expressiones of square piers are deduced by the way of multiplying the shape function of square piers, which has been worked out using the fluid element method, by the simplified out-water hydrodynamic pressure expression of circular piers. Then resulting expression is again multiplied by the LAB function (a function related to rectangle's length to width ratio) of rectangular pier which also has been worked out using the fluid method. The result is out-water hydrodynamic pressure expression for rectangular piers. At last the comparison between the hybrid method, the fluid element method and Morison equation method reveals that the hybrid method performs well in calculating precision and calculating efficiency.
     6. Round-ended piers, elliptical piers and other shape piers are commonly used in practice, hydrodynamic pressure of them should not been ignored. A new method called added-mass ratio method is found especially for them. Base on the assumptions of structure stiffness would not been affected by hydrodynamic pressure and added-mass distributes along the height of submerge piers uniformly, the connection between piers natural frequency decrease and added-mass ratio can be achieved. Natural frequency decrease of all kinds of piers can be worked out easily by the fluid element method, so added-mass ratio is available for all kinds of piers. Added-mass ratio is defined as added-mass of unit height of pier to unit height mass of piers. Accordingly added-mass expressions of circular piers, square piers, rectangular piers, round-ended piers and elliptical piers have been advised. Also numerical calculation models of pier-water interaction are built, and the fluid element method and the radiation wave method or hybrid method are used to valid the new method, results show the added-mass ratio method has better precision and is efficiency.
     7. In order to test these two new methods created in paper, a real deep-water continuous rigid frame bridge, well known as Min Jiang Miao Ziping bridge, which was destroyed seriously under5.12WenChuan Earthquake, is modeled with three methods, two new ones and the fluid element method. Calculation results show the fluid element method is complicated in modeling, number of generated cells and nodes is huge, the calculation efficiency is low, and precision is poorer than the two others. The hybrid method and added-mass ratio method have almost the same results. They are convenient in modeling, number of cells and nodes is small, their calculation efficiency is high and precision is better. Results also reveal that hydrodynamic pressure has little effect on dynamic characteristics of continuous rigid frame bridge, but has great impact on seismic response.
引文
[1]胡德贵,吉随旺,李本伟.都江堰至汶川公路庙子坪岷江特大桥震害浅析[J].西南公路,2008,4:21-22.
    [2]黄显彬等.都汶高速公路庙子坪岷江特大桥震后5号主墩加固技术[J].建筑技术,2010,41(2):136-138.
    [3]庄卫林,刘振宇,蒋劲松.“5.12”汶川地震公路桥梁震害分析及对策研究[J].西南公路,2009,第1期:1-11
    [4]赖伟.地震和波浪作用下深水桥梁的动力响应研究[D].上海:同济大学博士论文,2004
    [5]胥润东.琼州海峡超大多主跨公铁两用悬索桥方案设计和抗震研究[D].成都:西南交通大学博士论文,2010
    [6]唐寰澄,世界跨海工程的规划概况,中国土木工程学会桥梁级结构工程学会第十二届年会论文集上册),1996年11月,广州,93-103
    [7]谢凌志,赖伟,蒋劲松等.漭街渡深水桥梁抗震分析[J].四川大学学报(工程科学版),2009,41(5):48-53
    [8]刘振宇.深水桥梁的地震响应分析[D].成都:西南交通大学博士论文,2007
    [9]Westergaard H.M., Water pressures on dams during earthquakes, TRANSACTIONS OF THE AMERICAN SOCIETY OF Civil Engineers 98,1933,418-433.
    [10]居荣初,曾心传.弹性结构与液体的耦联振动理论.地震出版社,1983.
    [11]毕家驹.近海力学导论.上海同济大学出版社,1989.
    [12]Goyal A.and Chopra A.K., Hydrodynamic mass for intake towers, J. Engng Mech, ASCE,1989,115 (7),1393-1412.
    [13]Goyal A. and Chopra A.K., Earthquake response spectrum analysis of intake-outlet towers, Journal of Engineering Mechanics,1989,115 (7),1413-1433.
    [14]Chopra A.K. and Goyal A., Simplified earthquake analysis of intake-outlet towers, Journal of Structural Engineering,1991,117 (3).767-785.
    [15]Xing J.T.,Price W. G, Pomfet M.J. and Yam L.H, "Natural Vibration of a Beam-Water Interaction System", Jounral of Sound and Vibration,1997,199 (3) 491-512
    [16]Tanaka Y, Hudspeth R T. Restoring Forces on Vertical Circular Cylinders Forced by Earthquake.Earthquake Engineering and Structural Dynamics.1988,16:99-119.
    [17]Bhatta D.D. and Rahman M., "On scattering and radiation problem for a cylinder in water of finite depth", International Jounral of Engineering Science,2003,41,931-967
    [18]Sabuncu T. and Calisal S.,"Hydrodynamic coefifcients for vetrical circular cylinders at finite depth", Ocean Engng,1981,8,25-63
    [19]Lee J.F., "On the heave radiation of a rectangular structure",Ocean Engng.,1995,22,19-34
    [20]Javier Aviles, Xiangyue Li. Hydrodynamic pressures on axisymmetric offshore structures considering seabed flexibility [J]. Computers and Structures,2001,79:2595-2606
    [21]D Zhou, W Q Liu. Bending-torsion vibration of a partially submerged cylinder with an arbitrary cross-section. Applied Mathematical Modelling,2007,31:2249-2265
    [22]王志培,何颖强,毕家驹.水中圆柱体地震分析.第四届全国近海工程学术讨论会,上海,1987.
    [23]陈昌斌,陶寿福,曹国敖.流体-重力式锥状单腿平台结构-土相互作用体系的地震动力响应.海洋工程,1996,14(2),83-89
    [24]房营光.土准-平台-水流系统的地震反应分析.广东工学院学报1994,11(4),8-12
    [25]房营光,孙钧.平台-群桩-水流-土体系统的地震反应分析.土木工程学报,1998,31(5),56-64
    [26]LIU Jian-xun, SUN Wen-jun, ZHANG Jun, etc. ANALYTICAL MODELS OF FLOATING BRIDGES SUBJECTED BY MOVING LOADS FOR DIFFERENT WATER DEPTHS [J]. Journal of Hydrodynamics,2008,20(5):537-546
    [27]Bang-Fuh Chen,Chen-Feng Huang. NONLINEAR HYDRODYNAMIC PRESSURES GENERATED BY A MOVING HIGH-RISE OFFSHORE CYLINDER [J].Ocean Engng,1997,24(3), pp.201-216.
    [28]Bang-Fuh Chen. THE SIGNIFICANCE OF EARTHQUAKE-INDUCED DYNAMIC FORCES IN OASTAL STRUCTURES DESIGN[J]. Ocean Engng,1995, 22(4),pp.301-315
    [29]Pi-Liang Li, Rong-Juin Shyu, Wei-HuiWang, etc. Analysis and reversal of dry and hydroelastic vibration modes of stiffened plates [J]. Ocean Engineering,2011,38: 1014-1026
    [30]Landweber L., "Vibration of a flexible cylinder in a fluid", J.Ship Res.,1967,11,143-150
    [31]Chopra A.K.,Earthquake behaviour of reservoir-dam systems, J.Engng Mech.Div., ASCE,1968:1475-1500.
    [32]Liaw C.Y. and Chopra A.K.,"Dynamics of towers surrounded by water", Earthquake Engineering and Sturctural Dynamics,1974,3,33-49
    [33]Nilrat F.,"Hydrodynamic pressure and added mass for axisymmetric bodies",Repotr No. EERL 80-12, Eatrhquake engineering research center, University of California, Berkeley,1980
    [34]王敏,曹国敖.土-平台沉箱基础-流体相互作用体系的动力反应分析.地震工程与工程振动,1989,9(3),30-37
    [35]Morison J R,O'BrienM P, Johnson J W and Schaaf S A. The force exerted by surface wave on piles. Petroleum Transactions, AIME,189,1950,149-154.
    [36]张学志,黄维平,李华军.考虑流固耦合时的海洋平台结构非线性动力分析[J].中国海洋大学学报,2005,35(5):823-826
    [37]麦继婷,关宝树.用Morison方程计算分析悬浮隧道所受波浪力初探[J].石家庄铁道学院学报,2003,16(3):1-3
    [38]Bi J.J., He Y. Q. and Wang Z. P., Seismic analysis of vertical circular cylinders surrounded by water, Proc. Shanghai Symposium on Marine Geo-technology and Nearshore/Offshore Structures, Tongji University Press,Shanghai.1983,255-261.
    [39]Goyal A. and Chopra A.K, "Hydrodynamic mass for intake towers", J.Engng Mech., ASCE,1989,115 (7),1393-1412
    [40]Ray P.S.Han and Hanzhou Xu, "A simple and accurate added mass model for hydrodynamic fluid-structure interaction analysis", J.Franklin Inst.,1996,333B (6),929-945
    [41]Goto H. and Toki K., Vibration characteristics and a seismic design of submerged bridge piers, Pro.3rd world conf. on earthquake eng. New Zealand, II,1965.
    [42]Chakrabarti S.K., Hydrodynamics of Offshore structures. Springer-Verlag Berlin,Heidelberg,1987
    [43]Faltinsen O.M., "Wave loads on structures", Proceeding of 1st Boss Conference,1976.
    [44]Zienkiewicz OC, Newton RC. Coupled vibrations of a structure submerged in a compressible fluid [C]. Proceedings of the Symposium on Finite Element Techniques. Stuttgart:University of Stuttgart,1969,98-123.
    [45]D.K. paul,O.C. Zienkiewiez and E.Hinton,et al. Transient Dynamic Analysis of Reservoir-Dam Interaction Using Staggered Solution Schemes, in Numerical Method for Coupled Problems, Pineridge Press, Swansea,U,K (1981)
    [46]D.Shantaran, D.R.J. Owen and O.C. Zienkiewiez, Dynamic Transient behaviour of two and Three Dimensional Structure, Including Plasticuty. Large Deformation and Fluid interaction, Earthq. Engng. Struct. Dyn.Vol.4,561-578 (1976)
    [47]O.C. Zienkiewicz and P. Bettess, Fluid-Structure Dynamic Interaction and Wave Force. Introduction to Numerical Treatment, Int J. Num. Meth. Engng. VOL.13, 1-16 (1978)
    [48]Bathe K.J. and Hahn W.F., On transient analysis of fluid-structure systems, Computers and struetures.1979,10,383-391.
    [49]Akkas N., Akay H.U. and Yilmaz C.,"Applicability of genearl purpose infite element programs in solid-fluid interaction problems", Computers and structures, 1979,10,773-783
    [50]Wilson E.L. and Khalvati M.,"Finite elements for dynamic analysis of fluid-solid systems", International Jounral For Numerical Methods In Engineering,1983,19,1657-1668
    [51]Liu W.K. and Chang H.G," A method of computation for fluid structure interaction ", Computers and Structures,1985,20,311-320
    [52]Chen H C, Taylor R L. Vibration analysis of fluid-solid systems using a finite element displacement formulation[J]. Int. J. Numer. Meth. Engng.,1990;29:683-693
    [53]Maheri M. R. and Khodaej-Nassaj M. R., Dynamic solution of 3-D structure-fluid system using a new lagrangian-based curvilinear fluid element, Dam engineering,1997,8,83-122.
    [54]O.C. Zienkiewiez, The finite element method, MeGRAW-HILL,1977.
    [55]Nitikitpaiboon C, bath K J. An Arbitrary Lagarangian-Eulerian velocity potential formulation for Fluid-structure interaction. Comput.&. Struct.,1993,47 (4/5):871-891.
    [56]傅作新.结构与水体的相互作用问题.水利水运科学研究,2(1982):105-119.
    [57]戴大农.流固耦合系统动力分析的若干基本问题与数值分析方法.北京:清华大学博士学位论文,1988.
    [58]Sharan S.K.,"H ydrodynamic loadings due to the motion of large offshore structures",Computers & Structures,1989,32 (6),1211-1216
    [59]刘正兴,孙雁,谢守国.流体介质中结构的动力特性及响应分析.上海交通大学学报,1995,29(4),7-16.
    [60]Daniel W.J.T, "Modal method in finite element fluid-structure eigenvalue problems", International Jounral For Numerical Methods In Engineering,1980,15 (8),1161-1176
    [61]Daniel W.J.T, "Modal method in finite element fluid-structure eigenvalue problems", International Jounral For Numerical Methods In Engineering,1980,15 (8),1161-1176
    [62]吴一红,谢省宗.水工结构流固耦合系统动力特性分析.水利学报,1995(1),27-34.
    [63]Olson L. and Bathe K., Analysis of fluid-structure interaction. A direct symmetric coupled formulation based on the fluid velocity potential,Computers and Structures,1985,21,21-32.
    [64]Nilrat F., Hydrodynamic pressure and added mass for ax-symmetric bodies,Report N o. E ERC80-12,Earthquake engineering research center, University of California, erkeley,1980.
    [65]Black J.L., Mei C.C. and Bray C.G, "Radiation and scattering of water waves by rigid bodies"[J], Fluid Mech.,1971,46,151-164
    [66]戴大农,王勖成,杜庆华.流固耦合系统动力响应的模态分析理论.固体力学学报,1990,11(4),306-312.
    [67]Liu W.K, "Development of finite elementp roceduers for fluid-structure interaction",Reprot No.EERL 80-06, Earthquake engineering research laboratory, California Institute of Technology, Pasadena,1980
    [68]Z Ozdemir, M Souli, Y M Fahjan. Application of nonlinear fluid structure interaction methods to seismic analysis of anchored and unanchored tanks [J]. Engineering Structures,2010,32:409-423
    [69]Irons BM. Role of part inversion in fluid-structure problem with mixed variable J AIAA,1970,7:568.
    [70]Belytschko.T, Mullen,R. Stability of explicit-implicit mesh partitions in time integration.Int J Numer Methods Eng,1978,12:1575-1586.
    [71]Belytsehko.T., H.J.Yen and R.Mllen, "Mixed Methods for Time Integation", Comp. meth. Appl. Mech. Engng., Vol.12,259-275 (1979)
    [72]R Stuart, L Shipley, A Ghose etc. DYNAMIC ANALYSIS OF HIGH-LEVEL WASTE STORAGE TANKS. Computers & Structures,1995,56(2/3), pp:415-424
    [73]ADINA Theory and Modeling Guide. Report ARD 92-8, ADINA R & D, Watertown, MA (1992).
    [74]T.J.R.hughes and W.K.Liu, "Implicit Explicit Finite Element in Transient Analysis Stability Theory", J.Appl. Mech.Vol.45,371-374,1978
    [75]RAY P S HAN, HANZHONG XU. A Simple and Accurate Added Mass Model for Hydrodynamic Fluid-Structure Interaction Analysis [J]. Journal of Franklin Inst,1996, Vol.333B, No.6, pp.929-945.
    [76]上歧宪三,千冢昌信.在水中桥墩上起作用的动水压力近似值.土木学会第20次年次学术演讲会演讲概要I,1965.06
    [77]道路桥示方书·同解说.V耐震设计编.平成14年3月,社团法人,日本道路协会.
    [78]Eurocode8—Design provisions for earthquake resistance of structures-Part 2: Bridges, European Committee for standardization, ENV 1998-2.
    [79]Bureau of Indian Standards. Criteria for Earthquake Resistant Design of structure (Part III:Bridges and Retaining Walls). (Draft) 2005,IS:1893,NewDelhi.
    [80]JTJ004-89公路工程抗震设计规范[S].
    [81]GB50111-2006铁路工程抗震设计规范[S].
    [82]JTG/T B02-01-2008公路桥梁抗震设计细则[S].
    [83]朱唏,高学奎.桥梁抗震分析中动水压力的计算[J].中国铁道科学,2007.05,Vol28(3):44-47
    [84]陈文元,赵雷.考虑流固耦合时桥墩在地震和波浪作用下的动力响应分析[J].铁道建筑,2010,4:14-16
    [85]柳春光,齐念.考虑流固耦合作用的深水桥墩地震响应分析[J].防灾减灾工程学报,2009.08,Vol 29(4):433-436
    [86]黄信,李忠献.动水压力作用下深水桥墩非线性地震响应分析[J].震灾防御技术,2010.09,Vol 5(3):352-357
    [87]张海龙,张鹏,黄鹏.深水桥梁结构的地震反应分析[J].公路交通科技,2007.09,24(9):83-86
    [88]李悦,宋波.动水对斜拉桥结构动力响应影响研究.土木工程学报,2010,43(12)94-99
    [89]刘振宇,李乔,赵灿晖,庄卫林.圆形空心深水桥墩在地震作用下的附加动水压力[J].西南交通大学学报,2008,43(2):201-205.
    [90]谢凌志,赖伟,蒋峰.地震下矩形空心桥墩内部动水力分析[J].四川大学学报(工程科学版),2009.03,Vol41(2):81-84
    [91]Kallivokas LF, Bielak J, MacCamy RC. Symmetric local absorbing boundaries in time and space [J]. J Engng Mech 1991,117(9):2027-48.
    [92]Kallivokas LF, Bielak J. An element for the analysis of transient exterior fluid-structure interaction problems using the FEM [J]. Finite Elem Anal Des 1993, 15:69-81.
    [93]Kallivokas LF, Bielak J. Time-domain analysis of transient structural acoustics problems based on the finite element method and a novel absorbing boundary element [J]. J Acoust Soc Am 1993,94(6):3480-92.
    [94]Kallivokas LF, Bielak J. A time-domain impedance element for FEA of axisymmetric exterior structural acoustics [J]. ASME J Vib Acoustl995,117:145-51.
    [95]ANSYS User's Manual. Chapter 7. Theory reference, Rev.5.4; 1997.
    [96]A M Al-Khaleefi, A Ali, C Rajakumar, etc. Acoustic analysis with absorbing finite elements and far-field computations using free-space Green's functions [J]. Engineering Analysis with Boundary Elements,2002,26:929-937
    [97]M Zeinoddini, F Ahmadpour, H Matin Nikoo. Seismic Assessment of Gravity Quay-Wall Structures, Subjected to Near-Fault Ground Excitations. Procedia Engineering,2011,14:3221-3228
    [98]杨万理,李乔.地震作用下桥墩非竖直棱面动水应力分析[J].土木工程学报,2010.11,,vol.43(增刊):72-76.
    [99]黄信,李忠献.自由表面波和水体压缩性对深水桥墩地震动水压力的影响[J].天津大学学报,2011.04,Vol44(4):320-323
    [100]赖伟,王君杰,胡世德.地震下桥墩动水压力分析[J].同济大学学报,2004,32(1):1-5
    [101]白长青,周进雄,闫桂荣.截锥型薄壁结构声振耦合动力特性分析[J].应用力学学报,2010.03,Vol.27(1):28-32
    [102]童宗鹏,王国治.舰艇结构水下振动和声辐射特性研究[J].江苏科技大学学报(自然科学版),2003,17(2):18-22.
    [103]孙利民,李凤琴,张鹏.弹体水中自振特性的有限元分析[J].淮阴工学院学报,2008,17(3):3-4.
    [104]杨吉新,张可,党慧慧.基于ANSYS的流固耦合动力分析方法[J].船海工程,2008,37(6):85-89
    [105]杨吉新,党慧慧,雷凡.考虑水作用的桥墩自振特性计算方法对比分析[J].世界地震工程,2010,26(3):91-95
    [106]Jean-Francois Sigrist, Stephane Garreau. Dynamic analysis of fluid-structure interaction problems with modal methods using pressure-based fluid finite elements [J]. Finite Elements in Analysis and Design,2007,43:287-300
    [107]Sommerfeld A., Partial differential equations in physics, New York:Academic Press,1949.
    [108]刘颖.圆柱函数.国防工业出版社,1983
    [109]P.W. Werner, and K. J Sundquist,"On Hydrodynamic Earthquake Effects" Transaction of the American Geophysical Union, vol.30,No.5,636-657,1949
    [110]竺艳蓉.海洋工程波浪力学.天津大学出版社,1991.
    [111]E L Kinsler.et al. Fundamentals of Acoustics. John Wiley and Sons. NewYork. 1982, pp 98-123.
    [112]K J Bathe.Finite Element Procedures.Prentice-Hall.Englewood Cliffs,1996.
    [113]A Craggs.A Finite Element Model for Acoustically Lined Small Rooms[J] Journal of Sound and Vibration.1986,108(2):327-337.
    [114]童宗鹏,王国治.舰艇结构水下振动和声辐射特性研究[J].江苏科技大学学报(自然科学版),2003,17(2):18-22.
    [115]刘颖.圆柱函数[M].北京:国防工业出版社.1983.
    [116]彭建兵等,汶川大震的科学思考[J].地球科学与环境学报,2009.03,31(1):29
    [117]曹俊兴,刘树根.对四川汶川大地震有关问题的思考与初步认识[J].成都理工大学学报:自然科学版,2008,35(4):414-425
    [118]赖伟,郑铁华,雷勇.Morison方程中动水阻力项对桥梁桩柱地震反应的影响[J].四川建筑科学研究,2007.08,Vol33(4):163-168
    [119]V.Vengatesan, K.S.Varyani, N.Barltrop. An experimental investigation of hydrodynamic coefficients for a vertical truncated rectangular cylinder due to regular and random waves[J]. Ocean Engineering.2000(27):291-313
    [120]Mays J.R., Roehm L.H. Hydrodynamic pressure in a dam-reservoir system[J]. Computers & Structures,1991,40(2):281-291.
    [121]Ronald W., Yeung. Added mass and damping of a vertical cylinder in finite-depth waters[J]. Applied Ocean Research,1981,3(3):119-133.
    [122]Zhi-da Yuan, Zhen-hua Huang. An experimental study of inertia and drag coefficients for a truncated circular cylinder in regular waves[J]. Journal of Hydrodynamics,2010,22(5), supplement:318-323
    [123]LI Fu-rong, CHEN Guo-xing, WANG Zhi-hua. The Earthquake Hydrodynamic Pressure Effects Analysis of the Large Bridge Group Piles Foundation based on ABAQUS Software[C].2010 Second International Conference on Computer Modeling and Simulation:220-225.
    [124]Hiroshi Kunisu. Evaluation of wave force acting on Submerged Floating Tunnels[C]. ISAB-2010, Procedia Engineering 4:99-105.
    [125]M.Soylemez, M.Atlar. A Comparative Study of Two Practical Methods for Estimating the Hydrodynamic Loads and Motions of a Semi-Submersible[J]. Journal of Offshore Mechanics and Arctic Engineering,2000.02,122:57-63.
    [126]Michael Hartnett, Thomas Mullarkey. Modal analysis of an existing offshore platform[J]. Engineering Structures,1997,19(6):487-498.
    [127]V Venugopal, K S Varyani, P C Westlake. Drag and inertia coefficients for horizontally submerged rectangular cylinders in waves and currents[C]. Proc.IMechE, Vol.223 Part M:J.Engineering for the Maritime Environment,SPECIAL ISSUE PAPER:121-136
    [128]A.K.SWAIN, S.A.BILLINGS, P.K.STANSBY,et al. ACCURATE PREDICTION OF NON-LINEAR WAVE FORCES:PART I (FIXED CYLINDER) [J]. Mechanical Systems and Signal Processing,1998,12(3):449-485.
    [129]Shuqun Cai, Xiaomin Long, Zijun Gan. A method to estimate the forces exerted by internal solitons on cylindrical piles[J]. Ocean Engineering,2003,30:673-689.
    [130]L.V.S.Sagrilo, M.Q.Siqueira, G.B.Ellwanger,et al. A coupled approach for dynamic analysis of CALM systems [J].Applied Ocean Research,2002,24:47-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700