用户名: 密码: 验证码:
液压型风力发电机组转速控制和功率控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近些年来,世界风电行业长足发展,在缓解能源、环境危机方面逐步发挥越来越重要的作用。与传统双馈和直驱风力发电机型相比,液压型风力发电机组功重比高,可以省去双馈机型的齿轮箱,不用直驱机型庞大的永磁发电机。液压传动减速比能实时调整,可采用励磁同步发电机,省掉了整流逆变装置。因此,研究液压型风力发电机组具有重要的理论与现实意义。
     本文以液压型风力发电机组功率传输系统为研究对象,采用理论分析和实验研究的方法,从风特性、风力机特性和励磁同步发电机特性入手,研究定量泵-变量马达液压传动系统转速控制技术和功率控制技术。本文中功率控制包括系统传输功率控制和最优功率追踪控制。
     在定量泵-变量马达系统转速控制上,提出了一种基于间接流量反馈加直接转速闭环的变量马达转速控制方法。该方法解决了定量泵-变量马达系统、变转速输入-恒转速输出的控制问题,该方法能够使系统工作于恒流源状态,避免了溢流损失。实现了同步发电机准同期并网控制,得到了液压型风力发电机组准同期并网的控制方法,并能有效控制并网冲击电流和转矩。
     在系统传输功率控制上,提出了一种基于系统压力和变量马达摆角实时在线调整功率控制参数的方法。该方法解决了相乘非线性引起的功率响应特性在不同工作点不一致和易失稳的问题,并且提高了功率控制精度。该功率控制方法将转速控制作为内环,实现了通过控制变量马达摆角一个变量来控制变量马达转速和系统传输功率两个变量,解决了转速控制与功率控制的协调问题。
     在最优功率追踪控制上,提出了一种适用于液压型风力发电机组的最优功率追踪控制方法。该方法兼顾了功率追踪控制的快速性、稳定性和准确性。
     建立了液压型风力发电机组功率传输系统仿真平台和30kVA液压型风力发电机组模拟实验平台。通过仿真和实验验证了提出的定量泵-变量马达传动系统转速、系统传输功率和最优功率追踪控制方法的有效性。
In recent years, the world has been seeing a significant development in wind powerindustry, which plays an increasingly important role in solving energy and environmentcrisis. Compared with the DFIG (Doubly Fed Induction Generator) and Direct-DrivenGenerator, hydraulic wind generating unit, with a higher power-to-weight ratio, is capableof not using the doubly-fed gear box and avoids using the huge direct-driven permanentmagnet generator. Besides, the real-time adjustment to the speed ratio of hydraulic drivesystem makes it possible to use excitation synchronous generator, without therectifier-inverter device. For these reasons, studying on the hydraulic wind generator haspositively theoretical and realistic significances.
     The power transmission system of hydraulic wind generator, as the topic of this paper,has been studied by doing theoretical analysis and the experimental research. By startingfrom the characteristics of wind, wind turbine and excitation synchronous generator, westudied both the speed and power control technologies for hydraulic-drive system of thefixed-displacement pump/variable motor. The power control in this paper includes systemtransmission power control and the maximum power point tracking control.
     On the aspect of the speed control of the fixed-displacement pump/variable motor, acontrol method of variable motor speed based on indirect flow feedback plus direct speedclosed-loop is proposed, which has solved the controlling system concernedfixed-displacement pump/variable motor, variable speed input/constant speed output. Thismethod is capable of keeping the system work in constant flow status, with no overflowloss. Thus we realized the quasi-synchronization paralleling control of synchronousgenerator, obtained a control method of quasi-synchronization paralleling for hydraulicwind generating unit, and can effectively control the synchronization shock current andtorque.
     As for the power control of the system, we presented a method of real-time on-linepower regulating control parameters on the basis of system pressure and variable motor’sswing angle. This power control method gave solution to the inconsistent power responses and instability problems caused by multiplying nonlinear of the system, improved theprecision of power control. Besides, this power control method took the speed control asthe inner loop to control two variables of speed and power by a single variable of themotor’s swing angle, so as to coordinate the speed control and power control.
     Considering the maximum power point tracking, we put forward a new methodapplicable to the hydraulic wind generator unit, which has balanced fast response, stabilityand accuracy in power tracking control.
     In this paper, we established a simulation platform for the power transmission systemof the hydraulic wind generator unit and a simulation experiment platform for this30kVAunit itself, and also tested the effectiveness of the proposed controlling methods of thefixed-displacement pump/variable motor system speed, system transmission power andthe maximum power point tracking by simulation and doing experiments.
引文
[1] BP p.I.c. BP世界统计年鉴[R/OL].2012:7-31. http://www.bp.com/liveassets/bp_internet/china/bpchina_chinese/STAGING/local_assets/downloads_pdfs/Chinese_BP_StatsReview2012.pdf.
    [2]王志新.现代风力发电技术与工程应用[M].北京:电子工业出版社,2010:2-7.
    [3] Gruet R. The European Wind Energy Association. Wind energy and EU climate policy[R/OL].Print: www.artoos.be.2011:6-8. http://www.ewea.org/fileadmin/ewea_documents/documents/publications/reports/20110909_ClimateReport.pdf.
    [4] International Energy Agency. Global carbon-dioxide emissions increase by1.0Gt in2011torecord high[Z/OL]. http://www.iea.org/newsroomandevents/news/2012/may/name,27216,en.html.
    [5] CWEC. Global Wind Report Annual market update2011[R/OL]. Hamburg:Grafik&Illustration.2012:30-34. http://gwec.net/wp-content/uploads/2012/06/Annual_report_2011_lowres.pdf.
    [6] Chiang M H. A Novel Pitch Control System for a Wind Turbine Driven by A Variable-SpeedPump-Controlled Hydraulic Servo System[J]. Mechatronics,2011,21(4):753-761.
    [7]李俊峰.风光无限-2011中国风电发展报告[R].北京:中国环境科学出版社,2011:1-10.
    [8] BTM Consult Aps-A part of Navigant Consulting. World Market Update2010[R].
    [9]全球风能理事会.2011年全球风电发展统计[J].苏晓,译.风能,2012(4):34-37.
    [10]李俊峰,蔡丰波,乔黎明,等.2012中国风电发展报告[R].北京:中国环境科学出版社,2012:1-8.
    [11] European Wind Energy Association. The European offshore wind industry key2011trends andstatistics[R]. January2012:6-12.
    [12]中国可再生能源学会风能专业委员会.2011年中国风电装机容量统计[R/OL].2012:http://www.cwea.org.cn/upload/2011年风电装机容量统计.pdf.
    [13]谭中富,邓强,龙海.我国风力发电存在的问题分析[J].华北电力大学学报(社会科学版),2009(6):8-10.
    [14]王富,徐学渊.我国风力发电市场前景及存在的问题[J].电站辅机,2010,31(1):1-4.
    [15]马慧敏.制约我国风力发电可持续发展的原因分析[J].华北电力技术,2011(3):26-29.
    [16] Guo P, Bai N. Wind turbine gearbox condition monitoring with AAKR and moving windowstatistic methods[J]. Energies,2011,4(11):2077-2093.
    [17]李辉,薛玉石,韩力.并网风力发电机系统的发展综述[J].微特电机,2009(5):55-61.
    [18] Hansen A D, Hansen L H. Wind turbine concept market penetration over10Years[J]. Wind Energy,2007,10(1):81-97.
    [19] Brendan Fox, et al. Wind power integration: connection and system operational aspects[M].刘长浥,冯双磊,译.北京:机械工业出版社,2011:57.
    [20] Munteanu L, Bratcu A L, Cutululis N A, et al. Optimal control of wind energy systems[M].李建林,周京华译.北京:机械工业出版社,2010:16.
    [21] Ackerman T. Wind power in power systems[M]. England:John Wiley&Sons,2005:55-67.
    [22]程启明,程尹曼,王映斐,等.风力发电系统技术的发展综述[J].自动化仪表,2012,33(1):1-8.
    [23] Anaya-lara O, Jenkins N, Ekanayake J, et al. Wind energy generation modelling and control[M].徐政,译.北京:机械工业出版社,2011:29-38,53-57.
    [24]姚兴佳,宋俊.风力发电机组原理与应用[M].北京:机械工业出版社,2010:22-24.
    [25] Akhmatov V. Analysis of dynamic behavior of electric power systems with large amount of windpower[D]. Denmark:Technical University of Denmark.2003:135-200.
    [26]李军军,吴政球,谭勋琼,等.风力发电及其技术发展综述[J].电力建设,2011,32(8):64-72.
    [27]肖运启.双馈型风力发电机励磁控制与优化运行研究[D].北京:华北电力大学.2008:31-32.
    [28] Lund T, Sorensen P, Eek J. Reactive power capability of a wind turbine with doubly fed inductiongenerator[J]. Wind Energy,2007,10(4):379-394.
    [29]范晓旭.变速横频风力发电机建模、仿真及其协调优化控制[D].保定:华北电力大学.2010:29-32.
    [30]陈国富,黄守道,黄科源,等.双馈感应风力发电机位置观测的实验评估[J].太阳能学报,2011,32(2):189-192.
    [31]矜岳亮.风电机组发电机的技术发展和展望[J].电力与能源,2011,32(4):325-334.
    [32] Albadi M H, El-Saadany E F. Wind turbines capacity factor modeling-a novel approach[J]. IEEETransactions on Power Systems,2009,24(3):1637-1638.
    [33] Yang W, Tavner P J, Wilkinson M R. Condition monitoring and fault diagnosis of a wind turbinesynchronous generator drive train[J]. Renewable Power Generation, IET,2009,3(1):1-11.
    [34] Geng H, Yang G. Robust pitch controller for output power leveling of variable-speedvariable-pitch wind turbine generator systems[J]. Renewable Power Generation. IET,2009,3(2):168-179.
    [35] Kusiak A, Zhang Z J, Li M Y. Optimization of wind turbine performance with data-drivenmodels[J]. IEEE Transactions on Sustainable Energy,2010,1(2):66-76.
    [36] Chen P Y, Siano P, Bak-Jensen B, et al. Stochastic optimization of wind turbine power factor usingstochastic model of wind power[J]. IEEE Transactions on Sustainable Energy,2010,1(1):19-29.
    [37]包广清,施进浩,江建中.大功率直驱式变速恒频风力发电技术综述[J].微特电机,2008,36(9):52-55.
    [38] Kilter J, Landsberg M, Palu I, et al. Verification of wind parks and their integration intosmall-interconnected power system[C]//PowerTech,2009IEEE Bucharest.2009:1-6.
    [39]韩坤,李军,李玉玲,等.基于模拟平台的永磁直驱风力发电MPPT新策略[J].太阳能学报,2010,31(11):1497-1502.
    [40]林显军,程小华.开关磁阻风力发电技术[J].电机与控制应用,2011,38(9):46-50.
    [41]刘伟,沈宏,高立刚,等.无刷双馈风力发电机直接转矩控制系统研究[J].电力系统保护与控制,2010,38(5):77-81.
    [42]刘向阳,邱凤蓉.变速恒频风力发电系统主要方案[J].装备机械,2009(4):38-41.
    [43]杜新梅,刘坚栋,李泓.新型风力发电系统[J].高电压技术,2005,31(1):63-65.
    [44]卜飞飞,黄文新,胡育文,等.定子双绕组感应电机风力发电系统励磁电容的优化选取[J].电工技术学报,2011,26(10):152-160.
    [45] Dicorato M, Forte G, Trovato M. Nonlinear control for variable-speed wind turbines withpermanent magnet generators[J]. Energy,2012,39(1):40-47.
    [46]包广清,李战明,施进浩.一种新型组合式横磁通永磁风力发电机[J].中国电机工程学报,2012,32(3):83-88.
    [47] Zhang J Z, Cheng M, Chen Z. Optimal design of stator interior permanent magnet machine withminimized cogging torque for wind power application[J]. Energy Conversion and Management,2008,49(8):2100-2105.
    [48]张乐,周波,程方舜,等.新型电励磁双凸极风力发电机组建模与仿真[J].中国电机工程学报,2011,31(24):90-96.
    [49]袁永杰.开关磁阻四端口机电换能器及在风力发电中的应用研究[D].哈尔滨:哈尔滨工业大学,2008:1-12.
    [50] Hamzehlouia S, Izadian A. Modeling of Hydraulic Wind Power Transfers[C]//2012IEEE Powerand Energy Conference at Illinois. PECI. Champaign,IL,2012:1-6.
    [51] Hamzehlouia S, Izadian A, Member S, et al. Controls of Hydraulic Wind Power Transfer[C]//37thAnnual Conference of the IEEE Industrial Electronics Society. IECON2011. Melbourne, VIC,2011:2475-2480.
    [52] Pusha A, Izadian A, Hamzehlouia S, et al. Modeling of Gearless Wind Power Transfer[C]//37thAnnual Conference of the IEEE Industrial Electronics Society. IECON2011. Melbourne, VIC,2011:3176-3179.
    [53] Mortensen K A, Henriksen K H. Efficiency Analysis of a Radial Piston Pump Applied in a5MWWind Turbine with Hydraulic Transmission[D]. Denmark:Aalborg University,2011:2-3.
    [54] ChapDrive.‘TECHNOLOGY’[OL]. http://www.chapdrive.com/technology/.
    [55] R. David Whitby. Hydraulic fluids in wind turbines[J]. Tribology&Luburication technology,2010,2-3.
    [56]于兵,彭佑多,刘繁茂.模糊控制及其在液压伺服系统中的应用[J].液压与气动,2006(10):56-64.
    [57] Kohm scher T. Modell bildung Analyse und Auslegung hydrostatischerAntriebsstrangkonzepte[D]. Germany:RWTH Aachen,2008:45-75.
    [58] Eaton. Reliable power from the ground up[OL]. http://www.eaton.com/ecm/idcplg? IdcService=GET_FILE&allowInterrupt=1&RevisionSelectionMethod=LatestReleased&Rendition=Primary&&dDocName=PCT_328168.
    [59] Schachles. Wind power generating system:US,4503673[P],1979-05-25.
    [60] MLH Global. Wind turbine with hydraulic transmission:Canada,03816799[P],2005-09-14.
    [61]查普驱动公司.涡轮机驱动电力产生系统及其控制方法:挪威,200680040609.5[P].2008-11-05.
    [62]吴运生.无齿轮箱高速同步风力发电机[P].200710156585.6,2007.
    [63]王延忠,海锦涛,陈燕燕.一种风力发电传动装置[P].200910085944.2,2009.
    [64]陈建业,周强.液压传动在风力发电系统中的应用[J].移动电源与车辆,2011(1):30-32.
    [65]陈忠卫,温熙森.一种液控稳频发电方法[P].201010106583.8,2010.
    [66]马瞬,李伟,陈中为,等.基于液压传动的独立运行潮流能发电系统变速横频控制[J].电力系统自动化,2011,35(10):59-64.
    [67]胡娜.液压型风力发电机组主传动系统速度控制特性研究[D].秦皇岛:燕山大学,2012:28-48.
    [68]张刚.液压型风力发电机组主传动系统功率控制研究[D].秦皇岛:燕山大学,2012:23-25.
    [69]李帅.泵控马达闭式回路调速控制系统特性研究[D].浙江大学,2010:1-3.
    [70]邓克.变量泵-定量马达容积调速系统优化研究[J].液压气动与密封,2009(5):23-25.
    [71] Holland M, Harmeyer K, Lumkes J."Electrically Controlled Fixed-Displacement Pump,Variable-Displacement Motor Hydrostatic Transmission," SAE Technical Paper2006-01-3469,2006, doi:10.4271/2006-01-3469.
    [72]刘克铭.定量泵-变量马达容积调速回路的静态特性分析[J].工程机械,1989(12):29-31.
    [73] Fernando D. Bianchi, Hernan De Battista,Ricardo J. Mantz.风力机控制系统原理、建模及增益调度设计[M].刘光德,译.北京:机械工业出版社,2010:6-7.
    [74] Seguro J V,Lambert T W. Modern estimation of the parameters of the Weibull wind speeddistribution for wind energy analysis [J]. Journal of Wind Engineering and IndustrialAerodynamics,2000,85(1):75-84.
    [75]张秀芝. Weibull分布参数估计方法及其应用[J].气象学报,1996(1):108-116.
    [76] Zhi L H, Li Q S, Hu F. Field measurements of strong wind characteristics near ground in urbanarea[J]. Hunan Daxue Xuebao, Journal of Hunan University Natural Sciences,2009,36(2):8-12.
    [77]孙春顺.风力发电系统运行与控制方法研究[D].长沙:湖南大学,2008:85-90.
    [78]孙建峰.风电场建模和仿真研究[D].北京:清华大学,2004:19-23.
    [79] Welfonder E, Neifer R S, Panner M. Development and experimental identification of dynamicmodels for wind turbines[J]. Control Engineering Practice,1997,5(l):63-73.
    [80] Alicja L, Dorota K, et al. Advantages of ARMA-GARCH wind speed time seriesmodeling[C]//2010IEEE11th International Conference on Probabilistic Methods Applied toPower Systems,2010:83-88.
    [81]王行建,刘欣. ARMA时间序列模型的研究与应用[J].自动化技术与应用,2008,27(8),65-66.
    [82] Nichita C, Luca D, Dakyo B, et al. Large band simulation of the wind speed for real time windturbine simulators[J]. IEEE Transactions on Energy Conversion,2002,17(4):523-529.
    [83] Abo–Khalil A G, Dong-Choon L. MPPT Control of Wind Generation Systems Based onEstimated Wind Speed Using SVR[J]. IEEE Transactions on Industrial Electronics,2008,55(3):1489-1490.
    [84]贾增周.大型风力发电机组的智能滑模变结构控制研究[D].保定:华北电力大学博士学位论文,2008:20-22.
    [85]杨军.风电机组动态分析适用风速模型[J].西南科技大学学报,2010,25(1):39-44.
    [86]吴学光,张学成,印永华,等.异步风力发电系统动态稳定性分析的数学模型及其应用[J].电网技术,1998,22(6):68-72.
    [87] Anderson P M, Anjan B. Stability simulation of wind turbine systems[J]. IEEE Trans PowerApparatus and Systems,1983,102(12):3791-3795.
    [88]杨煜,何炎平,李勇刚.基于Simulink/Matlab的变速风力发电机组在低于额定风速时的仿真研究[J].华东电力,2009,37(5):816-818.
    [89]杨兴满.风力发电机传动链性能分析与研究[D].重庆大学,2008:7-9.
    [90]Kishinami K, Taniguchi H, Suzuki J, etc. Theoretical and Experimental Study on theAerodynamic Characteristics of a Horizontal Axis Wind Turbine[J]. Energy,2005,30(11-12):2089-2100.
    [91]赵丹平.风力发电机组叶片模型气动载荷研究[D].内蒙古农业大学,2009:19.
    [92]陈清丽.风力发电机组风轮建模及运行特性研究[D].北京:华北电力大学,2007:20-25.
    [93]王志新.现代风力发电技术及工程应用[M].北京:电子工业出版社,2010:24-27.
    [94] Jiang Z H, Yu X Y. Modeling and control of an integrated wind power generation and energystorage system[C]//Power&Energy Society General Meeting,2009. PES’09. IEEE.2009:1-8.
    [95] Burton T.风能技术[M],武鑫,译.北京:科学出版社,2007:37-59.
    [96] Heier S. Grid Integration of Wind Energy convertion Systems [M]. Second Edition. Translated byRachel Waddington. Member of the Institute of Translation and Interpreting, UK. KasselUniversity Germany,2002:43-44.
    [97] Borowy B S, Salameh Zi M. Dynamic Response of a Stand-Alone Wind Energy ConversionSystem with Battery Energy Storage to a Wind Gust[J]. IEEE Transactions on Energy Conversion,1997,12(1):73-78.
    [98]吴良建.海上风电场及双馈式风电机组的仿真分析[D].天津:天津大学,2008:10-35.
    [99]周德贵,巩北宁.同步发电机运行技术与实践[M].第二版.北京:中国电力出版社,2004:81-90.
    [100] Stiebler M.风力发电系统[M].倪玮,许光,译.北京:机械工业出版社,2011:135-137.
    [101]熊信银.发电机及电气系统[M].北京:中国电力出版社,2004:37-42.
    [102]陆继明,毛承雄,王丹,等.同步发电机微机励磁控制[M].北京:中国电力出版社,2006:99-104.
    [103]林文孚,胡艳.单元机组自动控制技术[M].第二版.北京:中国电力出版社,2008:332-333.
    [104]周鹗.电机学[M].第三版.北京:水利电力出版社,1995:306-311.
    [105]李光琦.电力系统暂态分析[M].第三版.北京:中国电力出版社,2007:162-167.
    [106]陈奎生.液压与气压传动[M].武汉:武汉理工大学出版社,2006:112-113.
    [107]王春行.液压控制系统[M].北京:机械工业出版社,2010:40-57.
    [108]贺益康,胡家兵,徐烈.并网双馈异步风力发电机运行控制[M].北京:中国电力出版社,2012:62-66.
    [109]海涛,闭耀宾,骆武宁,等.准同期并网中三相不平衡问题的优化[J].电力系统保护与控制,2009,37(18):70-73.
    [110]任德宁.发电机同期系统参数不匹配造成的并网冲击的分析[J].宁夏电力,2009(Z1):40-43.
    [111]杨东俊,丁坚勇,李继升,等.同步发电机非同期并网引起强迫功率振荡分析[J].电力系统自动化,2011,35(10):99-103.
    [112]孟祥萍,高嬿.电力系统分析[M].第二版.北京:高等教育出版社,2010:142-143.
    [113]杨沫.1000MW水轮发电机准同期并网研究[D].黑龙江:哈尔滨理工大学,2011:5-11.
    [114] Thongam J S, Ouhrouche M. MPPT Control Methods in Wind Energy Conversion Systems[M].Published by INTECH,2011:339.
    [115] Wang Q, Chang L. An Intelligent Maximum Power Extraction Algorithm for Inverter-BasedVariable Speed Wind Turbine Systems[J]. IEEE Transaction on Power Electron,2004,19(5):1242-1249.
    [116]陈毅东.全功率变流器风机运行品质优化控制技术的研究[D].秦皇岛:燕山大学,2011:13-34.
    [117] Li H, Shi K L, McLaren P G.. Neural-Network-Based Sensorless Maximum Wind Energy Capturewith Compensated Power Coefficient[J]. IEEE Transactions on Industry Application,2005,41(6):1548-1556.
    [118] Cardenas R, Pena R. Sensor-less Vector Control of Induction Machines for Variable-Speed WindEnergy Applications[J]. IEEE Transactions on Energy Conversion,2004,19(1):196-205.
    [119]程启明,程尹曼,汪明媚,等.风力发电系统中最大功率点跟踪方法的综述[J].华东电力,2010,38(9):1393-1398.
    [120] Lin W. M, Hong C. M, Cheng F. S. Fuzzy neural Network Output Maximization Control forSensorless Wind Energy Conversion System[J]. Energy,2010,35(2):592-601.
    [121] Raju A B, Fernandes B G, Chatterjee K A. UPF Power Conditioner with Maximum Power PointTracker for Grid Connected Variable Speed Wind Energy Conversion System[C]//proc. of1stInternational Conf. on Power Electronics Systems and Applications (PESA2004), Bombay, India,2004:107-112.
    [122] Geng H, Yang G. A Novel Control Strategy of MPPT Taking Dynamics of The Wind Turbine intoAccount[C]//Proc. of37th IEEE Power Electronics Specialist Conference2006, PESC'06,2006:1-6.
    [123] Hilloowala R M, Sharaf A M. A Rule-Based Fuzzy Logic Controller for A PWM Inverter inAStand Alone Wind Energy Conversion Scheme[J]. IEEE Transactions on Industry Application,1996,32(1):57–65.
    [124] Wang S T, Qi Z Y, Undeland T. State Space Averaging Modeling and Analysis of DisturbanceInjection Method of MPPT for Small Wind Turbine Generating Systems[C]//Proc. APPEEC,2009:1-5.
    [125] Wai R J, Lin C Y, Chang Y R. Novel Maximum-Power Extraction Algorithm for PMSG WindGeneration System[J]. IET Electric Power Applications,2007,1(2):275-283.
    [126] Hui J, Bakhshai A. A New Adaptive Control Algorithm for Maximum Power Point Tracking forWind Energy Conversion Systems[C]//IEEE PESC2008. Rhodes,2008:4003-4007.
    [127] Molina M G, Mercado P E. A New Control Strategy of Variable Speed Wind Turbine Generatorfor Three-Phase Grid-Connected Applications[C]//IEEE/PES Transmission and DistributionConference and Exposition: Latin America, Bogota,2008:1-8.
    [128] Kwon J M, Kim J H, Kwak S H, et al. Optimal Power Extraction Algorithm for DTC in WindPower Generation Systems[C].//IEEE International Conf. on Sustainable Energy Technology,(ICEST2008). Singapore,2008:639–643.
    [129] Datta R, Ranganathan V T. A Method of Tracking the Peak Power Points for a Variable SpeedWind Energy Conversion System[J]. IEEE Trans. on Energy Conversion.2003,18(1):163-168.
    [130] Patsios C, Chaniotis A, Kladas A. A Hybrid Maximum Power Point Tracking System forGrid-Connected Variable Speed Wind-Generators[C]//IEEE PESC2008.Rhodes,2008:1749-1754.
    [131]卢季宁.新型爬山算法在永磁直驱式风力发电系统中的运用[D].长沙:湖南大学工学硕士学位论文,2010:4.
    [132]贾要勤,曹秉刚,杨仲庆.风力机模拟平台的MPPT快速响应控制方法[J].太阳能学报,2004,25(3):364-370.
    [133]黄锦成,杨苹.一种小型风电机组的优化最大功率点跟踪控制算法[J].电机与控制应用,2011,38(2):44-48.
    [134]万荣娅,郭鹏,马军.基于混合控制策略的最大风能追踪方法研究[J].华东电力.2009(8):184-189.
    [135]柴建云,杨凯,刘从伟,等.风力机电模拟系统中的转动惯量补偿与辨识[C].北京:中国电机工程学会,2008:24-34.
    [136] Han B, Lee H, Yoon D. Hardware Simulator Development for PMSG Wind Power System[C].//IEEE Power&Energy Society General Meeting,2009:1-6.
    [137] Thongam J S, Bouchard P, Ezzaidi H, et al. ANN-Based Maximum Power Point Tracking Controlof Variable Speed Wind Energy Conversion Systems [C]//the18th IEEE International Conferenceon Control Applications2009. Russia,2009:1667-1671.
    [138]杜志伟,赵峰,田铭兴,等.变速恒频风力发电的最大功率捕获控制研究[J].电气传动,2007,37(3):7-10.
    [139] Tian L, Lu Q, Wang W Z. A Gaussian RBF Network Based Wind Speed Estimation Algorithm forMaximum Power Point Tracking[J]. Energy Procedia,2011,12:828–836.
    [140] Whei M L, Chih M H. Intelligent approach to maximum power point tracking control strategy forvariable-speed wind turbine generation system[J]. Energy,2010,35(6):2440-2447.
    [141]席文飞,刘峰,孙彪,等.2MW双馈式风电机组最大功率追踪控制研究[J].大电机技术,2012(3):36-40.
    [142]陈宏亮,李华聪. AMESim与Matlab/Simulink联合仿真接口技术应用研究.流体传动与控制,2006(1):14-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700