用户名: 密码: 验证码:
超临界水氧化过程动力学及氮元素转移机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类生产和生活过程中产生的各种废水,尤其是含氮有机废水,含有大量有毒有害物质,对环境和生态有巨大的影响和破坏作用。这些污染物有些是含有氨基和氰基的有机化合物,常规方法难以进行有效的降解处理。超临界水氧化技术是一种新型、高效的有机废水处理技术,在超临界状态下,水的密度、介电常数、离子积都会下降,氢键也会减少,水就会成为一种高扩散性和具有优良传递特性的非极性溶剂。此时有机物、氧气和水可以以任意比例互溶,形成单一的均相反应体系。超临界水氧化技术对于处理难降解高浓度有机废水具有相当大的优越性,一般只需很短的时间即可将废水中的有机物质彻底氧化分解。
     同时,已有研究发现N2O成为了超临界水氧化含氮有机废水的主要污染物。N2O作为一种重要的温室气体,具有较强的全球变暖潜势,对全球温室效应的贡献率达到7.9%。在超临界水氧化处理有机废水的同时,如果能尽量减少或避免N2O的产生,会带来更多的环境效益。这需要详细了解超临界水氧化有机废水中氮元素的迁移过程,掌握N2O的形成机理。
     本论文首先详细地讨论了超临界水的各种特殊的物理化学性质(包括氢键、密度、热导率、扩散系数、介电常数、溶解度、电离度等)以及超临界水氧化技术的显著特点,并对国内外有关超临界水氧化降解有机物反应动力学及机理的研究进行了全面综述。
     为了深入研究超临界水氧化有机物的反应动力学模型,本文以难生物降解并且含有不同含氮基团-NH2、-CN的含氮有机废水为主要研究对象,在一套连续式超临界水氧化反应实验装置上,进行了不同条件下的超临界水氧化实验,研究了几种有机物在超临界水中氧化降解效率及各影响因素对两种有机物氧化反应的影响规律;运用GC-MS等多种分析方法对乙二胺和苯胺基乙腈废水的氧化降解中间产物进行了分析,重点研究了有机物在超临界水氧化过程中的反应动力学、COD去除动力学;根据实验数据和量子化学模拟计算结果探讨了有机物在超临界水中氧化反应过程中降解的反应路径、反应机理。本论文利用气相色谱、GC-MS等,对各有机物超临界水氧化降解的产物进行了比较系统的分析和鉴别。氧化降解中间产物的鉴别为超临界水氧化有机物的氧化降解路径的推测提供了依据。利用Matlab的Gaussian-Newton方法对动力学实验数据进行了非线性回归,得到了一系列动力学参数。
     通过研究得出以下结论:
     (1)超临界水氧化技术对含氮有机物有着很好的氧化降解去除效果,与传统的焚烧法和湿式空气氧化法等方法相比,超临界水氧化法具有适用范围广、处理效率高、氧化速度快、反应装置小、二次污染低、可处理高浓度有机废水的特点,是一种高效的绿色环保有机废物技术。在特定的实验条件下,高浓度有机污染物的COD去除率可达到99%以上。
     (2)升高反应温度、延长停留时间、提高反应压力、增加氧化剂过量倍数,有机物在超临界水中氧化降解率(或COD去除率)将增大。总的来说,在这些影响因素中,以反应温度、停留时间对有机污染物的氧化降解或COD去除的影响较大。氧化剂浓度对有机污染物氧化降解或COD去除的影响依赖于反应的进程,前期影响较小,而后期影响相对较大。压力对有机物氧化反应的影响较小,压力对有机物氧化的COD去除率的影响可归结为反应物浓度和停留时间的影响。当温度较高(大于450℃),降解率达到较高的水平后,乙二胺废水中乙二胺和COD去除率数值趋于接近,变化趋于平缓。另外,相同降解率的情况下,提高温度虽然可以缩短有机物在反应器中的停留时间,但对反应设备的要求也会大大提高。
     (3)对乙二胺氧化反应气体产物及中间产物进行的分析结果表明,主要气体产物包括N2、N2O、CO、CO2,另外,乙二胺在超临界水中氧化的反应中间产物还包括乙烷、乙烯等,这为7,二胺的超临界水氧化反应路径的确定提供了依据。从乙二胺氧化的中间产物可以看出,乙二胺在经过超临界水氧化后除生成直接的氧化产物N2、CO、CO2以及直链饱和烷烃外,还有一定量的乙烯、乙炔等化合物,这些均不是7二胺的直接氧化产物。由此可以看出,乙二胺在超临界水中氧化降解的同时,还存在着许多副反应如偶合、水解、热解、异构化等同时发生。通过对不同温度条件超临界水氧化乙二胺的中间产物的GC-MS分析,结合乙二胺的结构特点及超临界水的氧化反应特性,得出了乙二胺在超临界水中的反应路径。通过探讨乙二胺氧化的反应路径,得出超临界水氧化降解乙二胺是通过自由基反应进行的,遵循自由基反应的普遍规律,由链引发、链增长和链终止系统完成。链引发主要由·OH完成,其它如热解等也可产生活性极强的自由基。在乙二胺的超临界水氧化过程中,检测到了乙烯、乙烷、乙炔、甲烷等化合物,这些有机物同样是通过一系列的自由基反应而生成的。
     (4)对乙二胺在超临界水中氧化反应动力学、COD去除动力学进行了研究,得到乙二胺在25MPa、673~823K条件下反应动力学以及COD去除动力学方程为:
     对苯胺基乙腈废水在超临界水中氧化COD去除动力学进行了研究,得到苯胺基乙腈在400~550℃、25MPa条件下的COD去除动力学方程为:
     (5)利用量子化学研究了超临界水中2-氯酚的降解反应产物和机理,超临界水氧化2-氯酚的主要单环中间产物为氯代对苯二酚、2,4-二氯酚、2,6-二氯酚和4-氯酚,其中,氯代对苯二酚的浓度最高。量子化学模拟计算的结果与实验结果吻合良好,并进一步给出了超临界水中由-OH自由基引发的2-氯酚氧化机理细节。
     (6)利用量子化学研究了超临界水中N2O与CO反应的各种中间产物以及反应路径,发现超临界水氧化过程中此反应是超临界水中N20降解的主要途径,为有效控制超临界水氧化高浓度含氮有机废水过程中N20控制提供基础信息和理论参考。
     超临界水氧化技术是一种新兴的高浓度有机废水处理技术,受到了国内外的普遍关注,有关超临界水氧化技术基础和应用研究的各方面的研究工作广泛开展,也取得了一定的大量的成果。为了使超临界水氧化技术能早日从实验室走向实际应用,许多方面的研究还有待进一步加强,如(1)催化氧化研究及其问题探索,(2)水的性质与作用的研究,(3)工程化问题研究与扩大试验。
During the activities and production process of human beings, lots kinds of wastewater have been produced, especially for the nitrogen-containing wastewater. It includes many toxic and hazardous materials, and has great negative effect on the environment. The nitrogen-containing pollutants in the wastewater are mostly organics containing amino groups and cyano group, which are difficult to degrade effectively by the traditional wastewater treatment methods. Supercritical water oxidation (SCWO) is a new and effective technique for organic wastewater treatment. At temperatures and pressures above the critical point of water (374℃and22.1MPa), organic compounds, dielectric constant and ion products decrease, and the number of hydrogen bonds increases, water behaves like a nonpolar solvent with high ability of diffusion and transfer, water and oxygen or other oxidants are completely mixed in a single homogeneous aqueous phase, free of mass transfer limitations. SCWO has proved to have high destruction efficiencies within short period for a wide range of organic pollutants wastewater. The organics can be ultimately decomposed to CO2, H2O and other inorganic compounds.
     Meanwhile, N2O was found to be one of the major pollutants in the SCWO of organic wastewater. As the important greenhouse gas, N2O has strong global warming potential, and it has contributed to7.9%of the global warming effect. More environmental benefit will be aquired if N2O is reduced or avoided during the process of SCWO. Thus, it is necessary to understand the nitrogen transfer details during SCWO and grasp the mechanism of N2O occurance. The relative study is very limited.
     The thesis summarized the special properties of SCWO (including hydrogen bonds, density, thermal conductivity, diffusion coefficients, dielectric constants, solubility and ionization degree et al.), as well as the typical characteristics of SCWO. A complete review was given on the topic of kinetics and mechanism of organics decomposition in SCWO.
     To explore the kinetics and mechanism of nitrogen-containing organics in SCWO, we select Ethylene diamine (EDA) and N-phenylglycinonitrile--the organics containing groups of-NH2-CN as the typical pollutants. The experiments were conducted on a set of continuous flow SCWO equipment under different performance parameters. The decomposition efficiency and affecting factors of two kinds of pollutants; the intermediates of EDA and N-phenylglycinonitrile by multiple methods such as GC-MS were analyzed; the reaction kinetics and COD removal kinetics were investigated; the reaction pathways and mechanisms were inferred by experimental data and quantum chemical method. The gaseous products of EDA and N-phenylglycinonitrile in SCWO, were identified and quantified by GC and GC-MS. Based on the analysis results, the oxidation and decomposition pathways were conjectured. None linear regression were conducted on the experimental data with gaussian-newton method by Matlab, and the kinetic parameters were obtained.
     The conclusions obtained were listed as following:
     (1) SCWO can decompose the nitrogen-containing organics effectively. Compared to traditional methods such as wet air oxidation (WAO) and incineration, SCWO has the features of wide use, high converse efficiency, rapid oxidation reaction, small reactor and low second pollution level. SCWO is the effective green technology for the organic pollutants. Under certain conditions, the COD removal of nitrogen-containing organics can be over99%.
     (2) When temperatures, residence times, pressure and Stoichiometric Ratio (SR) of Oxygen increased, the decomposition effeiciency (or COD removal) of the organic pollutants in SCWO increased. Generally, among these affecting factors, temperatures and residence times have larger effect on the oxidation reaction than the other factors. The effect of oxidant dose on the oxidation reaction in supercritical water, depended on the reaction process, and greater effect in the early period than in the late period was found. Pressure has light effect on the organic oxidation reaction, and the effect can be attributed to the various reactant concentrations and residence times induced by pressure change. When temperatures were high (above450℃), after the removal reached a relative high level, EDA residue and COD concentration in the wastewater tended to change steadily. Furthermore, if the same removal was obtained, the increase of temperature can shorten the residence time for reactants in the reactor, but the problem of strict requirement for the reactor design will be also proposed.
     (3) The gas products and intermediates analysis results of EDA oxidation in supercritical water showed, the major components of gas products were N2, N2O, CO and CO2. The intermediates for EDA oxidation were ethane, ethend etc, which supply information for the determination of EDA reaction pathways in SCWO. Based on the identification of products obtained in EDA in SCWO, the relation between the features and products of EDA in SCWO was analysed. It can be seen that the direct oxidation products included N2, CO, CO2, straight chain saturated alkanes, as well as a certain amount of ethylene and acetylene et al. The above products are not the results of direct oxidation. Thus, when EDA was decomposed in SCWO, many side reactions such as coupling, hydrolysis, pyrolysis and isomerization occurred at the same time. By analysis of the intermediates of EDA in SCWO with GC-MS, and combined of the structure features of EDA, the oxidation pathways for EDA oxidation in supercritical water were explored. The EDA decomposition in SCWO were via radical reactions, and followed the general principles of radical reactions, which includes three periods:chain initiation, chain propagation and chain termination. The chain initiation was accomplished by-OH, the pyrolysis can also produce some radicals of high activity. In the process of EDA decomposition in SCWO, ethylene, ethane, acetylene and methane were also determined, and these compounds were also produced by a series of radical reactions.
     (4) According the kinetics of EDA and in SCWO and COD removal kinetics, the kinetic model for EDA and COD removal in SCWO at25MPa.673-823K were:
     The kinetic models for COD removal of N-phenylglycinonitrile in SCWO at400-550℃,25MPa was:
     (5) The products and mechanism of2-chlorophenol (2-CP) in supercritical water was studied with quantum chemical method. The primary single-ring products of the2-CP oxidation in supercritical water were determined to be chlorohydroquinone,2,4-dichlorophenol and2,6-dichlorophenol and4-chlorophenol, among which chlorohydroquinone had the highest molar yields. The theoretical results were in good agreement with the experimental findings, and help to better understand the detailed mechanism of2-CP decomposition initiated by·OH radical in supercritical water.
     (6) With quantum chemical method, the intermediates and reaction pathways of N2O and CO reaction in supercritical water were studied. The reaction was found to be the major approach for N2O decomposition in supercritical water. The results can supply basic information and theoretical reference for the N2O control in the SCWO.
     SCWO is a new technique for organic wastewater treatment and has attracted wide attention internationally. The studies concerned the basic theory and application reports have also been conducted widely and made some progress. In order to promote the application of SCWO to practical industrial application, many aspects need to be enhanced, such as (1) Catalytic oxidation and relative problems solve,(2) the properties of supercritical water and function,(3) engineering implement and amplified experiments.
引文
[1]AYMONIER C, GRATIAS A, MERCADIER J, et al. Global reaction heat of acetic acid oxidation in supercritical water [J]. The Journal of Supercritical Fluids, 2001,21(3):219-26.
    [2]EGGLESTON S, BUENDIA L, MIWA K, et al. IPCC guidelines for national greenhouse gas inventories [J]. Institute for Global Environmental Strategies, Hayama, Japan,2006,
    [3]SEINFELD J H, PANDIS S N. Atmospheric Chemistry and Physics-From Air Pollution to Climate Change (2nd Edition) [M]. John Wiley & Sons.
    [4]BAILEY R A, CLARK H M, FERRIS J P, et al.3-Energy and climate [M]. Chemistry of the Environment (Second Edition). San Diego; Academic Press.2002: 39-71.
    [5]BASHKIN V N, SPRINGER V. Environmental chemistry Asian lessons [M]. Dordrecht; Boston; Kluwer Academic Publishers.2003.
    [6]SOLOMON S, D. QIN, M. MANNING, Z. CHEN, M. MARQUIS, K.B. AVERYT. M. TIGNOR AND H.L. MILLER. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge, United Kingdom and New York, NY, USA,:Cambridge University Press,,2007.
    [7]KHALIL M A K S M J, RASMUSSEN R A. Atmospheric methane:its role in the global Environment [M]. New York:Springer,2000.
    [8]MIKALOFF FLETCHER S E, TANS P P, BRUHWILER L M, et al. CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios:1. Inverse modeling of source processes [J]. Global Biogeochem Cycles, 2004,18(4):GB4004.
    [9]KAMPSCHREUR M J, TEMMINK H, KLEEREBEZEM R, et al. Nitrous oxide emission during wastewater treatment [J]. Water Res,2009,43(17): 4093-103.
    [10]CZEPIEL P, CRILL P, HARRISS R. Nitrous Oxide Emissions from Municipal Wastewater Treatment [J]. Environmental Science & Technology,1995,29(9): 2352-6.
    [11]KHALIL M A K, RASMUSSEN R A. The Global Sources of Nitrous Oxide [J]. J Geophys Res,1992,97(D13):14651-60.
    [12]TALLEC G, GARNIER J, BILLEN G, et al. Nitrous oxide emissions from denitrifying activated sludge of urban wastewater treatment plants, under anoxia and low oxygenation [J]. Bioresour Technol,2008,99(7):2200-9.
    [13]张静蓉,王淑莹,尚会来等.污水短程硝化反硝化和同步硝化反硝化生物脱氮中N20释放量及控制策略[J].环境科学,2009,30(12):3624-9.
    [14]耿军军,王亚宜,张兆祥等.污水生物脱氮革新工艺中强温室气体N_2O的产生及微观机理[J].环境科学学报,2010,9):1729-38.
    [15]KALINICHEV A G, HEINZINGER K. Molecular dynamics of supercritical water:A computer simulation of vibrational spectra with the flexible BJH potential [J]. Geochimica et Cosmochimica Acta,1995,59(4):641-50.
    [16]IKUSHIMA Y, HATAKEDA K, SAITO N, et al. An in situ Raman spectroscopy study of subcritical and supercritical water:The peculiarity of hydrogen bonding near the critical point [J]. The Journal of Chemical Physics,1998, 108(14):5855-60.
    [17]WALRAFEN G E, YANG W H, CHU Y C. Raman Spectra from Saturated Water Vapor to the Supercritical Fluid [J]. The Journal of Physical Chemistry B, 1999,103(8):1332-8.
    [18]GORBATY Y E, KALINICHEV A G. Hydrogen Bonding in Supercritical Water. 1. Experimental Results [J]. The Journal of Physical Chemistry,1995,99(15): 5336-40.
    [19]DING Z Y, FRISCH M A, LI L, et al. Catalytic Oxidation in Supercritical Water [J]. Industrial & Engineering Chemistry Research,1996,35(10):3257-79.
    [20]杨润阳,王志锋,张海峰等.超临界水的应用及其环境中材料腐蚀的研究[J].表面技术,2007,36(5):84-7.
    [21]HEGER K, UEMATSU M, FRANCK E U. The Static Dielectric Constant of Water at High Pressures and Temperatures to 500 MPa and 550℃[J]. Berichte der Bunsengesellschaft fur physikalische Chemie,1980,84(8):758-62.
    [22]REBERT C J, KAY W B. The phase behavior and solubility relations of the benzene-water system [J]. AIChE Journal,1959,5(3):285-9.
    [23]AKIYA N, SAVAGE P E. Roles of Water for Chemical Reactions in High-Temperature Water [J]. ChemInform,2002,33(43):293-.
    [24]MARSHALL W L, FRANCK E U. Ion product of water substance,0--1000 [degree]C,1--10,000 bars New International Formulation and its background [J]. Journal of Physical and Chemical Reference Data,1981,10(2):295-304.
    [25]ANTAL MICHAEL J, BRITTAIN A, DEALMEIDA C, et al. Heterolysis and Homolysis in Supercritical Water [M]. Supercritical Fluids. American Chemical Society.1987:77-86.
    [26]KRITZER P, DINJUS E. An assessment of supercritical water oxidation (SCWO):Existing problems, possible solutions and new reactor concepts [J]. Chemical Engineering Journal,2001,83(3):207-14.
    [27]B HLER W, DINJUS E, EDERER H J, et al. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near-and supercritical water [J]. The Journal of Supercritical Fluids,2002,22(1):37-53.
    [28]WAGNER W, PRUSS A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use [J]. Journal of Physical and Chemical Reference Data,2002,31(2):387-535.
    [29]SENGERS J V. KAMGAR-PARSI B. Representative Equations for the Viscosity of Water Substance [J]. Journal of Physical and Chemical Reference Data, 1984.13(1):185-205.
    [30]FERNANDEZ D P, GOODWIN A R H, LEMMON E W, et al. A Formulation for the Static Permittivity of Water and Steam at Temperatures from 238 K to 873 K at Pressures up to 1200 MPa, Including Derivatives and Debye--H[u-umlaut]ckel Coefficients [J]. Journal of Physical and Chemical Reference Data,1997,26(4): 1125-66.
    [31]ANIKEEV V I, YERMAKOVA A, SEMIKOLENOV V A, et al. Effect of supercritical water density on the rate constant of aliphatic nitrocompounds decomposition [J]. The Journal of Supercritical Fluids,2005,33(3):243-6.
    [32]KRUSE A, DINJUS E. Hot compressed water as reaction medium and reactant: Properties and synthesis reactions [J]. The Journal of Supercritical Fluids,2007, 39(3):362-80.
    [33]SAVAGE P E. Organic Chemical Reactions in Supercritical Water [J]. Chemical Reviews,1999,99(2):603-22.
    [34]ANITESCU G, TAVLARIDES L L. Oxidation of Biphenyl in Supercritical Water:Reaction Kinetics, Key Pathways, and Main Products [J]. Industrial & Engineering Chemistry Research,2004,44(5):1226-32.
    [35]FOURCAULT A, GARC A-JARANA B, S NCHEZ-ONETO J, et al. Supercritical water oxidation of phenol with air. Experimental results and modelling [J]. Chemical Engineering Journal,2009,152(1):227-33.
    [36]THORNTON T D, SAVAGE P E. Phenol oxidation pathways in supercritical water [J]. Industrial & Engineering Chemistry Research,1992,31(11):2451-6.
    [37]ZHANG F, CHEN S, XU C, et al. Experimental study on the effects of operating parameters on the performance of a transpiring-wall supercritical water oxidation reactor [J]. Desalination,2012,294(0):60-6.
    [38]VERIANSYAH B, SONG E-S, KIM J-D. Destruction of methylphosphonic acid in a supercritical water oxidation bench-scale double wall reactor [J]. Journal of Environmental Sciences,2011,23(4):545-52.
    [39]BENJAMIN K M, SAVAGE P E. Supercritical Water Oxidation of Methylamine [J]. Industrial & Engineering Chemistry Research,2005,44(14): 5318-24.
    [40]VERIANSYAH B, KIM J D. Supercritical water oxidation for the destruction of toxic organic wastewaters:a review [J]. J Environ Sci (China),2007,19(5): 513-22.
    [41]ZHANG G, HUA I. Supercritical Water Oxidation of Nitrobenzene [J]. Industrial & Engineering Chemistry Research,2002,42(2):285-9.
    [42]BERMEJO M D, CANTERO F, COCERO M J. Supercritical water oxidation of feeds with high ammonia concentrations:Pilot plant experimental results and modeling [J]. Chemical Engineering Journal,2008,137(3):542-9.
    [43]CRAIN N, TEBBAL S, LI L, et al. Kinetics and reaction pathways of pyridine oxidation in supercritical water [J]. Industrial & Engineering Chemistry Research, 1993,32(10):2259-68.
    [44]COCERO M J, ALONSO E, TOR O R, et al. Supercritical Water Oxidation in a Pilot Plant of Nitrogenous Compounds:2-Propanol Mixtures in the Temperature Range 500-750℃[J]. Industrial & Engineering Chemistry Research,2000,39(10): 3707-16.
    [45]QI X-H, ZHUANG Y-Y, YUAN Y-C, et al. Decomposition of aniline in supercritical water [J]. Journal of Hazardous materials,2002,90(1):51-62.
    [46]邱金建,付永胜,杨敏等.反渗透膜分离天然气化工废水的试验研究[J].四川建筑,2007,26(6):163-4.
    [47]GLOYNA E F, LI L. Supercritical water oxidation:an engineering update [J]. Waste Management,1993,13(5-7):379-94.
    [48]MATSUMURA Y, NUNOURA T, URASE T, et al. Supercritical water oxidation of high concentrations of phenol [J]. Journal of Hazardous materials, 2000,73(3):245-54.
    [49]LIN K-S, WANG H P. Shape selectivity of trace by-products for supercritical water oxidation of 2-chlorophenol effected by CuO/ZSM-48 [J]. Applied Catalysis B:Environmental,1999,22(4):261-7.
    [50]LIN K S, WANG H P, LI M C. Oxidation of 2,4-dichlorophenol in supercritical water [J]. Chemosphere.1998,36(9):2075-83.
    [51]TWIGG M V, DIVISION I C I P A. Catalyst handbook/edited by Martyn V. Twigg [M].2nd ed ed.:Manson Pub,1996.
    [52]JOHNSTON J B. HANNAH R E, CUNNINGHAM V L, et al. Destruction of Pharmaceutical and Biopharmaceutical Wastes by the Modar Supercritical Water Oxidation Process [J]. Nat Biotech,1988,6(12):1423-7.
    [53]GRIFFITH J W, RAYMOND D H. The first commercial supercritical water oxidation sludge processing plant [J]. Waste Manage (Oxford),2002,22(4):453-9.
    [54]刘振华.超临界水氧化压力条件对剩余污泥处理效果的影响[J].东北农业大学学报,2012,43(2):108-13.
    [55]昝元峰,王树众,张钦明等.城市污泥超临界水氧化及反应热的实验研究[J].高校化学工程学报,2006,20(3):379-84.
    [56]VOSTRIKOV A, FEDYAEVA O, SHISHKIN A, et al. Conversion of municipal sewage sludge in supercritical water [J]. Solid Fuel Chem,2008,42(6):384-93.
    [57]GASAFI E, REINECKE M-Y, KRUSE A, et al. Economic analysis of sewage sludge gasification in supercritical water for hydrogen production [J]. Biomass Bioenergy,2008,32(12):1085-96.
    [58]BLANEY CAROL A, LI L, GLOYNA EARNEST F, et al. Supercritical Water Oxidation of Pulp and Paper Mill Sludge as an Alternative to Incineration [M]. Innovations in Supercritical Fluids. American Chemical Society.1995:444-55.
    [59]方琳,刘振华,陶虎春.超临界水氧化法处理剩余污泥的参数优化[J].环境科学研究,2011,24(9):1029-34.
    [60]刘振华,方琳,陶虎春.超临界水氧化压力条件对剩余污泥处理效果的影响[J].东北农业大学学报,2012,43(2):108-13.
    [61]MOUSSIERE S, ROUBAUD A, JOUSSOT-DUBIEN C, et al. Destruction of Nuclear Organic Waste by Supercritical Water Oxidation:Scale-Up of the Process [J]. ASME Conference Proceedings,2007,2007(43390):891-6.
    [62]WANG C, ZHU N, WANG Y, et al. Co-Detoxification of Transformer Oil-Contained PCBs and Heavy Metals in Medical Waste Incinerator Fly Ash under Sub-and Supercritical Water [J]. Environmental Science & Technology,2011,46(2): 1003-9.
    [63]BO D, ZHANG F-S, ZHAO L. Influence of supercritical water treatment on heavy metals in medical waste incinerator fly ash [J]. J Hazard Mater,2009,170(1): 66-71.
    [64]陈新宇,董秀芹,张敏华.焦化废水在超临界水中的催化氧化研究[J].高校化学工程学报,2007.21(6):1065-71.
    [65]郭峰波.超临界水氧化法处理焦化废水[J].安全与环境学报,2009,5:43-5.
    [66]CROOKER P J, AHLUWALIA K S, FAN Z, et al. Operating Results from Supercritical Water Oxidation Plants [J]. Industrial & Engineering Chemistry Research,2000,39(12):4865-70.
    [67]ANIKEEV V I, BELOBROV N S, PITERKIN R N, et al. Results of Testing the Plant for Supercritical Water Oxidation of Nitroglycerin and Diethylene Glycol Dinitrate [J]. Industrial & Engineering Chemistry Research,2006,45(24):7977-81.
    [68]SATO O, KONNO M, WAKUI Y, et al. Supercritical water decomposition of polyethylene samples for the determination of their trace cadmium content [J]. Anal Sci,2006,22(11):1461-3.
    [69]SHIBASAKI Y, KAMIMORI T, KADOKAWA J-I, et al. Decomposition reactions of plastic model compounds in sub-and supercritical water [J]. Polym Degrad Stab,2004,83(3):481-5.
    [70]ARITA T, NAKAHARA K, NAGAMI K, et al. Hydrogen generation from ethanol in supercritical water without catalyst [J]. Tetrahedron Lett,2003,44(5): 1083-6.
    [71]RICE S F, CROISET E. Oxidation of Simple Alcohols in Supercritical Water III. Formation of Intermediates from Ethanol [J]. Industrial & Engineering Chemistry Research,2000,40(1):86-93.
    [72]SCHANZENB CHER J, TAYLOR J D, TESTER J W. Ethanol oxidation and hydrolysis rates in supercritical water [J]. J Supercrit Fluids,2002,22(2):139-47.
    [73]ABELN J, KLUTH M, B TTCHER M, et al. Supercritical Water Oxidation (SCWO) Using a Transpiring Wall Reactor:CFD Simulations and Experimental Results of Ethanol Oxidation [J]. Environ Eng Sci,2004,21(1):93-9.
    [74]SATO O, KONNO M, WAKUI Y, et al. Supercritical Water Decomposition of Polyethylene Samples for the Determination of Their Trace Cadmium Content [J]. Anal Sci,2006,22(11):1461-3.
    [75]KUDISH I I, AIRAPETYAN R G, COVITCH M J. Modeling of Kinetics of Stress-Induced Degradation of Polymer Additives in Lubricants and Viscosity Loss [J]. Tribology Transactions,2003,46(1):1-10.
    [76]OSHIMA Y, HAYASHI R, YAMAMOTO K. Pilot-scale laboratory waste treatment by supercritical water oxidation [J]. Environ Sci,2006,13(4):213-8.
    [77]JIN F-M, KISHITA A, MORIYA T, et al. Kinetics of oxidation of food wastes with H2O2 in supercritical water [J]. J Supercrit Fluids,2001,19(3):251-62.
    [78]VERIANSYAH B, KIM J-D, LEE Y-W. Simultaneous recovery of chromium and destruction of organics from LCD manufacturing process wastewater by supercritical water oxidation [J]. Journal of Cleaner Production,2007,15(10): 972-8.
    [79]VERIANSYAH B, PARK T-J, LIM J-S, et al. Supercritical water oxidation of wastewater from LCD manufacturing process:kinetic and formation of chromium oxide nanoparticles [J]. J Supercrit Fluids,2005,34(1):51-61.
    [80]GRUMETT P. Precious Metal Recovery from Spent Catalysts [J]. Platinum Met Rev,2003,47(4):163-6.
    [81]BERMEJO M D, COCERO M J. Supercritical water oxidation:A technical review [J]. AlChE J,2006,52(11):3933-51.
    [82]MARRONE P A, HODES M, SMITH K A, et al. Salt precipitation and scale control in supercritical water oxidation-part B:commercial/full-scale applications [J]. J Supercrit Fluids,2004,29(3):289-312.
    [83]BRENNECKE J F, ECKERT C A. Phase equilibria for supercritical fluid process design [J]. AlChE J,1989,35(9):1409-27.
    [84]SORTLAND L D, PRAUSNITZ J M. The solvent effect in chemical equilibria of high-pressure, gas-phase reactions [J]. Chem Eng Sci,1965,20(9):847-50.
    [85]HENRIKSON J T, SAVAGE P E. Water-density effects on phenol oxidation in supercritical water [J]. AlChE J,2003,49(3):718-26.
    [86]GILBERT R G, SMITH S C. Theory of unimolecular and recombination reactions/Robert G. Gilbert & Sean C. Smith [J].1990,
    [87]ATKINS P W. Physical chemistry/Peter Atkins. [electronic resource] [M].6th ed ed.:New York Freeman,1998.
    [88]UPADHYAY S K. Chemical kinetics and reaction dynamics/Santosh K. Upadhyay [M]. Springer; New Delhi, India:Anamaya,2006.
    [89]HOLGATE H R, WEBLEY P A, TESTER J W, et al. Carbon monoxide oxidation in supercritical water:the effects of heat transfer and the water-gas shift reaction on observed kinetics [J]. Energy & Fuels,1992,6(5):586-97.
    [90]HELLING R K, TESTER J W. Oxidation kinetics of carbon monoxide in supercritical water [J]. Energy & Fuels,1987,1(5):417-23.
    [91]GOTO M, SHIRAMIZU D, KODAMA A, et al. Kinetic Analysis for Ammonia Decomposition in Supercritical Water Oxidation of Sewage Sludge [J]. Industrial & Engineering Chemistry Research,1999,38(11):4500-3.
    [92]WEBLEY P A, TESTER J W. HOLGATE H R. Oxidation kinetics of ammonia and ammonia-methanol mixtures in supercritical water in the temperature range 530-700.degree.C at 246 bar [J]. Industrial & Engineering Chemistry Research, 1991,30(8):1745-54.
    [93]SEGOND N, MATSUMURA Y, YAMAMOTO K. Determination of Ammonia Oxidation Rate in Sub-and Supercritical Water [J]. Industrial & Engineering Chemistry Research,2002,41(24):6020-7.
    [94]TESTER J W, WEBLEY P A, HOLGATE H R. Revised global kinetic measurements of methanol oxidation in supercritical water [J]. Industrial & Engineering Chemistry Research,1993,32(1):236-9.
    [95]VOGEL F, BLANCHARD J L D, MARRONE P A, et al. Critical review of kinetic data for the oxidation of methanol in supercritical water [J]. J Supercrit Fluids,2005,34(3):249-86.
    [96]ANITESCU G, ZHANG Z, TAVLARIDES L L. A Kinetic Study of Methanol Oxidation in Supercritical Water [J]. Industrial & Engineering Chemistry Research, 1999,38(6):2231-7.
    [97]RICE S F, STEEPER R R. Oxidation rates of common organic compounds in supercritical water [J]. J Hazard Mater,1998,59(2-3):261-78.
    [98]TAWARAH K M, HANSEN R S. Kinetics and mechanism of methanol decomposition over zinc oxide [J]. J Catal,1984,87(2):305-18.
    [99]HELLING R K, TESTER J W. Oxidation of simple compounds and mixtures in supercritical water:carbon monoxide, ammonia and ethanol [J]. Environmental Science & Technology,1988,22(11):1319-24.
    [100]MAHARREY S P, MILLER D R. Quartz capillary microreactor for studies of oxidation in supercritical water [J]. AlChE J,2001,47(5):1203-11.
    [101]SAVAGE P E, SMITH M A. Kinetics of Acetic Acid Oxidation in Supercritical Water [J]. Environmental Science & Technology,1995,29(1):216-21.
    [102]MEYER J C, MARRONE P A, TESTER J W. Acetic acid oxidation and hydrolysis in supercritical water [J]. AlChE J,1995,41(9):2108-21.
    [103]YERMAKOVA A, MIKENIN P, ANIKEEV V. Phenol oxidation in supercritical water in a well-stirred continuous reactor [J]. Theor Found Chem Eng, 2006,40(2):168-74.
    [104]KRAJNC M, LEVEC J. On the kinetics of phenol oxidation in supercritical water [J]. AlChE J,1996,42(7):1977-84.
    [105]HENRIKSON J T, CHEN Z, SAVAGE P E. Inhibition and Acceleration of Phenol Oxidation by Supercritical Water [J]. Industrial & Engineering Chemistry Research,2003,42(25):6303-9.
    [106]PORTELA J R, NEBOT E, MARTiNEZ DE LA OSSA E. Kinetic comparison between subcritical and supercritical water oxidation of phenol [J]. Chem Eng J,2001,81(1-3):287-99.
    [107]MINOK K, LEE W K, LEE C H. New reactor system for supercritical water oxidation and its application on phenol destruction [J]. Chem Eng Sci,1997, 52(7):1201-14.
    [108]GOPALAN S, SAVAGE P E. A reaction network model for phenol oxidation in supercritical water [J]. AlChE J,1995,41(8):1864-73.
    [109]THORNTON T D, SAVAGE P E. Phenol oxidation in supercritical water [J]. J Supercrit Fluids,1990,3(4):240-8.
    [110]PINTO L D S, DOS SANTOS L M F, SANTOS R C D, et al. Supercritical water oxidation of quinoline in a continuous plug flow reactor-part 2:kinetics [J]. Journal of Chemical Technology & Biotechnology,2006,81(6):919-26.
    [111]JIN F, CAO J, KISHITA A, et al. Oxidation reaction of high molecular weight dicarboxylic acids in sub-and supercritical water [J]. J Supercrit Fluids, 2008,44(3):331-40.
    [112]JIN F, MORIYA T, ENOMOTO H. Oxidation Reaction of High Molecular Weight Carboxylic Acids in Supercritical Water [J]. Environmental Science & Technology,2003,37(14):3220-31.
    [113]OE T, SUZUGAKI H, NARUSE I, et al. Role of Methanol in Supercritical Water Oxidation of Ammonia [J]. Industrial & Engineering Chemistry Research, 2007,46(11):3566-73.
    [114]PHENIX B D, DINARO J L, TESTER J W, et al. The Effects of Mixing and Oxidant Choice on Laboratory-Scale Measurements of Supercritical Water Oxidation Kinetics [J]. Industrial & Engineering Chemistry Research,2002,41(3): 624-31.
    [115]FANG Z, XU S, BUTLER I S. et al. Destruction of Decachlorobiphenyl Using Supercritical Water Oxidation [J]. Energy & Fuels,2004,18(5):1257-65.
    [116]CHANG S J, LIU Y C. Degradation mechanism of 2,4,6-trinitrotoluene in supercritical water oxidation [J]. J Environ Sci (China),2007,19(12):1430-5.
    [117]HATAKEDA K, IKUSHIMA Y, SATO O, et al. Supercritical water oxidation of polychlorinated biphenyls using hydrogen peroxide [J]. Chem Eng Sci. 1999,54(15-16):3079-84.
    [118]WANG T, XIANG B, LIU J, et al. Supercritical Water Oxidation of Sulfide [J]. Environmental Science & Technology,2003,37(9):1955-61.
    [119]ANITESCU G, MUNTEANU V, TAVLARIDES L L. Co-oxidation effects of methanol and benzene on the decomposition of 4-chlorobiphenyl in supercritical water [J]. J Supercrit Fluids,2005,33(2):139-47.
    [120]LEE D-S, GLOYNA E F, LI L. Efficiency of H2O2 and 02 in supercritical water oxidation of 2,4-dichlorophenol and acetic acid [J]. J Supercrit Fluids,1990, 3(4):249-55.
    [121]CHANG K-C, LI L, GLO YNA E F. Supercritical water oxidation of acetic acid by potassium permanganate [J]. J Hazard Mater,1993,33(1):51-62.
    [122]KRONHOLM J, JYSKE P, RIEKKOLA M-L. Oxidation Efficiencies of Potassium Persulfate and Hydrogen Peroxide in Pressurized Hot Water with and without Preheating [J]. Industrial & Engineering Chemistry Research,2000,39(7): 2207-13.
    [123]OSIBO O O. Removal of nitrogen containing hydrocarbons from wastewater by catalytic and non-catalytic hydrothermal oxidation, in sub-and supercritical conditions [M]. University of Birmingham,2011.
    [124]HERNANDES M J A. Catalytic supercritical water oxidation of nitrogen-containing organic compounds [M]. University of Birmingham,2010.
    [125]DELL'ORCO P C, GLOYNA E F, BUELOW S J. Reactions of Nitrate Salts with Ammonia in Supercritical Water [J]. Industrial & Engineering Chemistry Research,1997,36(7):2547-57.
    [126]VERIANSYAH B, KIM J-D, LEE J-C, et al. OPA oxidation rates in supercritical water [J]. J Hazard Mater,2005,124(1-3):119-24.
    [127]VERIANSYAH B, KIM J-D, LEE J-C. Supercritical Water Oxidation of Thiodiglycol [J]. Industrial & Engineering Chemistry Research,2005,44(24): 9014-9.
    [128]MARTINO C J, SAVAGE P E. Supercritical Water Oxidation Kinetics, Products, and Pathways for CH3-and CHO-Substituted Phenols [J]. Industrial & Engineering Chemistry Research,1997,36(5):1391-400.
    [129]MARTINO C J, SAVAGE P E. Thermal Decomposition of Substituted Phenols in Supercritical Water [J]. Industrial & Engineering Chemistry Research, 1997,36(5):1385-90.
    [130]LEE H-C, IN J-H, HWANG K-Y, et al. Decomposition of Ethylenediaminetetraacetic Acid by Supercritical Water Oxidation [J]. Industrial & Engineering Chemistry Research,2004,43(13):3223-7.
    [131]DINARO J L, TESTER J W, HOWARD J B, et al. Experimental measurements of benzene oxidation in supercritical water [J]. AlChE J,2000, 46(11):2274-84.
    [132]DING Z Y. Catalytic supercritical water oxidation of aromatic compounds on transition metal oxides [D]. United States--Oklahoma; The University of Tulsa, 1995.
    [133]JIN L, DING Z, ABRAHAM M A. Catalytic supercritical water oxidation of 1,4-dichlorobenzene [J]. Chem Eng Sci,1992,47(9-11):2659-64.
    [134]SULLIVAN P A, TESTER J W. Methylphosphonic acid oxidation kinetics in supercritical water [J]. AIChE Journal,2004,50(3):673-83.
    [135]PARK T-J, LIM J S, LEE Y-W, et al. Catalytic supercritical water oxidation of wastewater from terephthalic acid manufacturing process [J]. The Journal of Supercritical Fluids,2003,26(3):201-13.
    [136]MARULANDA V, BOLA OS G. Supercritical water oxidation of a heavily PCB-contaminated mineral transformer oil:Laboratory-scale data and economic assessment [J]. The Journal of Supercritical Fluids,2010,54(2):258-65.
    [137]ANITESCU G, TAVLARIDES L L. Oxidation of Aroclor 1248 in supercritical water:A global kinetic study [J]. Industrial and Engineering Chemistry Research,2000,39(3):583-91.
    [138]THORNTON T D, SAVAGE P E. Phenol oxidation pathways in supercritical water [J]. Industrial and Engineering Chemistry Research,1992, 31(11):2451-6.
    [139]LI R, THORNTON T D, SAVAGE P E. Kinetics of carbon dioxide formation from the oxidation of phenols in supercritical water [J]. Environmental Science & Technology,1992,26(12):2388-95.
    [140]SAVAGE P E, GOPALAN S, MIZAN T I, et al. Reactions at supercritical conditions:applications and fundamentals [J]. AIChE Journal,1995,41(7): 1723-78.
    [141]LI L, CHEN P, GLOYNA E F. Generalized kinetic model for wet oxidation of organic compounds [J]. AIChE Journal,1991,37(11):1687-97.
    [142]DEVLIN H R, HARRIS I J. Mechanism of the oxidation of aqueous phenol with dissolved oxygen [J]. Industrial & Engineering Chemistry Fundamentals,1984,23(4):387-92.
    [143]JOGLEKAR H S, SAMANT S D, JOSHI J B. Kinetics of wet air oxidation of phenol and substituted phenols [J]. Water Res,1991,25(2):135-45.
    [144]O SHIM A Y, HORI K, TOD A M, et al. Phenol oxidation kinetics in supercritical water [J]. J Supercrit Fluids,1998,13(1-3):241-6.
    [145]DOMINE F. Kinetics of hexane pyrolysis at very high pressures.1. Experimental study [J]. Energy & Fuels,1989,3(1):89-96.
    [146]HOLGATE H R, TESTER J W. Oxidation of hydrogen and carbon monoxide in sub-and supercritical water:reaction kinetics, pathways, and water-density effects.2. Elementary reaction modeling [J]. The Journal of Physical Chemistry,1994,98(3):810-22.
    [147]BROCK E E, SAVAGE P E. Detailed chemical kinetics model for supercritical water oxidation of C1 compounds and H2 [J]. AlChE J,1995,41(8): 1874-88.
    [148]BOOCK L T, KLEIN M T. Lumping strategy for modeling the oxidation of C1-C3 alcohols and acetic acid in high-temperature water [J]. Industrial & Engineering Chemistry Research,1993,32(11):2464-73.
    [149]HOUSE C D. Standard methods for the examination of water and wastewater [J].2012,
    [150]USEPA D. Methods for chemical analysis of water and wastes [M]. US Environmental Protection Agency Cincinnati, OH.1983.
    [151]水质总氮的测定碱性过硫酸钾消解紫外分光光度法[M].环境保护部.2012.
    [152]吴之庆,王萍.总有机碳(TOC)测定及在环境监测中的应用[J].海洋环境科学,1995,14(1):44-9.
    [153]HJT.水质化学需氧量的测定快速消解分光光度法[S][D].
    [154]KORKIN A A, LESZCZYNSKI J, BARTLETT R J. Theoreticalab InitioStudy of CN2O2Structures:Prediction of Nitryl Cyanide as a High-Energy Molecule [J]. The Journal of Physical Chemistry,1996,100(51):19840-6.
    [155]LINSTROM P J, MALLARD W. NIST chemistry webbook [M]. National Institute of Standards and Technology Gaithersburg MD,2001.
    [156]OFTRING A B D, DE), DAHMEN, KIRSTEN (FREINSHEIM, DE), HAHN, THILO (KIRCHHEIMBOLANDEN, DE), HUGO, RANDOLF (DIRMSTEIN, DE), BAUMANN, KATRIN (MANNHEIM, DE), MELDER, JOHANN-PETER (B HL-IGGELHEIM, DE),. Method for producing ethyleneamines:United States.2011-http://www.freepatentsonline.com/7880035.html.
    [157]WILLIAMS M. The Merck Index,12th Edition. CD-Rom Version 12.1 [J]. Drug Development Research,1997,41(2):108-.
    [158]POHANISH R P. Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens (4th Edition) [M]. William Andrew Publishing/Noyes.2002.
    [159]梁淑东,黄科林,彭小玉等.乙二胺的性质及应用[J].企业科技与发展:下半月,2010,005):16-8.
    [160]YU J, SAVAGE P E. Catalytic Oxidation of Phenol over MnO2 in Supercritical Water [J]. Industrial & Engineering Chemistry Research,1999,38(10): 3793-801.
    [161]LEE D S, PARK S D. Decomposition of nitrobenzene in supercritical water [J]. J Hazard Mater,1996,51(1-3):67-76.
    [162]YU J, SAVAGE P E. Kinetics of MnO2-Catalyzed Acetic Acid Oxidation in Supercritical Water [J]. Industrial & Engineering Chemistry Research,2000, 39(11):4014-9.
    [163]Chapter IV:General Trends in the Mechanisms of Heterogeneous Catalytic Reactions Involving Molecular Oxygen [M]//GOLODETS G I. Studies in Surface Science and Catalysis. Elsevier.1983:104-25.
    [164]YANG H H, ECKERT C A. Homogeneous catalysis in the oxidation of p-chlorophenol in supercritical water [J]. Industrial & Engineering Chemistry Research,1988,27(11):2009-14.
    [165]LI Z, HOUSER T J. Kinetics of the catalyzed supercritical water-quinoline reaction [J]. Industrial & Engineering Chemistry Research,1992,31(11):2456-9.
    [166]MARTINO C J, SAVAGE P E, KASIBORSKI J. Kinetics and Products from o-Cresol Oxidation in Supercritical Water [J]. Industrial & Engineering Chemistry Research,1995,34(6):1941-51.
    [167]BIANCHETTA S, LI L, GLOYNA E F. Supercritical Water Oxidation of Methylphosphonic Acid [J]. Industrial & Engineering Chemistry Research,1999, 38(8):2902-10.
    [168]任吉元,王文涛,李红.近期靛蓝生产工艺研究进展[J].染料工业,1997.4:22-4.
    [169]VALERO D, ORTIZ J M, EXPOSITO E, et al. Electrochemical Wastewater Treatment Directly Powered by Photovoltaic Panels:Electrooxidation of a Dye-Containing Wastewater [J]. Environmental Science & Technology,2010, 44(13):5182-7.
    [170]CIARDELLI G, RANIERIN. The treatment and reuse of wastewater in the textile industry by means of ozonation and electroflocculation [J]. Water Research, 2001,35(2):567-72.
    [171]龙腾锐,穆军伟,方俊华等.铁交联膨润土-H2O2联合氧化预处理苯胺基乙腈生产废水的研究[J].给水排水,2009,35:30-5.
    [172]陈琳.苯胺基乙腈车间生产废水预处理工艺研究[D];重庆大学,2008.
    [173]OJSTRSEK A, FAKIN D. Colour and TOC reduction using biofilter packed with natural zeolite for the treatment of textile wastewaters [J]. Desalination and Water Treatment,2011,33(1-3):147-55.
    [174]李超伟,谢娟,赖日坤.萃取预处理苯胺基乙腈生产废水试验研究[J].中国环保产业,2008,11):30-3.
    [175]DAFNOPATIDOU E K, LAZARIDIS N K. Dyes Removal from Simulated and Industrial Textile Effluents by Dissolved-Air and Dispersed-Air Flotation Techniques [J]. Industrial & Engineering Chemistry Research,2008,47(15): 5594-601.
    [176]HAMMAMI S, OTURAN M A, OTURAN N, et al. Comparative mineralization of textile dye indigo by photo-Fenton process and anodic oxidation using boron-doped diamond anode [J]. Desalination and Water Treatment,2012, 45(1-3):297-304.
    [177]何强,李健,李惠鹏等.兼氧—好氧工艺处理苯胺基乙腈废水[.J].中国给水排水,2004,20(002):79-80.
    [178]何强,何孟狄.兼氧—好氧工艺处理苯胺基乙腈废水试验研究[J].重庆建筑大学学报,2002,24(4):49-52.
    [179]BENJAMIN K M, SAVAGE P E. Detailed Chemical Kinetic Modeling of Methylamine in Supercritical Water [J]. Industrial & Engineering Chemistry Research,2005,44(26):9785-93.
    [180]SHIN Y H, SHIN N C, VERIANSYAH B, et al. Supercritical water oxidation of wastewater from acrylonitrile manufacturing plant [J]. Journal of Hazardous materials,2009,163(2-3):1142-7.
    [181]CUTLER A H, ANTAL M J, JONES M. A critical evaluation of the plug-flow idealization of tubular-flow reactor data [J]. Industrial & Engineering Chemistry Research,1988,27(4):691-7.
    [182]S G T O O, AKG N M. Treatment of textile wastewater by SCWO in a tube reactor [J]. The Journal of Supercritical Fluids,2007,43(1):106-11.
    [183]HEITLER W, LONDON F. Wechselwirkung neutraler Atome und homoopolare Bindung nach der Quantenmechanik [J]. Zeitschrift fur Physik A Hadrons and Nuclei,1927,44(6):455-72.
    [184]HOHENBERG P, KOHN W. Inhomogeneous Electron Gas [J]. Physical Review,1964,136(3B):B864-B71.
    [185]RICCA A, BAUSCHLICHER C W. Successive H2O Binding Energies for Fe(H2O)n+[J]. The Journal of Physical Chemistry,1995,99(22):9003-7.
    [186]BECKE A D. Density-functional thermochemistry. III. The role of exact exchange [J]. The Journal of Chemical Physics,1993,98(7):5648-52.
    [187]GONZALEZ C, SCHLEGEL H B. Reaction path following in mass-weighted internal coordinates [J]. The Journal of Physical Chemistry,1990, 94(14):5523-7.
    [188]GONZALEZ C, SCHLEGEL H B. An improved algorithm for reaction path following [J]. The Journal of Chemical Physics,1989,90(4):2154-61.
    [189]GARRETT B C, TRUHLAR D G. Generalized transition state theory. Quantum effects for collinear reactions of hydrogen molecules and isotopically substituted hydrogen molecules [J]. The Journal of Physical Chemistry,1979,83(8): 1079-112.
    [190]ARMENANTE P M. KAFKEWITZ D, LEWANDOWSKI G A, et al. Anaerobic-aerobic treatment of halogenated phenolic compounds [J]. Water Research,1999,33(3):681-92.
    [191]AHLBORG U G, THUNBERG T M, SPENCER H C. Chlorinated phenols: occurrence, toxicity, metabolism, and environmental impact [J]. CRC Critical Reviews in Toxicology,1980,7(1):1-35.
    [192]KEITH L. Compilation of Sampling Analysis Methods [J]. US Environmental Protection Agency, Boca Raton, FL,1991,389-486.
    [193]Water-related environmental fate of 129 priority pollutants/by Michael A. Callahan... [et. al.] [M]. Washington, D.C.::Office of Water Planning and Standards, Office of Water and Waste Management, U.S. Environmental Protection Agency,1979.
    [194]OLANIRAN A O, IGBINOSA E O. Chlorophenols and other related derivatives of environmental concern:Properties, distribution and microbial degradation processes [J]. Chemosphere,2011,
    [195]SUN D, ZHANG H. Electrochemical determination of 2-chlorophenol using an acetylene black film modified glassy carbon electrode [J]. Water Research, 2006,40(16):3069-74.
    [196]RODGERS J D, JEDRAL W, BUNCE N J. Electrochemical oxidation of chlorinated phenols [J]. Environmental Science and Technology,1999,33(9): 1453-7.
    [197]POLCARO A M, PALM AS S. Electrochemical oxidation of chlorophenols [J]. Industrial and Engineering Chemistry Research,1997,36(5):1791-8.
    [198]YANG J, DAI J, CHEN C, et al. Effects of hydroxyl radicals and oxygen species on the 4-chlorophenol degradation by photoelectrocatalytic reactions with TiO2-film electrodes [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2009,208(1):66-77.
    [199]RAO N, DUBEY A, MOHANTY S, et al. Photocatalytic degradation of 2-chlorophenol:a study of kinetics, intermediates and biodegradability [J]. Journal of Hazardous materials,2003,101(3):301-14.
    [200]CZAPLICKA M. Photo-degradation of chlorophenols in the aqueous solution [J]. Journal of Hazardous materials,2006,134(1):45-59.
    [201]CHENG Y, SUN H, JIN W, et al. Photocatalytic degradation of 4-chlorophenol with combustion synthesized TiO2 under visible light irradiation [J]. Chemical Engineering Journal,2007,128(2-3):127-33.
    [202]MUNOZ M, DE PEDRO Z M, CASAS J A, et al. Assessment of the generation of chlorinated byproducts upon Fenton-like oxidation of chlorophenols at different conditions [J]. Journal of Hazardous materials,2011,
    [203]LI R, SAVAGE P E, SZMUKLER D.2-Chlorophenol oxidation in supercritical water:Global kinetics and reaction products [J]. AIChE Journal,1993, 39(1):178-87.
    [204]LEE G, NUNOURA T, MATSUMURA Y, et al. Effects of a sodium hydroxide addition on the decomposition of 2-chlorophenol in supercritical water [J]. Industrial and Engineering Chemistry Research,2002,41(22):5427-31.
    [205]SUN Z, TAKAHASHI F, ODAKA Y, et al. Effects of potassium alkalis and sodium alkalis on the dechlorination of o-chlorophenol in supercritical water [J]. Chemosphere,2007,66(1):151-7.
    [206]LEE H C, IN J H, KIM J H, et al. Kinetic analysis for decomposition of 2, 4-dichlorophenol by supercritical water oxidation [J]. Korean Journal of Chemical Engineering,2005,22(6):882-8.
    [207]KILLILEA W R, SWALLOW K, HONG G T. The fate of nitrogen in supercritical-water oxidation [J]. The Journal of Supercritical Fluids,1992,5(1): 72-8.
    [208]PARK T J, LIM J S, LEE Y W, et al. Catalytic supercritical water oxidation of wastewater from terephthalic acid manufacturing process [J]. The Journal of Supercritical Fluids,2003,26(3):201-13.
    [209]PINKOWSKA H, WOLAK P, ZLOCINSKA A. Hydrothermal decomposition of alkali lignin in sub-and supercritical water [J]. Chemical Engineering Journal,2012,187(0):410-4.
    [210]GOTO M, NAD A T, OGATA A, et al. Supercritical water oxidation for the destruction of municipal excess sludge and alcohol distillery wastewater of molasses [J]. The Journal of Supercritical Fluids,1998,13(1-3):277-82.
    [211]SAVAGE P E. Organic chemical reactions in supercritical water [J]. Chemical Reviews,1999,99(2):
    [212]QUAN X, SHI H, WANG J, et al. Biodegradation of 2,4-dichlorophenol in sequencing batch reactors augmented with immobilized mixed culture [J]. Chemosphere,2003,50(8):1069-74.
    [213]TANG W Z, HUANG C. Photocatalyzed oxidation pathways of 2. 4-dichlorophenol by CdS in basic and acidic aqueous solutions [J]. Water Research, 1995,29(2):745-56.
    [214]BOULE P, GUYON C, LEMAIRE J. Photochemistry and environment IV-Photochemical behaviour of monochlorophenols in dilute aqueous solution [J]. Chemosphere,1982,11(12):1179-88.
    [215]AKAI N, KUDOH S, TAKAYANAGI M, et al. Photoreaction mechanisms of 2-chlorophenol and its multiple chloro-substituted derivatives studied by low-temperature matrix-isolation infrared spectroscopy and density-functional-theory calculations [J]. Journal of Photochemistry and Photobiology A:Chemistry,2001,146(1-2):49-57.
    [216]WEI C, LI D, SHI H, et al. Dechlorination kinetics and mechanism of p-chlorophenol in supercritical water [J]. Zhongguo Keji Lunwen Zaixian/ Sciencepaper Online,2010,5(6):441-7.
    [217]LEE G, NUNOURA T, MATSUMURA Y, et al. Comparison of the effects of the addition of NaOH on the decomposition of 2-chlorophenol and phenol in supercritical water and under supercritical water oxidation conditions [J]. The Journal of Supercritical Fluids,2002,24(3):239-50.
    [218]FRISCH M, TRUCKS G, SCHLEGEL H, et al. Gaussian 03, revision D. 01 [M]. Gaussian, Inc., Wallingford, CT.2004.
    [219]ZHAO Y, TRUHLAR D. Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions:The MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions [J]. Journal of Physical Chemistry A,2004, 108(33):6908-18.
    [220]FUKUI K. The path of chemical reactions-the IRC approach [J]. Accounts of Chemical Research,1981,14(12):363-8.
    [221]RICE S F, HUNTER T B, RYD N A C, et al. Raman spectroscopic measurement of oxidation in supercritical water.1. Conversion of methanol to formaldehyde [J]. Industrial and Engineering Chemistry Research,1996,35(7): 2161-71.
    [222]CROISET E, RICE S F. Direct observation of H2O2 during alcohol oxidation by O2 in supercritical water [J]. Industrial and Engineering Chemistry Research,1998,37(5):1755-60.
    [223]CROISET E, RICE S F. HANUSH R G. Hydrogen peroxide decomposition in supercritical water [J]. AIChE Journal,1997,43(9):2343-52.
    [224]LIN K S, WANG H P. Supercritical water oxidation of 2-chlorophenol catalyzed by Cu2+ cations and copper oxide clusters [J]. Environmental Science and Technology,2000,34(22):4849-54.
    [225]SHCHUKIN D, POZNYAK S, KULAK A, et al. TiO2-In2O3 photocatalysts: preparation, characterisations and activity for 2-chlorophenol degradation in water [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,162(2-3): 423-30.
    [226]BERTELLI M, SELLI E. Reaction paths and efficiency of photocatalysis on TiO2 and of H2O2 photolysis in the degradation of 2-chlorophenol [J]. Journal of Hazardous materials,2006,138(1):46-52.
    [227]HAN Z, ZHANG D, SUN Y, et al. Reexamination of the reaction of 4-chlorophenol with hydroxyl radical [J]. Chemical Physics Letters,2009,474(1-3): 62-6.
    [228]BANGE H W, RAPSOMANIKIS S, ANDREAE M O. Nitrous oxide in coastal waters [J]. Global Biogeochem Cycles,1996,10(1):197-207.
    [229]CRUTZEN P J. The influence of nitrogen oxides on the atmospheric ozone content [J]. Quarterly Journal of the Royal Meteorological Society,1970,96(408): 320-5.
    [230]郭李萍,林而达.大气氮化物的源汇及气候与环境效应[J].农业环境保护,1999,18(005):193-9.
    [231]CHANG K S. Status and Trends of Emission Reduction Technologies and CDM Projects of Greenhouse Gas Nitrous Oxide [J]. J Korean Ind Eng Chem,2008, 19(1):17-26.
    [232]LENGYEL B, BLUM E. The behaviour of the glass electrode in connection with its chemical composition [J]. Transactions of the Faraday Society, 1934,30(461-71.
    [233]LOIRAT H, CARALP F, DESTRIAU M, et al. Oxidation of carbon monoxide by nitrous oxide between 1076 and 1228 K:determination of the rate constant of the exchange reaction [J]. The Journal of Physical Chemistry,1987, 91(26):6538-42.
    [234]FUJII N, KAKUDA T, TAKEISHI N, et al. Kinetics of the high temperature reaction of carbon monoxide with nitrous oxide [J]. The Journal of Physical Chemistry,1987,91(8):2144-8.
    [235]BLAGOJEVIC V, ORLOVA G BOHME D K. O-Atom Transport Catalysis by Atomic Cations in the Gas Phase:Reduction of N2O by CO [J]. Journal of the American Chemical Society,2005,127(10):3545-55.
    [236]COOPER W F, PARK J, HERSHBERGER J F. Product channel dynamics of the cyanato radical+nitric oxide reaction [J]. The Journal of Physical Chemistry, 1993,97(13):3283-90.
    [237]LIN M C, HE Y, MELIUS C F. Theoretical aspects of product formation from the cyanato radical+nitric oxide reaction [J]. The Journal of Physical Chemistry,1993,97(36):9124-8.
    [238]TSUCHIYA K, KAMIYA K, SHIINA H, et al. Computational Studies on the Reactions of N2O with O(3P) and CO [J]. Chemistry Letters, 1999,28(7):609-10.
    [239]COOPER D L, GERRATT J, RAIMONDI M. Applications of spin-coupled valence bond theory [J]. Chemical Reviews,1991,91(5):929-64.
    [240]S B S, ALML F J. Avoiding the integral storage bottleneck in LCAO calculations of electron correlation [J]. Chemical Physics Letters,1989,154(1): 83-9.
    [241]LIDE D. CRC Handbook of Chemistry and Physics,88th Edition (CRC Handbook of Chemistry & Physics) [M]. CRC Press,2007.
    [242]GUAN Q, WEI C, CHAI X-S. Pathways and kinetics of partial oxidation of phenol in supercritical water [J]. Chemical Engineering Journal,2011,175(0): 201-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700