用户名: 密码: 验证码:
具有吸附—分解NOx功能的多酸催化体系制备、调变及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着氮氧化物(NOx)排放总量的逐年增大及限制NOx排放的法律法规日益严格,国内外众多科研机构加大了对NOx去除的研究。在NOx去除的众多方法中,直接催化分解法由于无还原剂消耗、不产生二次污染、工艺简单等优点而成为NOx去除的研究热点之一。杂多化合物(HPCs)由于其独特的晶体结构及催化性能而被广泛应用于各催化领域,将HPCs用于NOx去除的已有研究多局限于杂多酸(HPAs)对NOx的吸附及催化还原,而关于催化分解的研究较少,且研究最多的HPAs仅为Keggin结构磷钨酸(HPW),然而对于庞大的HPCs家簇来说,HPW的相关研究只是其冰山一角。由此本文制备了一系列Keggin、 Dawson结构杂多酸、杂多酸的稀土盐与铯盐以及负载型杂多酸,用于开拓杂多化合物催化分解NOx的新领域。研究主要内容为以下五个方面。
     一、制备了以锗为中心原子的杂多酸催化剂H4GeW12O40(HGeW)、 H5GeW11VO40(HGeWV)、H5GeMo11VO40(HGeMoV)及H5GeW9Mo2VO40(HGeWMoV),通过IR表征确认了其Keggin杂多酸结构,并首次研究了其对NOx的吸附、脱附及催化分解性能。吸附实验结果表明,所制备的催化剂均具有吸附NOx的能力,在最佳吸附温度230℃时,各催化剂对NOx吸附效率及吸附容量的大小顺序为:HGeW> HGeWV> HGeWMoV> HGeMoV,其中HGeW对NOx的吸附效率及容量分别为80%与16.2mg NOx/g;通过IR表征发现NOx主要以[H+(NO2-,NO+)]形式吸附于杂多酸的二级结构中,此外有少量NOx以亚硝酰基(N0·)形式吸附。吸附于HGeW的NOx可通过升温热脱附与降温通水蒸汽反取代脱附两种方式进行脱附,后者由于有水蒸汽及时补充了杂多酸二级结构中NOx脱除而产生的空位,因而可以实现HGeW的重复使用。通过程序升温分解一质谱检测(TPD-MS)研究了NOx的催化分解,首次发现了NOx存杂多酸催化分解中O2的产生:考察了杂多酸中杂原子与中心原子对NOx催化分解的影响,结果发现以Ge为杂原子的杂多酸的催化活性高于P为杂原子的杂多酸,多原子为w的杂多酸对NOx的转化率高于多原子为Mo的杂多酸,但含W杂多酸的N2选择性却低于含Mo杂多酸,此外,V取代后杂多酸的催化活性低于取代前:分别考察了升温速率及气速对NOx催化分解的影响,结果发现高的升温速率与低的气速均有利于NOx转化率的增大,然而升温速率过高时或气速过低时N2选择性均有所下降。
     二、制备并通过IR、XRD、TGA表征了Dawson型磷钨酸H6P2W18O62(HP2W),并首次将其用于NOx的吸附、脱附及分解研究。吸附实验结果表明:HP2W对NOx的吸附效率高于HPW,且最佳吸附温度为200℃;考察了吸附过程中气速对NOx吸附的影响,结果发现气速越高HP2W对NOx的吸附效率越低;考察了杂多酸中结晶水对NOx吸附的影响,结果发现杂多酸中存在两种形式结晶水,即松散结合的沸石水与通过化学键结合的质子水,其中沸石水对NOx的吸附有不利影响,而杂多酸中质子水的量决定了其对NOx的吸附容量;通过在氧化、还原及惰性氛围下对HP2W进行200、300及400℃煅烧以考察预处理对其吸附NOx性能的影响,结果发现不同氛围的预处理对HP2W吸附NOx的性能无明显的影响,且高温条件预处理由于造成HP2W质子型结晶水的损失,从而导致其对NOx的吸附能力的下降。通过升温热脱附方式及降温通水蒸汽反取代方式研究了NOx在HP2W的脱附情况,发现了与Keggin结构HGeW相同的脱附结果,即通水蒸气反取代的脱附方式可实现杂多酸的重复使用。通过TPD-MS研究了HP2W对NOx的分解性能,结果发现Dawson结构磷钨酸对NOx的分解能力较Keggin结构低,通过红外分析发现,其原因是由于Dawson结构HP2W所吸附的NOx多以NO及N203形式存在,仅少量NOx以质子化的亚硝酸鎓离子(HNO)+的形式存在,而亚硝酸鎓离子是降低N-O键能促进NOx分解的关键。
     三、通过结晶反应及机械掺杂法制备出LnL (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Yb, Y, Lu, Ho, Er, Tb, Dy, Tm; L=PW11O40)型稀土磷钨酸盐、LnL2型K8H3[Eu(PW11O39)2]以及磷钨酸铯盐Cs3-xHxPW12O40(x=0,0.5,1,1.5,2,2.5,3)催化剂,研究了上述催化剂对NOx的吸附及催化分解性能。LnL型稀土磷钨酸盐对NOx的吸附实验结果表明,LnL对NOx的吸附效率及容量均较低,且其对NOx吸附效率的顺序为:GdPW> PrPW> YPW> SmPW=CePW> LaPW> YbPW> NdPW> EuPW,对NOx吸附容量的顺序为:LaPW> GdPW> YPW> PrPW> CePW> NdPW> YbPW> SmPW> EuPW。通过机械研磨法制备出LnPW与HPW等质量掺杂的复合催化剂LnPW/HPW,并对其进行NOx吸附实验,结果表明该催化剂对NOx的吸附能力比掺杂HPW前有较大提高。通过快速升温的方式对所吸附的NOx进行催化分解,结果表明,含稀土元素的复合催化剂对NOx的分解性能均高于单纯的HPW,其催化分解NOx为氮气的活性顺序为:YPW/HPW> TmPW/HPW> YbPW/HPW> PrPW/HPW> TbPW/HPW> SmPW/HPW> LuPW/HPW> EuPW/HPW> LaPW/HPW> CePW/HPW> ErPW/HPW> GdPW/HPW> DyPW/HPW> HoPW/HPW> NdPW/HPW。研究了EuPW与HPW不同掺杂比所制备的EuPW/HPW催化剂对NOx的吸附与分解性能,结果表明,在复合催化剂中HPW主要起吸附NOx作用,EuPW主要起催化分解NOx作用,因此高HPW含量的催化剂具有高的NOx吸附能力,高EuPW含量的催化剂具有高的NOx分解能力。通过向EuPW/HPW催化剂中掺杂碳纳米管(CNTs),研究了微波辅助下NOx的催化分解。结果表明,提高CNTs掺杂量可促进NOx的分解。通过对比等质量掺杂HPW的LnL型与LnL2型稀土磷钨酸对NOx的吸附性能,发现由于LnL2型催化剂中K离子的存在,使其具有较大的比表面积,因此可以更好的分散HPW提高其比表面积,进而使其较LnL型掺杂具有更高的NOx吸附效率。采用TPD-MS技术对比研究了HPW、EuPW/HPW及K8H3[Eu(PW11O39)2]/HPW对NOx的分解性能,结果发现,由于稀土杂多酸盐的掺杂,EuPW/HPW对NOx催化分解性能高于HPW,而LnL2型催化剂K8H3[Eu(PW11039)2]中由于杂多化合物中缺位结构与碱土金属K的存在,使分解产生的氧原子被缺位结构及K原子所捕获而无法脱离催化剂表面,从而造成氧阻抑,因此导致LnL2型杂多酸盐具有低的NOx分解性能。
     研究了磷钨酸铯盐催化剂对NOx的吸附及催化分解性能,结果表明,由于磷钨酸铯盐的高比表面积,有利于HPW在其上的分散及对NOx的吸附,CS3-xHxPW12O40对NOx吸附效率的递变顺序为:Cs,H2PW> Cs1.5H1.5PW> Cs2H1PW> Cs2.5H0.5PW> Cs0.5H2.5PW;通过TPD-MS技术研究了磷钨酸铯盐催化剂中HPW与Cs3PW不同掺杂比对催化分解NOx性能的影响,结果表明,由于碱金属Cs对O的吸附能力,导致催化剂分解所产生的氧无法由催化剂上脱除,进而造成催化剂活性下降,且Cs3PW掺杂量越多,催化剂对NOx的分解性能越差。
     四、将碳纳米管载体分别经混酸与硝酸蒸汽预处理并在不同温度下煅烧,随后分别采用浸渍法及机械研磨法负载磷钨酸,制备出HPW/CNTs催化剂,首次对比考察了上述催化剂对NOx的吸附与分解效果。在空速为10000h-1、吸附温度为200℃的条件下,以0.5g催化剂对1000ppm的NOx进行吸附实验,结果表明,以硝酸蒸汽预处理且经300℃煅烧后的CNTs为载体,采用机械研磨负载法制备的催化剂HPW/CNTs对NO、的吸附率与吸附能力最高,分别为54%与16.6mg NOx/g·h。对吸附NOx后的催化剂体系进行了催化分解NO、的TPD-MS研究,结果表明,所吸附的NO、在快速升温过程中发生分解,首次发现了过程中氧的产生,分解产物包括N2、O2及N2O。采用电阻炉快速加热与微波辐射两种方式分别对吸附的NOx进行催化分解,结果表明,微波功率为700W时,NOx分解为N2的收率为33.3%,高于电阻炉以150℃/min快速升温的N2收率。使用过的催化剂通水蒸汽后可实现再生,对再生后的催化剂进行循环使用研究,结果表明,再生后的催化剂吸附与催化分解NO、的性能未有明显下降。
     五、分别以微波辅助法及水热合成法将NH4PW原位合成并固载于USY沸石笼,制备出“瓶中船”型催化剂NH4PW-USY,进而以NOx为氧化剂氧化去除NH4PW-USY中的NH4+得到H+,由此首次制备出沸石笼中只含有HPW的“瓶中船”型催化剂HPW-USY,并研究了该催化剂对NOx的吸附、脱附及分解性能。通过IR、XRD及孔径孔容表征发现微波辅助法在NH4PW-USY的制备中,具有不破坏沸石笼结构及高效率等特点而优于水热合成法。由于还原剂NH4PW高度分散于USY,“瓶中船”型催化剂NH4PW-USY具有高的还原NOx能力,其对NOx的去除效率高达65%,高于单纯的USY及NH4PW对NOx的去除率,分别为5%与50%。NH4PW-USY与NOx完全反应后,通过IR及Py-IR证实了HPW-USY被成功制备。考察了HPW-USY对NOx的吸附与脱附,发现其吸附容量可达2.7mg NOx/g,吸附饱合NOx后,可采用降温通水蒸汽的方式实现脱附。吸附NOx后刘HPW-USY进行TPD-MS测试,分解过程中发现了O2的产生,催化剂HPW-USY对NOx的转化率与N2选择性分别为64.9%与74.3%,均高于单纯HPW催化剂对NOx的转化率与N2选择性。
More and more research institutions pay close attention to nitrogen oxides (NOx) abatement, due to the increasing NOx emission and the introduction of more rigorous environmental laws. NOx catalytic decomposition has been one of the most attractive methods, for no reducing agent is consumed and pollution-free N2and O2are the only products. Heteropoly compounds (HPCs) have been widely used in the catalytic reaction because of its special crystal structure and catalytic properties. The application of HPCs on NOx elimination have been researched for many years, however, they are mainly used as NOx absorbent or used in NOx catalytic reduction. Keggin type phosphotungstic acid (HPW) is the most studied HPCs, while there are many HPCs that have not been explored in NOx abatement. In this thesis, novel Keggin and Dawson type heteropoly acids (HPAs), the lanthanide complexes and cesium salt of HPW and the supported catalyst were prepared and used in the NOx adsorption and decomposition. The content of this thesis contains the following five parts.
     I) NOx Adsorption-Decomposition on Keggin Type Heteropoly Acids Containing Germanium
     Four kinds of keggin stucture HPAs employing germanium as central atom, including tungstogermanic heteropoly acid (abbr. HGeW), tungstovanadogermanic heteropoly acid H5GeW11V040(abbr. HGeWV), molybdovanadogermanic heteropoly acid H5GeMo11V040(abbr. HGeMoV) and molybdotungstovanadogermanic heteropoly acid H5GeW9Mo2V04o (abbr. HGeWMoV) were first applied as catalysts to remove NOx in lean exhaust gas, and they were synthesized and characterized by IR measurements. The adsorption tests showed that at the optimum adsorption temperature of230℃, the synthesized catalysts showed excellent NOx adsorption ability in the following order:HGeW> HGeWV> HGeWMoV> HGeMoV, and among which HGeW had the highest NOx adsorption efficiency and capacity of80% and16.2mg NOx/g. Two new IR absorption bands at2210and1851cm-1appeared after NOx being adsorbed on HGeW, the latter band was observed for the first time on HPAs adsorbed NOx, and was assigned to nitrosyl radical (NO-). Experiments on NOx desorption and the reusability of absorbent were carried out on HGeW by increasing oven temperature and cooling in wet air. The results showed that NOx could be desorbed through both two methods and the reusability of HGeW could be realized by the latter method. Temperature-programmed desorption-mass spectroscopy (TPD-MS) was carried out to investigate the decomposition of NOx on the synthesized catalysts and and purchased phosphotungstic acid (HPW) and for the first time, the formation of O2was observed on all of the catalysts mentioned above, and the decomposition products were comprised of N2, O2and N2O. The effect of heteroatom and polyatom on NOx decomposition was investigated, and the result showed that heteroatom Ge was superior to P, polyatom W was superior to Mo for NOx transformation, while it was inferior to Mo as for N2selectivity, and after substitute by V the catalytic activity would decrease. The effects of heating rate and gas velocity on NOx decomposition were investigated and the results showed that increasing the heating rate and decreasing the gas velocity promoted the NOx transformation, however, too high heating rate and too low gas velocity decreased the N2selectivity.
     Ⅱ) NOx Adsorption-Aecomposition on Dawson Type Phosphotungstic Acid
     The Dawson type phosphotungstic heteropolyacid (HP2W) was synthesized and characterized by IR, XRD and TGA measurements. NOx adsorption, desorption and decomposition were explored on HP2W. The influences of temperature, gas velocity, crystal water and pretreatment of HP2W on NOx adsorption were examined, the results showed that the NOx adsorption optimum temperature was200℃, the NOx adsorption efficiency had an inverse relationship with gas velocity, and the maximum NOx adsorption efficiency of78%was observed at the gas velocity of5000-1h. Two types of crystal water were observed on HP2W, among which the physical adsorbed water hindered the NOx adsorption, while the chemical adsorbed water improved it. After pretreated in the atmosphere of oxygen, hydrogen and nitrogen individually, the HP2W showed no significant difference on NOx adsorption. NOx desorption by improving temperature and cooling in wet air were comparatively studied, and the result was the same as that of HgeW explored in I), that is to say, desorption by cooling in wet air had a better performance for the reusability of HP2W could be realized through this method. TPD-MS was taken to investigate the NOx decomposition on Dawson type HP2W. Compared with Keggin type HPW, Dawson type phosphotungstic acid had lower catalytic activity, and the reason was attributed to the fact that less NOx was adsorbed on the second crystal structure of HP2W in the form of (HNO)+, which would improve the NOx decomposition by weakening the N-O bond.
     Ⅲ) NOx Adsorption-Decomposition on Salts of Phosphotungstic Acid
     LnL (Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Yb, Y, Lu, Ho, Er, Tb, Dy, Tm; L=PW11O40), LnL2type K8H3[Eu(PW,,039)2] and Cs3-xHxPW1204o(x=0,0.5,1,1.5,2,2.5,3) were prepared and used for NOx adsorption and decomposition. The adsorption results showed that NOx adsorption efficiency and capacity on LnL were lower, and for the NOx adsorption efficiency, LnL exhibited the following order: GdPW> PrPW> YPW> SmPW=CePW> LaPW> YbPW> NdPW> EuPW, while for the adsorption capacity the order was:LaPW> GdPW> YPW> PrPW> CePW> NdPW> YbPW> SmPW> EuPW. After doped with HPW, the NOx adsorption ability of LnL/HPW was improved significantly. The NOx decomposition on LnL/HPW was explored by rapid heating, and the results showed that the catalytic decomposition of NOx on LnL/HPW were superior than that of HPW, and for the N2yeild the catalytic activity followed the order:YPW/HPW> TmPW/HPW YbPW/HPW> PrPW/HPW> TbPW/HPW> SmPW/HPW> LuPW/HPW> EuPW/HPW> LaPW/HPW> CePW/HPW> ErPW/HPW> GdPW/HPW> DyPW/HPW> HoPW/HPW> NdPW/HPW. The effects of doping ratio between EuPW and HPW on adsorption and decomposition of NOx were studied. The results showed that HPW played the role of NOx adsorbent while EuPW as catalyst for decomposition of NOx, and more HPW in EuPW/HPW contributed to higher NOx adsorption efficiency and capacity, while more EuPW contributed to high NOx transformation and N2selectivity. Microwave was introduced to NOx decomposition on the catalyst of EuPW/HPW/CNTs, and the result showed that the decomposition of NOx was related to ratio of CNTs, and more CNTs improved the NOx decomposition. Compared with LnL type EuPW/HPW, the LnL2type K8H3[Eu(PW11O39)2]/HPW had higher NOx adsorption efficiency for the K ion increased the special surface thus improved the HPW dispers on K8H3[Eu(PW11O39)2], while the NOx decomposition on K8H3[Eu(PW11O39)2]/HPW was inferior to that of EuPW/HPW for the defect site and K ion on K8H3[Eu(PW11O39)2] captured O and inhibited the O removal from catalyst. NOx adsorption and decomposition on Cs3_xHxPW12O040were studied, the adsorption results showed that due to the high special surface of CS3PW, and the Cs3_xHxPW12O40exhibited fine NOx adsorption ability with the following order: CS1H2PW> Cs1.5H1.5PW> Cs2H1PW> Cs2.5H0.5PW> Cs0.5H2.5PW. TPD-MS was taken on Cs,H2PW and Cs2H1PW to investigate the effect of ratio between Cs3PW and HPW on NOx decomposition, the result showed that because the alkalis metal Cs had the O adsorption ability and O inhibited the NOx catalytic decomposition, so the more Cs, the less decomposition activity on CS3-XHxPW12O40.
     Ⅳ) NOx Adsorption-Decomposition on H3PW12O40/CNTS
     A series of HPW/CNTs catalysts were prepared by impregnation and mechanical grinding methods. For this purpose, CNTs was pre-treated separately by nitric acid vapor, mixture of nitric acid and sulphuric acid, and subsequently calcined. The performances of catalysts on NOx adsorption-decomposition were studied.0.5g catalyst was used to adsorb1000ppm NOx under the space velocity of1000h-1at200℃, and the results showed that the catalyst prepared by mechanical grinding methods supporting HPW on CNTs pretreated by nitric acid vapor and calcined at300℃had the highest NOx adsorption efficiency and capacity of54%and16.6mg NOx/g·h, respectively. TPD-MS was carried out on the catalyst adsorbed NOx, and the result showed that N2, O2and N2O were formed during rapid heating, among which O2was observed for the first time. Two modes of decomposition were employed, and one was by electric oven at a ramping rate of150℃/min, and the other was by microwave oven. Compared to the mode of the former, the latter has higher N2yield with a N2yield up to33.3%corresponding to the power of microwave oven being700W. The catalyst used can be reusable by water vapor reactivation, and the recycling results showed that there were no significant performance degradation for NOx adsorption and catalytic decomposition.
     V) NOx Adsorption-Decomposition on "Ship in Bottle" Type HPW-USY
     To synthesis pure HPW encaged in USY zeolite (HPW-USY), NH4PW encaged in the USY (NH4PW-USY) was firstly prepared by the methods of microwave radiation and hydrothermal synthesis. FT-IR, XRD, BET, pore size and pore volume measurements indicated that microwave radiation method was superior to hydrothermal synthesis in the preparation of NH4PW-USY. Then NH4PW-USY was used to reduce NOx, and accompanied with the consumption of NH4+and formation of H+, NH4PW-USY was turned into HPW-USY simultaneously, which was confirmed by FT-IR and in site pyridine adsorption IR. NOx adsorption-desorption behavior on HPW-USY was studied. The NOx adsorption capacity was2.7mg NOx/g, and the adsorbed NOx was desorbed when the temperature was decreased to ca.100℃in wet air. TPD-MS was carried out on HPW-USY adsorbed NOx to explore the performance of catalytic decomposition NOx. For the first time, O2production was observed a little latter than the formation of N2O and N2, the NOx conversion was64.9%and N2selectivity was74.3%on HPW-USY, which was higher than pure HPW.
引文
[1]Skalska K, Miller JS, Ledakowicz S. Trends in NOx abatement:A review. Science of The Total Environment.2010,408:3976-3989.
    [2]Roy S, Hegde MS, Madras G. Catalysis for NOx abatement. Applied Energy.2009, 86:2283-2297.
    [3]赵惠富.污染气体NOx的形成和控制.In:科学出版社;1993.[4]黄亚梅张,高霞,王文领,陈学年.氮氧化物来源及其治理.河南教育学院学报(自然科学版).2004,13:46-47.
    [5]Souvik B, Das RK. Catalytic control of automotive NOx:a review. International Journal of Energy Research.1999,23:351-369.
    [6]Fritz A, Pitchon V. The current state of research on automotive lean NOx catalysis. Applied Catalysis B:Environmental.1997,13:1-25.
    [7]Hans Bosch FJ. Formation and control of nitrogen oxides. Catalysis Today.1988, 2:369-379.
    [8]Westenberg AA. Kinetics of NO and CO in Lean, Premixed Hydrocarbon-Air Flames. Combustion Science and Technology.1971,4:59-64.
    [9]Fenimore CP. Formation of nitric oxide in premixed hydrocarbon flames. Symposium (International) on Combustion.1971,13:373-380.
    [10]司知蠢翁,吴晓东,栗国,李佳.中国温室气体减排与选择性催化还原脱硝材料.科技导报.2009,27:87-95.
    [11]郭斌,廖宏楷.我国NOx控制策略探讨.广东电力.2009,22:1-4.
    [12]李红,王玮,鲍林发et al.我国NOx污染状况与控制对策建议.In:第十三届全国大气环境学术会议论文集.2006.
    [13]何文深,陈建军.固定源NOx排放控制技术研究进展.中国环保产业.2011,10:8-12.
    [14]周后珍,龙炳清,赵仕林,罗娅君.NOx污染控制进展.四川环境.2002, 21:17-20.
    [15]唐念,李华亮.燃煤烟气氮氧化物吸收研究进展.北方环境.2011,11:121-122.
    [16]唐冰.新型氮氧化物吸附剂的开发与研究.In:北京工业大学,2006.
    [17]孔令启,毕荣山,岳金彩,程华农.氮氧化物水吸收过程的数值模拟.华东理工大学学报(自然科学版).2009,35:530-534.
    [18]马乐凡,童志权,李钦武.亚铁螯合剂液相脱除烟气中NOx.环境污染治理技术与设备.2004,5:67-71.
    [19]荆国华,李伟,施耀Fell(EDTA)络合吸收NO体系中吸收液的生物再生.高校化学工程学报.2004,18:351-356.
    [20]袁志国,刘有智,焦纬洲,祁贵生.氧化度对超重力场净化硝烟效率的影响.现代化工.2011,31:79-82.
    [21]李裕,刘有智.旋转填料床吸收NOx缓冲氧化-强化吸收模型.化学工程.2010,38:12-21.
    [22]Burch R, Breen JP, Meunier FC. A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Applied Catalysis B:Environmental.2002,39:283-303.
    [23]黄海凤,张峰,卢晗锋,陈银飞.制备方法对低温NH3-SCR脱硝催化剂MnOx/TiO2结构与性能的影响.化工学报.2010,61:80-85.
    [24]Casapu M, Krocher O, Elsener M. Screening of doped MnOx-CeO2 catalysts for low-temperature NO-SCR. Applied Catalysis. B, Environmental.2009,88:1-7.
    [25]林涛,张秋林,李伟.以ZrO2-TiO2为载体的整体式锰基催化剂应用于低温NH3-SCR反应.物理化学学报.2008,24:1252-1256.
    [26]吴碧君,刘晓勤,肖萍,王述刚.Mn-Fe/TiO2(?)低温NH3选择性还原NO催化活性及其反应机制.中国电机工程学报.2007,27:51-56.
    [27]Qi G, Yang RT. Low-temperature selective catalytic reduction of NO with NH3 over iron and manganese oxides supported on titania. Applied Catalysis B: Environmental.2003,44:217-225.
    [28]Kapteijn F, Singoredjo L, Vandriel M et al. Alumina-Supported Manganese Oxide Catalysts:Ⅱ. Surface Characterization and Adsorption of Ammonia and Nitric Oxide. Journal of Catalysis.1994,150:105-116.
    [29]任秀峰,王芬,李强,朱建锋.纳米SCR催化剂Ce-V/TiO2的制备与研究.稀有金属材料与工程.2009,38:1014-1017.
    [30]Huang HY, Long RQ, Yang RT. A highly sulfur resistant Pt-Rh/TiO2/A12O3 storage catalyst for NOx reduction under lean-rich cycles. Applied Catalysis B: Environmental.2001,33:127-136.
    [31]Basile F, Fornasari G, Grimandi A et al. Effect of Mg, Ca and Ba on the Pt-catalyst for NOx storage reduction. Applied Catalysis B:Environmental.2006, 69:58-64.
    [32]Xiao J, Li X, Deng S et al. NOx storage-reduction over combined catalyst Mn/Ba/Al2O3-Pt/Ba/Al2O3. Catalysis Communications.2008,9:563-567.
    [33]Itoh M, Saito M, Takehara M et al. Influence of supported-metal characteristics on deNOx catalytic activity over Pt/CeO2. Journal of Molecular Catalysis A: Chemical.2009,304:159-165.
    [34]Le Phuc N, Corbos EC,Courtois X et al. NOx storage and reduction properties of Pt/CexZr1-xO2 mixed oxides:Sulfur resistance and regeneration, and ammonia formation. Applied Catalysis B:Environmental.2009,93:12-21.
    [35]Fedeyko JM, Chen B, Chen H-Y. Mechanistic study of the low temperature activity of transition metal exchanged zeolite SCR catalysts. Catalysis Today.2010, 151:1-6.
    [36]Morikawa A, Okumura K, Ishii M et al. Characterization of termetallic Pt-Ir-Au catalysts for NO decomposition. Rare Metals.2011,30:53-57.
    [37]Wang Y, Zhu J, Ma R. Macrodynamic study and catalytic reduction of NO by ammonia under mild conditions over Pt-La-Ce-O/Al2O3 catalysts. Energy Conversion and Management.2007,48:1936-1942.
    [38]Burch R, Ottery D. Selective catalytic reduction of NOx by hydrocarbons on Pt/Al2O3 catalysts at low temperatures without the formation of N2O. Applied Catalysis B:Environmental.1996,9:L19-L24.
    [39]Garcia-Cortes JM, Perez-Ramirez J, Ⅲan-Gomez MJ et al. Comparative study of Pt-based catalysts on different supports in the low-temperature de-NOx-SCR with propene. Applied Catalysis B:Environmental.2001,30:399-408.
    [40]An W, Chuang KT, Sanger AR. Catalyst-Support Interaction in Fluorinated Carbon-Supported Pt Catalysts for Reaction of NO with NH3. Journal of Catalysis. 2002,211:308-315.
    [41]Qi G, Yang RT, Chang R. Low-Temperature SCR of NO with NH3 over USY-Supported Manganese Oxide-Based Catalysts. Catalysis Letters.2003,87:67-71.
    [42]Pieterse JAZ, Booneveld S. Catalytic reduction of NOx with H2/CO/CH4 over PdMOR catalysts. Applied Catalysis B:Environmental.2007,73:327-335.
    [43]沈伯雄,郭宾彬,史展亮等.CeO2/ACF的低温SCR烟气脱硝性能研究.燃料化学学报.2007,35:125-128.
    [44]孙旭光,云端,张鹏等.改性飞灰作为SCR催化剂载体的成型方法和脱硝活性.燃烧科学与技术.201O,133-136.
    [45]Huang Z, Zhu Z, Liu Z. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures. Applied Catalysis B: Environmental.2002,39:361-368.
    [46]Mochida I, Korai Y, Shirahama M et al. Removal of SOx and NOx over activated carbon fibers. Carbon.2000,38:227-239.
    [47]黄纪辛,徐雪梅,叶代启,罗翠红.MxOy/碳纳米管的低温选择性催化还原脱硝性能研究.环境污染与防治.2010,32:36-41.
    [48]吴碧君,王述刚,方志星,盛永校.烟气脱硝工艺及其化学反应原理分析.热力发电.2006,35:59-60.
    [49]Lee G-W, Shon B-H, Yoo J-G et al. The influence of mixing between NH3 and NO for a De-NOx reaction in the SNCR process. Journal of Industrial and Engineering Chemistry.2008,14:457-467.
    [50]Francois G. Mechanism of NOx decomposition. Applied Catalysis A:General. 2001,222:183-219.
    [51]Ma T, Wang R. Catalytic decomposition of NOx. Progress in chemistry.2008, 20:798-810.
    [52]Amirnazmi A, Benson JE, Boudart M. Oxygen inhibition in the decomposition of NO on metal oxides and platinum. Journal of Catalysis.1973,30:55-65.
    [53]Wu RJ, Chou TY, Yeh CT. Enhancement effect of gold and silver on nitric oxide decomposition over Pd/Al2O3 catalysts. Applied Catalysis B:Environmental.1995, 6:105-116.
    [54]Aryafar M, Zaera F. Isothermal Kinetic Study of the Decomposition of Nitric Oxide over Rh(111) Surfaces. Journal of Catalysis.1998,175:316-327.
    [55]包信和.NO与Ag(110)表面的相互作用.In:电子能谱与固体表面化学第四届学术会议论文集.1997.
    [56]滕加伟,包信和,蔡天锡.Ag对Pd/Al2O3催化分解NO反应的促进作用.In:首届全国环境催化学术研讨会论文集.1999.
    [57]滕加伟,包信和,蔡天锡Ag-ZSM-5催化剂上NO分解反应与原位ESR研究.In:新世纪的催化科学与技术.2000.
    [58]李金兵,黄伟新,包信和.NO在Ag-Pt双金属表面上的吸附和分解.工业催化.2000,8:5.
    [59]马涛,王睿.NOx的催化分解研究.化学进展.2008,20:798-810.
    [60]Winter ERS. The catalytic decomposition of nitric oxide by metallic oxides. Journal of Catalysis.1971,22:158-170.
    [61]Yamashita T, Vannice A. NO Decomposition over Mn2O3and Mn3O4. Journal of Catalysis.1996,163:158-168.
    [62]徐春保,吴胜利,苍大强,葛西荣辉.NO-CO-CO2-N2体系中若干金属氧化物对NO去除反应的催化作用.中国环境科学.1998,18:236-239.
    [63]张伟德,李基涛,古萍英等.NO在Er2O3/Bi2O3催化剂上的程序升温分解.高等学校化学学报.1998,19:961-963.
    [64]汪洋,范多旺.NO气体分子在TiO2(110)表面吸附特性.兰州交通大学学报.2004,23:1-3.
    [65]汪洋,孟亮.TiO2表面氧空位对NO分子吸附的作用.物理学报.2005,54:2207-2211.
    [66]汪洋.NO气体在Ti02表面的吸附行为.化学学报.2006,64:1611-1614.
    [67]朱君江,肖德海,李静等.(类)钙钛石型催化剂上NO分解反应机理.科学通报.2004,49:2501-2503.
    [68]侯岩峰,范国梁,宋崇林等La1-xCexCoO3系钙钛矿型催化剂应用于柴油机尾气净化催化性能的研究.燃料化学学报.2006,34:85-90.
    [69]邢丽,薛念华,陈向科等.纳米晶PbTiO3负载CuO催化NO分解.无机化学学报.2005,21:729-732.
    [70]赵震杨,吴越.在Nd2-xSrxNio4±系催化剂上NO分解反应的研究.科学通报.1995,40:1961-1964.
    [71]Iwamoto M, Furukawa H, Mine Y et al. Copper(II) ion-exchanged ZSM-5 zeolites as highly active catalysts for direct and continuous decomposition of nitrogen monoxide. Journal of the Chemical Society, Chemical Communications. 1986:1272-1273.
    [72]Iwamoto M, Yahiro H, Mine Y, Kagawa S. Excessively Copper Ion-exchanged ZSM-5 Zeolites as Highly Active Catalysts for Direct Decomposition of Nitrogen Monoxide. Chemistry Letters.1989,18:213-216.
    [73]Despres J, Koebel M, Krocher O et al. Adsorption and desorption of NO and NO2 on Cu-ZSM-5. Microporous and Mesoporous Materials.2003,58:175-183.
    [74]Kustova MY, Kustov A, Christiansen SE et al. Cu-ZSM-5, Cu-ZSM-11, and Cu-ZSM-12 catalysts for direct NO decomposition. Catalysis Communications.2006, 7:705-708.
    [75]Kustova MY, Rasmussen SB, Kustov AL, Christensen CH. Direct NO decomposition over conventional and mesoporous Cu-ZSM-5 and Cu-ZSM-11 catalysts:Improved performance with hierarchical zeolites. Applied Catalysis B: Environmental.2006,67:60-67.
    [76]Iwamoto M, Yokoo S, Sakai K, Kagawa S. Catalytic decomposition of nitric oxide over copper(Ⅱ)-exchanged, Y-type zeolites. Journal of the Chemical Society, Faraday Transactions 1:Physical Chemistry in Condensed Phases.1981, 77:1629-1638.
    [77]Iwamoto M, Yahiro H, Tanda K et al. Removal of nitrogen monoxide through a novel catalytic process.1. Decomposition on excessively copper-ion-exchanged ZSM-5 zeolites. The Journal of Physical Chemistry.1991,95:3727-3730.
    [78]Spoto G, Zecchina A, Bordiga S et al. Cu(I)-ZSM-5 zeolites prepared by reaction of H-ZSM-5 with gaseous CuCl:Spectroscopic characterization and reactivity towards carbon monoxide and nitric oxide. Applied Catalysis B:Environmental.1994, 3:151-172.
    [79]石川,宋志民,付迎,杨学锋.Ni2+改性的Cu-ZSM-5催化分解NO的性能.环境科学.2000,21:24-27.
    [80]徐建昌,许行勇,李雪辉,王乐夫.NO直接分解催化剂研究.华南理工大学学报(自然科学版).2002,30:27-29.
    [81]Perdana I, Creaser D, Ohrman O, Hedlund J. A comparison of NOx adsorption on Na, H and BaZSM-5 films. Applied Catalysis B:Environmental.2007,72:82-91.
    [82]王艳玲,孙琪.CaH2修饰的Cu-ZSM-5复合催化剂分解NO活性研究.辽宁师范大学学报(自然科学版).2004,27:449-451.
    [83]Dandl H, Emig G. Mechanistic approach for the kinetics of the decomposition of nitrous oxide over calcined hydrotalcites. Applied Catalysis A:General.1998, 168:261-268.
    [84]Kannan S, Swamy CS. Catalytic decomposition of nitrous oxide on "in situ" generated thermally calcined hydrotalcites. Applied Catalysis B:Environmental.1994, 3:109-116.
    [85]S K. Decomposition of nitrous oxide over the catalysts derived from hydrotalcite-like compounds. Applied Clay Science.1998,13:347-362.
    [86]Kannan S, Swamy CS. Catalytic decomposition of nitrous oxide over calcined cobalt aluminum hydrotalcites. Catalysis Today.1999,53:725-737.
    [87]Armor JN, Braymer TA, Farris TS et al. Calcined hydrotalcites for the catalytic decomposition of N2O in simulated process streams. Applied Catalysis B: Environmental.1996,7:397-406.
    [88]郭志强,倪哲明,俞卫华等.二元金属类水滑石的合成及其作为前驱体对NOx的吸附性能研究.材料科学与工程学报.2004,22:878-880.
    [89]郭志强,倪哲明,方彩萍等.铜钴作为二价金属的类水滑石对NOx吸附性能研究.浙江工业大学学报.2005,33:100-102.
    [90]肖轶,马骏,杨锡尧.钴铝水滑石焙烧产物催化剂上NO的直接分解.催化学报.1999,20:495-498.
    [91]刘钰,杨向光,王学中,吴越.以水滑石类化合物为前体的Co-M-Al(M=过渡金属)复合氧化物对催化消除NOx活性的研究.化学学报.1999,57:782-789.
    [92]Gomez-Garcia MA, Pitchon V, Kiennemann A. Multifunctional catalysts for de-NOx processes:The case of H3PW12O40·6H2O-metal supported on mixed oxides. Applied Catalysis B:Environmental.2007,70:151-159.
    [93]Hamad H, Soulard M, Lebeau B et al. A new way for deNOx catalyst preparation: Direct incorporation of 12-tungstophosphoric acid H3PW12O40 and platinum into mesoporous molecular sieves material. Journal of Molecular Catalysis A:Chemical. 2007,278:53-63.
    [94]Labaki M, Mokhtari M, Brilhac JF et al. Simulation of NO and NO2 sorption-desorption-reduction behaviours on Pt-impregnated HPW supported on TiO2. Applied Catalysis B:Environmental.2007,76:386-394.
    [95]Landau M, Rao P, Thomas S et al. Application of Cs salt of 12-tungstophosphoric acid supported on SBA-15 mesoporous silica in NO x storage. Topics in Catalysis.2007,42-43:203-207.
    [96]Yoshimoto R, Ninomiya T, Okumura K, Niwa M. Cooperative effect induced by the mixing of Na-ZSM-5 and Pd/H3PWi2O40/Si02 in the selective catalytic reduction of NO with aromatic hydrocarbons. Applied Catalysis B:Environmental.2007, 75:175-181.
    [97]Yang RT, Chen N. A New Approach to Decomposition of Nitric Oxide Using Sorbent/Catalyst without Reducing Gas:Use of Heteropoly Compounds. Industrial & Engineering Chemistry Research.1994,33:825-831.
    [98]Chen N, Yang RT. Activation of Nitric Oxide by Heteropoly Compounds: Structure of Nitric-Oxide Linkages in Tungstophosphoric Acid with Keggin Units. Journal of Catalysis.1995,157:76-86.
    [99]Zhang ZL. Temperature programmed desorption-mass spectrometry study of NO desorption and decomposition by titania supported 12-tungstoposphoric acid. React.Kinet.Catal.Lett.2002,76:93-102.
    [100]McCormick RL, Boonrueng SK, Herring AM. In situ IR and temperature programmed desorption-mass spectrometry study of NO absorption and decomposition by silica supported 12-tungstophosphoric acid. Catalysis Today.1998, 42:145-157.
    [101]宋淑美;马涛;姚远;王睿;赵海霞.具有吸附-分解NOx功能的多酸催化新体系研究.燃料化学学报2009,37:87-92.
    [102]Kozhevnikov IV. Catalysis by Polyoxometalates: Catalysis for Fine Chemical Synthesis. In:UK:John Wiley & Sons Ltd; 2002.
    [103]钟邦克,张渊明.杂多化合物在液相催化氧化反应中应用的新进展.In:第五届全国络合催化学术讨论会论文摘要集.1997.
    [104]王宇婷,韩智慧,韩春亮.杂多化合物在药物化学上的应用研究进展.河南教育学院学报(自然科学版).2004,13:50-53.
    [105]韩华俊,陈彤,王公应.负载杂多化合物催化酯类反应研究进展.工业催化.2006,14:1-6.
    [106]李丽,彭军,张龙.杂多化合物催化过氧化氢氧化烯烃环氧化反应研究进展.精细化工中间体.2006,36:24-29.
    [107]周广栋,甄开吉,王海水,程铁欣.杂多化合物及其负载型催化剂的研究 进展.化学进展.2006,18:382-388.
    [108]李强,王蕾,闫瑞一等.异丁烯制备甲基丙烯醛催化剂的研究进展.化学工业与工程.2007,24:6.
    [109]谢杨林,刘霞,冯长根.多金属氧酸盐抗肿瘤活性研究进展.肿瘤防治研究.2007,34:225-228.
    [110]宋华,徐骞,李正光.杂多化合物催化剂在异丁烷选择氧化中的研究进展.工业催化.2008,16:12-17.
    [111]王斌,黎白钰,张慎靖等.绿色催化剂的应用及进展.河北化工.2008,31:29-30.
    [112]王帅帅,刘霞.新型稀土杂多配合物的合成及药学应用研究进展.中北大学学报(自然科学版).2010,31:492-498.
    [113]许娜,李长海.杂多酸催化剂在催化反应中的研究进展.科学与财富.2011,9:49-49.
    [114]Micek-Ilnicka A. The role of water in the catalysis on solid heteropolyacids. Journal of Molecular Catalysis A:Chemical.2009,308:1-14.
    [115]胡长文,高丽娟,王恩波.钨系Keggin结构杂多酸的酸强度及催化反应特性.东北师大学报自然科学版.1995,2:62-70.
    [116]工恩波,胡长文,许林.多酸化学导论.In:北京:化学工业出版社;1998.
    [117]Belanger R. Moffat JB. A Comparative Study of the Adsorption and Reaction of Nitrogen Oxides on 12-Tungstophosphoric,12-Tungstosilicic, and 12-Molybdophosphoric Acids. Journal of Catalysis.1995,152:179-188.
    [118]Herring AM, McCormick RL. In Situ Infrared Study of the Absorption of Nitric Oxide by 12-Tungstophosphoric Acid. The Journal of Physical Chemistry B.1998, 102:3175-3184.
    [119]Hodjati S, Petit C, Pitchon V, Kiennemann A. Removal of NOx from a Lean Exhaust Gas by Absorption on Heteropolyacids:Reversible Sorption of Nitrogen Oxides in H3PW1204o·6H20. Journal of Catalysis.2001,197:324-334.
    [120]Vaezzadeh K. Petit C, Pitchon V. The removal of NOx from a lean exhaust gas using storage and reduction on H3PW12O40·6H2O. Catalysis Today.2002,73:297-305.
    [121]Jentys, SchieBer W, Vinek H. Catalytic properties of pt and tungstophosphoric acid supported on MCM-41 for the reduction of NOx in the presence of water vapor. In:Studies in Surface Science and Catalysis. I. Kiricsi GP-BJBN, Karge HG (Editors). Elsevier; 1999. pp.571-578.
    [122]Jentys A, Schie, Vinek H. Unique catalytic properties of Pt and tungstophosphoric acid supported on MCM-41 for the reduction of NO in the presence of water vapour. Chemical Communications.1999:335-336.
    [123]Jentys A, SchieBer W, Vinek H. Catalytic activity of Pt and tungstophosphoric acid supported on MCM-41 for the reduction of NOx in the presence of water vapor. Catalysis Today.2000,59:313-321.
    [124]Gomez-Garcia MA, Pitchon V, Kiennemann A. Removal of NOx from Lean Exhaust Gas by Storage/Reduction on H3PW12O40·6H2O Supported on CexZr4-xO8. Environmental Science & Technology.2004,39:638-644.
    [125]Hodjati S, Vaezzadeh K, Petit C et al. The Mechanism of the Selective NOx Sorption on H3PW12O4o·6H20 (HPW). Topics in Catalysis.2001,16-17:151-155.
    [126]Gomez-Garcia MA, Pitchon V, Kiennemann A. Storage and reduction of lean-NOx by using H3PW12O40·6H20 supported on TixZr1-xO4. Catalysis Today.2005, 107-108:60-67.
    [127]Gomez-Garcia MA, Pitchon V, Kiennemann A et al. Sorption-Desorption of NOx from a Lean Gas Mixture on H3PW12O40·6H2O Supported on Carbon Nanotubes. Topics in Catalysis.2004,30-31:229-233.
    [128]Jentys A, Schieβer W, Vinek H. Catalytic properties of mesoporous molecular sieves for the reduction of NOx. In:Studies in Surface Science and Catalysis. Avelino Corma FVMSM, Jose Luis GF (Editors). Elsevier; 2000. pp.1523-1528.
    [129]Belanger R, Moffat JB. The interaction of nitrogen oxides with metal-oxygen cluster compounds (heteropoly oxometalates). Journal of Molecular Catalysis A: Chemical.1996,114:319-329.
    [130]Bielanski A, Datka J, Gil B et al. FTIR study of hydration of dodecatungstosilicic acid. Catalysis Letters.1999,57:61-64.
    [131]Hodjati S, Petit C, Pitchon V, Kiennemann A. The mechanism of the selective NOx adsorption on 12-tungstophosphoric acid hexa-hydrate. In:Studies in Surface Science and Catalysis. Avelino Corma FVMSM, Jose Luis GF (Editors). Elsevier; 2000. pp.1265-1270.
    [132]Belanger R, Moffat JB. A self-contained catalyst for the reduction of NO2. Applied Catalysis B:Environmental.1997,13:167-173.
    [133]Belanger R, Moffat JB. The sorption and reduction of nitrogen oxides by 12-tungstophosphoric acid and its ammonium salt. Catalysis Today.1998, 40:297-306.
    [134]Vaezzadeh K, Petit C, Pitchon V, Kiennemann A. A new concept for the removal of NOx from a lean exhaust gas using storage on H3PW12O40·6H2O, a very fast desorption and a reduction over a TWC. Catalysis Communications.2002,3:179-183.
    [135]Gomez-Garcia MA, Zimmermann Y, Pitchon V, Kiennemann A. Multifunctional catalyst for de-NOx processes:The selective reduction of NOx by methane. Catalysis Communications.2007,8:400-404.
    [136]Hamad H, Hamieh T, Mahzoul H, Toufaily J. Synthesis and Characterization of MSU Molecular Sieve Catalysts Obtained by Direct Incorporation of Platinum and 12-tungstophosphoric Acid H3PW12O40. Advanced Powder Technology.2008, 19:131-151.
    [137]Tian W, Yang H, Fan X, Zhang X. Catalytic reduction of NOx with NH3 over different-shaped MnO2 at low temperature. Journal of Hazardous Materials.2011, 188:105-109.
    [138]Gomez-Garcia MA, Pitchon V, Kiennemann A. Pollution by nitrogen oxides:an approach to NOx abatement by using sorbing catalytic materials. Environment International.2005,31:445-467.
    [139]Zhu H-s, Mao Y-p, Yang X-j et al. Simultaneous absorption of NO and SO2 into Fell-EDTA solution coupled with the Fell-EDTA regeneration catalyzed by activated carbon. Separation and Purification Technology.2010,74:1-6.
    [140]Klingstedt F, Arve K, Eranen K, Murzin DY. Toward Improved Catalytic Low-Temperature NOx Removal in Diesel-Powered Vehicles. Accounts of Chemical Research.2006,39:273-282.
    [141]Broer S, Hammer T. Selective catalytic reduction of nitrogen oxides by combining a non-thermal plasma and a V2O5-WO3/TiO2 catalyst. Applied Catalysis B: Environmental.2000,28:101-111.
    [142]Liu ZM, Woo SI. Recent advances in catalytic deNOx science and technology. Catalysis reviews.2006,48:43-89.
    [143]Leglise J, Chambellan A, Cornet D. Hydroconversion of n-nonane catalyzed by PdHY zeolites:I. Influence of catalyst pretreatment. Applied Catalysis.1991, 69:15-31.
    [144]Fanson PT, Horton MR, Delgass WN, Lauterbach J. FTIR analysis of storage behavior and sulfur tolerance in barium-based NOx storage and reduction (NSR) catalysts. Applied Catalysis B:Environmental.2003,46:393-413.
    [145]Muncrief RL, Kabin KS, Harold MP. NOx storage and reduction with propylene on Pt/BaO/alumina. AIChE Journal.2004,50:2526-2540.
    [146]Moffat JB. Metal-Oxygen Clusters In: The surface and catalytic properties of heteropoly oxometalates. M. V. Twigg MSS (Editor) New York:Kluwer Academic/Plenum Publishers; 2001.
    [147]Kovalchuk TV, Kochkin JN, Sfihi H et al. Oniumsilica-immobilized-Keggin acids:Acidity and catalytic activity for ethyl tert-butyl ether synthesis and acetic acid esterification with ethanol. Journal of Catalysis.2009,263:247-257.
    [148]WU Qingyin SY, Wang Enbo. Application of tungstogermanic acid in synthesizing butyl butyrate. Huaxue Shiji.1993,15:4.
    [149]Wu Q, Meng G. Preparation and conductivity of vanadotungstogermanic heteropoly acid. Solid State Ionics.2000,136-137:273-277.
    [150]Wu Q, Meng G. Preparation and conductibility of solid high-proton conductor molybdovanadogermanic heteropoly acid. Materials Research Bulletin.2000, 35:85-91.
    [151]Wu Q, Sang X. Synthesis and conductivity of solid high-proton conductor H5GeW10MoVO40-21H2O. Materials Research Bulletin.2005,40:405-410.
    [152]Herve G, Teze A. Study of .α-and β-enneatungstosilicates and -germanates. Inorganic Chemistry.1977,16:2115-2117.
    [153]Wu Q, Lin H, Meng G. Studies on preparation and conductivity of solid high-proton conductor molybdotungstovanadogermanic heteropoly acid. Materials Letters.1999,39:129-132.
    [154]Baronetti G, Briand L, Sedran U, Thomas H. Heteropolyacid-based catalysis. Dawson acid for MTBE synthesis in gas phase. Applied Catalysis A:General.1998, 172:265-272.
    [155]Bi L, Wang E, Xu L, Huang R. Synthesis, properties and crystal structure of some polyoxometallates containing the tris(hydroxymethyl)aminomethane cation. Inorganica Chimica Acta.2000,305:163-171.
    [156]Jin H, Wu Q, Pang W. Photocatalytic degradation of textile dye X-3B using polyoxometalate-TiO2 hybrid materials. Journal of Hazardous Materials.2007, 141:123-127.
    [157]Wang E-b, Wu Q-y, Zhang B-j, Huang R-d. Synthesis and characterization of new aluminium and gallium heteropoly complexes with chromium, iron, cobalt or coppercentred undecatungstate ligand. Transition Metal Chemistry.1991,16:478-480.
    [158]Tsigdinos GA, Hallada CJ. Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparation and characterization. Inorganic Chemistry. 1968,7:437-441.
    [159]Moffat JB. A comparison of the catalytic and structural properties of heteropoly compounds:semi-empirical calculations. Journal of Molecular Catalysis.1984, 26:385-396.
    [160]Ghosh AK, Moffat JB. Acidity of heteropoly compounds. Journal of Catalysis. 1986,101:238-245.
    [161]Nayak VS, Moffat JB. Catalytic activity and product distribution in the cracking of n-hexane over heteropoly oxometalates and ZSM-5 zeolite. Applied Catalysis. 1989,47:97-113.
    [162]Nakamoto K. Infrared Spectra of Inorganic and Coordination Compounds. 1970.
    [163]Lynch MS, Cheng M, Van Kuiken BE, Khalil M. Probing the Photoinduced Metal-Nitrosyl Linkage Isomerism of Sodium Nitroprusside in Solution Using Transient Infrared Spectroscopy. Journal of the American Chemical Society.2011, 133:5255-5262.
    [164]Ortiz M, Diaz A, Cao R et al. Ruthenium Nitrosyl Complexes of Bis(3,5-dimethylpyrazol-1-yl)methane Oxyanions. European Journal of Inorganic Chemistry.2004,2004:3353-3357.
    [165]Li Y, Armor JN. Temperature-programmed desorption of nitric oxide over Cu-ZSM-5. Applied Catalysis.1991,76:L1-L8.
    [166]Hiskia A, Papaconstantinou E. Photocatalytic oxidation of organic compounds by polyoxometalates of molybdenum and tungsten. Catalyst regeneration by dioxygen. Inorganic Chemistry.1992,31:163-167.
    [167]Wu H. Contribution to the chemistry of phosphomolybdic acids, phosphotungstic acids, and allied substances. J. Biol. Chem.1920,43:189-220.
    [168]Yamazaki K, Takahashi N, Shinjoh H, Sugiura M. The performance of NOx storage-reduction catalyst containing Fe-compound after thermal aging. Applied Catalysis B:Environmental.2004,53:1-12.
    [169]Li G, Ding Y, Wang J et al. New progress of Keggin and Wells-Dawson type polyoxometalates catalyze acid and oxidative reactions. Journal of Molecular Catalysis A:Chemical.2007,262:67-76.
    [170]Briand LE, Baronetti GT, Thomas HJ. The state of the art on Wells-Dawson heteropoly-compounds:A review of their properties and applications. Applied Catalysis A:General.2003,256:37-50.
    [171]Romanelli GP, Baronetti G, Thomas HJ, Autino JC. Efficient method for tetrahydropyranylation/depyranylation of phenols and alcohols using a solid acid catalyst with Wells-Dawson structure. Tetrahedron Letters.2002,43:7589-7591.
    [172]Romanelli GP, Thomas HJ, Baronetti GT, Autino JC. Solvent-free catalytic preparation of 1,1-diacetates from aldehydes using a Wells-Dawson acid (H6P2W18O62·24H2O). Tetrahedron Letters.2003,44:1301-1303.
    [173]Li G, Gu Y, Ding Y et al. Wells-Dawson type molybdovanadophosphoric heteropolyacids catalyzed Prins cyclization of alkenes with paraformaldehyde under mild conditions--a facile and efficient method to 1,3-dioxane derivatives. Journal of Molecular Catalysis A:Chemical.2004,218:147-152.
    [174]G. M. Maksimov IVK. heteropolyacids as catalysts for synthesis of methyl tert-butyl ehter. react. kinet. catal. lett.1989,39:317-322.
    [175]Misono M. Unique acid catalysis of heteropoly compounds (heteropolyoxometalates) in the solid state. Chemical Communications. 2001:1141-1152.
    [176]Lyon DK, Miller WK, Novet T et al. Highly oxidation resistant inorganic-porphyrin analog polyoxometalate oxidation catalysts.1. The synthesis and characterization of aqueous-soluble potassium salts of α2-P2W17O61(Mn+OH2)(n-10) and organic solvent soluble tetra-n-butylammonium salts of α2-P2W17O61(Mn+Br)(n-11) (M = Mn3+,Fe3+,Co2+,Ni2+,Cu2+). Journal of the American Chemical Society.1991, 113:7209-7221.
    [177]Matkovic SR, Valle GM, Gambaro LA, Briand LE. Environmentally friendly synthesis of Wells-Dawson heteropolyacids:Active acid sites investigation through TPSR of isopropanol. Catalysis Today.133-135:192-199.
    [178]Pope MT, Papaconstantinou E. Heteropoly blues. Ⅱ. Reduction of 2:18-tungstates. Inorganic Chemistry.1967,6:1147-1152.
    [179]陶卫国.Dawson型杂多化合物的结构、性质及其表征.四川师范学院学报(自然科学版).2000,21:332-336.
    [180]Tarlani A, Abedini M, Khabaz M, Amini MM. Adsorption of Wells-Dawson tungsten heteropolyacid on sol-gel alumina:Structural features and thermal stability. Journal of Colloid and Interface Science.2005,292:486-492.
    [181]Pozniczek J, Micek-Ilnicka A, Lubanska A, Bielanski A. Catalytic synthesis of ethyl-tert-butyl ether on Dawson type heteropolyacid. Applied Catalysis A:General. 2005,286:52-60.
    [182]Sambeth JE, Romanelli G, Autino JC et al. A theoretical-experimental study of Wells-Dawson phospho-tungstic heteropolyacid:An explanation of the pseudoliquid or surface-type behaviour. Applied Catalysis A:General.2010,378:114-118.
    [183]宋淑美;王睿.具有低温活性的高效脱硝催化体系研究进展.现代化工2007,27:108-112.
    [184]Peacock RD, Weakley TJR. Heteropolytungstate complexes of the lanthanide elements. Part I. Preparation and reactions. Journal of the Chemical Society A: Inorganic, Physical, Theoretical.1971:1836-1839.
    [185]Tsigdinos GA. Preparation and Characterization of 12-Molybdophosphoric and 12-Molybdosilicic Acids and Their Metal Salts. Product R&D.1974,13:267-274.
    [186]Finke RG, Rapko B, Weakley TJR. Polyoxoanions derived from tungstosilicate, A-β-SiW9O3410-:synthesis and crystallographic and 183W NMR characterization of Si2W18Zr3O71H311-, including its organic solvent soluble Bu4N+ salt. Inorganic Chemistry.1989,28:1573-1579.
    [187]朱志平,胡莹.LnL型稀土钨镓、钨铝三元杂多化合物的合成与性质研究.吉林工业大学学报.1989,19:121-125.
    [188]Fedotov MA, Pertsikov BZ, Danovich DK.17O,31P and 183W NMR spectra of paramagnetic complexes with the heteropolytungstate anion [Ln(PW11O39)2]11- and their co. Polyhedron.1990,9:1249-1256.
    [189]Wassermann K, Dickman MH, Pope MT. Self-Assembly of Supramolecular Polyoxometalates:The Compact, Water-Soluble Heteropolytungstate Anion [As 12ⅢCe 16Ⅲ(H2O)36W148O524]76-. Angewandte Chemie International Edition in English.1997,36:1445-1448.
    [190]柳士忠,周端文,高丽娟,王作屏,王恩波.稀土元素1:12钨系杂多配合物的热稳定性研究.东北师大学报(自然科学版).1994,4:150-153.
    [191]Wang EB, Li BT, Wang ZP. Investigation on the Proton Conductivity of Bis(11-tungstosilicate) Lanthanates of Potassium. Journal of Molecular Science. 1997:242-246.
    [192]王芳,吕功煊Na-Rh/γ-A12O3催化剂的表征及其对CO选择氧化的催化性能.催化学报2007,28:27-33.
    [193]徐彭寿,徐世红,刘先明,朱警生,麻茂生,张裕恒.铯对GaAs(100)表面氧化的催化作用.化学物理学报1994,7:455-460.
    [194]黎汉生,钟顺和.金属表面上CO2化学吸附研究最新进展.天然气化工2001,26:39-44.
    [195]Glick HS, Klein JJ, Squire W. Single-Pulse Shock Tube Studies of the Kinetics of the Reaction N2+O2=2NO between 2000-3000 ° K. The Journal of Chemical Physics 1957,27:850-857.
    [196]Long RQ, Yang RT. Carbon Nanotubes as a Superior Sorbent for Nitrogen Oxides. Industrial & Engineering Chemistry Research.2001,40:4288-4291.
    [197]Tang J, Zhang T, Liang D et al. Direct decomposition of NO by microwave heating over Fe/NaZSM-5. Applied Catalysis B:Environmental.2002,36:1-7.
    [198]Xia W, Jin C, Kundu S, Muhler M. A highly efficient gas-phase route for the oxygen functionalization of carbon nanotubes based on nitric acid vapor. Carbon. 2009,47:919-922.
    [199]范延臻,王宝贞.活性炭表面化学.煤炭转化.2000,23:26-29.
    [200]龙德良,梁斌,忻新泉.室温和低热固相反应在合成化学中的应用.应用化学.1996,13:1-6.
    [201]郑宜,李旦振,付贤智.水蒸气对有机污染物微波光催化氧化反应的影响. 催化学报.2001,22:165-167.
    [202]张登峰,鹿雯,王盼盼,杨丽莉.微波诱导活性炭纤维催化还原NO.合成纤维工业.2007,30:19-22.
    [203]张达欣,于爱民,金钦汉.微波-炭还原法处理一氧化氮的研究.高等学校化学学报.1997,18:1271-1274.
    [204]杨水金,尹国俊.硅钨钼酸镧催化合成苯甲醛1,2-丙二醇缩醛.稀土.2008,29:88-90.
    [205]Park DR, Song JH, Lee SH et al. Redox properties of H3PMoxW12-x04o and H6P2MoxW18-xO62 heteropolyacid catalysts and their catalytic activity for benzyl alcohol oxidation. Applied Catalysis A:General.2008,349:222-228.
    [206]Kozhevnikov IV. Sustainable heterogeneous acid catalysis by heteropoly acids. Journal of Molecular Catalysis A:Chemical.2007,262:86-92.
    [207]Keita B, Nadjo L. Polyoxometalate-based homogeneous catalysis of electrode reactions:Recent achievements. Journal of Molecular Catalysis A:Chemical.2007, 262:190-215.
    [208]王帮进,段爱红,忽锦峰.MCM-41负载磷钨杂多酸催化合成苯甲醛乙二醇缩醛.云南师范大学学报(自然科学版).2010,30:40-42.
    [209]Bhorodwaj SK, Dutta DK. Heteropoly acid supported modified Montmorillonite clay:An effective catalyst for the esterification of acetic acid with sec-butanol. Applied Catalysis A:General.2010,378:221-226.
    [210]Gagea BC, Lorgouilloux Y, Altintas Y et al. Bifunctional conversion of n-decane over HPW heteropoly acid incorporated into SBA-15 during synthesis. Journal of Catalysis.2009,265:99-108.
    [211]龚大春,曾芳,龚东平等.活性炭负载的制备乙烯催化剂稀土杂多酸盐的筛选.三峡大学学报(自然科学版).2007,29:269-271.
    [212]Sulikowski B, Haber J, Kubacka A et al. Novel "ship-in-the-bottle" type catalyst:evidence for encapsulation of 12-tungstophosphoric acid in the supercage of synthetic faujasite. Catalysis Letters.1996,39:27-31.
    [213]Mukai SR, Masuda T, Ogino I, Hashimoto K. Preparation of encaged heteropoly acid catalyst by synthesizing 12-molybdophosphoric acid in the supercages of Y-type zeolite. Applied Catalysis A:General.1997,165:219-226.
    [214]Mukai SR, Lin L, Masuda T, Hashimoto K. Key factors for the encapsulation of Keggin-type heteropoly acids in the supercages of Y-type zeolite. Chemical Engineering Science.2001,56:799-804.
    [215]Mukai SR, Shimoda M, Lin L et al. Improvement of the preparation method of "ship-in-the-bottle" type 12-molybdophosphoric acid encaged Y-type zeolite catalysts. Applied Catalysis A:General.2003,256:107-113.
    [216]Jin D, Gao J, Hou Z et al. Microwave assisted in situ synthesis of USY-encapsulated heteropoly acid (HPW-USY) catalysts. In:Applied Catalysis A: General.2009. pp.259-264.
    [217]Pamin K, Kubacka A, Olejniczak Z et al. Immobilization of dodecatungstophosphoric acid on dealuminated zeolite Y: a physicochemical study. Applied Catalysis A:General.2000,194-195:137-146.
    [218]R.Borade AS, A. Adnot, S. Kaliaguine. Characterization of acidity in ZSM-5 zeolites:an x-ray photoelectron and IR spectroscopy study. The Journal of Physical Chemistry.1990,94:5989-5994.
    [219]Rhee KH, Udaya V, Rao S et al. Supported transition metal compounds: Infrared studies on the acidity of Co/ZSM-5 and Fe/ZSM-5 catalysts. Zeolites.1983, 3:337-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700