用户名: 密码: 验证码:
新型MABR除磷脱氮技术的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无泡曝气膜生物反应器(MABR)是利用气体分离膜作为微生物附着载体并为微生物膜提供氧气,利用微生物的生化特性去除水体中的COD、氨氮等污染物的一种新型污水处理技术。无泡曝气、氧气-底物异向传质和微生物膜分层结构是MABR系统最突出的三个特点,也使得MABR技术具有许多传统生物反应器无可比拟的优点。
     本论文设计了新型FT-MABR反应器,能够避免水流短路现象的产生,使水流均匀分布且保持水流错流流过中空纤维膜。开展了长期运行实验和跟踪实验,研究水流流速、进水负荷以及C/N对FT-MABR去除COD、氨氮和总氮效果的影响。重点分析水流流速对反应器性能以及脱氮效果的影响。长期运行实验表明,水流流速的提高有利于FT-MABR的抗冲击负荷能力以及对氧气的利用率的提高。高水流流速下,FT-MABR具有优先去除氨氮的能力,脱氮过程倾向于以亚硝酸盐为中间产物的短程反硝化过程。因此,FT-MABR能够在较低C/N下实现高效脱氮。C/N分别为3、5和7时,总氮去除率分别达到50.7%、70.8%和85.6%。FT-MABR适合对低C/N废水进行处理。
     结合MABR技术、间歇式曝气操作和人工强化生物膜脱落技术,开发出具有强化除磷脱氮功能的新型SMABR技术,对其除磷脱氮效果和操作参数进行了研究,为生物膜过程实现除磷脱氮进行了有意义的探索。SMABR能够创造好氧硝化-厌氧反硝化、释磷/好氧吸磷三个阶段,实现单一反应器内的除磷脱氮。SMABR对COD、氨氮和总磷的去除率分别能达到90%、95%和65%以上。实验首次实现了单一MABR反应器内的强化除磷脱氮。
     本文还对MABR技术处理真实制药废水的工业化应用进行了研究。结合水解酸化前处理和活性炭吸附后处理工艺,设计建造以MABR工艺为主要处理过程的中试规模制药废水处理系统。开展260天的长期运行实验,对曝气压力、曝气方式、循环流速以及水质水量变化对MABR处理效能的影响进行了研究。MABR过程能够去除制药废水中超过90%的COD和98%的氨氮,单位体积负荷率分别达到1.348kgCOD/m~3d和48.2gNH_4~+-N/m~3d,氧气利用率达到43.74%。MABR系统出水指标能够满足天津市污水排放标准。LC/ESI/MS结果表明,MABR对制药废水中多种高分子、难降解污染物均有良好的去除效果。
The membrane-aerated biofilm reactor (MABR) is a promising technology forwastewater treatment using gas permeable membrane as a carrier of biofilm and asupplier of oxygen to achieve the removal of chemical oxygen demand (COD), totalnitrogen (TN) and other contaminants. The three characteristics of MABR system is:no bubble aeration, oxygen-vary heterogeneous mass transfer, microbial hierarchicalstructure, which is also advantages of MABR. It is apparent that the MABR hasseveral advantages over conventional biofilm technology.
     The FT-MABR was designed to overcome feed flow short circuiting and achievefacilitated mass transfer. In the FT-MABR, the flow velocity was uniform and theflow direction was almost perpendicular with the hollow fiber membranes. The effectsof feed flow velocity, loading rate and COD/TN ratio on TN and COD removal wereinvestigated through a long-term study, a loading rate study and several batch studies.Nitrogen removal mechanism was mainly discussed. With the increase of flowvelocity, resistance impact load capability and oxygen utilization efficiency of theFT-MABR were enhanced. Meanwhile, ammonium was removed preferentiallycompared with COD. Batch studies indicated that, the increase of feed flow velocitysignificantly strengthened the accumulation of nitrite and TN removal in theFT-MABR. at the feed flow velocity of0.05m/s, when COD/N ratios were3,5and7,the TN removal efficiency reached to50.7%,72.8%and83.5%, respectively. TheFT-MABR is a feasible technology for the treatment of wastewater with low COD/TNratio.
     In this paper, a novel enhanced nitrogen and phosphorus removal technology-SMABR was developed with the combining the MABR technology with intermittentaeration operation and artificial enhanced biofilm shedding. The effects of nitrogenand phosphorus removal on operating parameters were studied and explored. SMABRis able to create aerobic nitrification, anaerobic denitrification/release of phosphorusand aerobic absorption of phosphorus in the same reactor. The removal efficiency ofCOD, TN and phosphorus in SMABR could reach to90%,95%and65%. Thisexperiment realized the removal of nitrogen and phosphorus in single MABRimplementation for the first time.
     A pilot-scale integrated membrane-aerated biofilm reactor (MABR) system,consisted of hydrolysis/acidification pretreatment, MABR process and activatedcarbon adsorption post-processing, was designed to treat the high-loading mixedpharmaceutical wastewater. A study of MABR process was conducted to investigatethe effect of aeration condition, circulation flow rate and water quality onperformance over260days. The performances of these processes were evaluated bythe removal efficiency of COD, BOD5, turbidity, NH_4~+-N and TN. MABR processcould effectively remove above90%of COD and98%of ammonia. The capacitiesper unit volume of MABR reached to1348gCOD/m~3d,48.2gNH_4~+-N/m~3d, andoxygen utilization rate was up to43.74%. After post-processing, the effluent ofintegrated treatment MABR system kept stable with COD below200mg/L andNH4+-N below3mg/L. The effluent quality of integrated MABR system could meetthe wastewater discharge standard. The results of LC/ESI/MS indicated that theintegrated MABR system could effectively remove the complex and persistentorganic compounds.
引文
[1] D.Y. Kwon, S. Vigneswaran, A.G. Fane, et al., Experimental determination ofcritical flux in cross-flow microfiltration, Sep. Purif. Technol.,2000,19(3):169-181
    [2] P. Le-Clech, B. Jefferson, S.J. Judd, Impact of aeration, solids concentration andmembrane characteristics on the hydraulic performance of a membrane bioreactor,J. Membr. Sci.,2003,218(l-2):117-129
    [3]卜庆杰,文湘华,黄霞,新型膜生物反应器在不同通量下的膜污染特性研究,环境污染治理技术与设备,2005,6(3):85-90
    [4]付婉霞,张璐璐,吕柏超,三种一体式MBR的膜污染趋势比较,中国给水排水,2005,21(2):50-52
    [5]王雪梅,刘燕,华志浩等,胞外聚合物对浸没式膜生物反应器膜过滤性能的影响,环境科学学报,2005,25(12):1602-1607
    [6]顾志明,赵军,王连军,一体式膜生物反应器膜污染研究,水处理技术,2005,31(11):43-45
    [7] I.S. Chang, S.O. Bag, C.H. Lee, Effects of membrane fouling on solute rejectionduring membrane filtration of activated sludge, Process Biochem.,2001,3(8-9):855-860
    [8] Dapena-Mora A., Campos J.L., Mosquera-rorral A., et a1., Stability of theANANMOX process in a gas-lift reactor and a SBR, J. Biotechnol.,2004,110(2):159-170
    [9]宋国华,BAF和MBR在石化废水深度处理中的应用,石油化工安全环保技术,2007,23(5):56-57
    [10]张杰,曹相生,孟雪征,曝气生物滤池的研究进展,中国给水排水,2002,18(8):26-29
    [11]熊欢伟,郭勇,李礼,杨平,新型颗粒生物膜生物转盘处理有机废水的研究中国给水排水,2009,25(1):75-81
    [12]I. Kapdan, F. Kargi, Biological decolorization of textile dyestuff containingwastewater by Coriolus versicolor in a rotating biological contactor, Enzyme.Mierob. Technal.,2002,30(2):195-199
    [13]I. Alemzadeh, F. Vossoughi, M. Houshmandi, Phenol biodegradation by rotatingbiological contactor, Biochem. Eng. J.,2002,11(1):19-23
    [14]王永才,陈卫,郑晓英等,生物接触氧化法的同步硝化反硝化影响因素研究,中国给水排水,2011,27(7):22-25
    [15]吴国旭,杨永杰,王旭,生物接触氧化法及其变形工艺,工业水处理,2009,29(6):9-11
    [16]郭杨,王世和,马金霞,膜生物流化床膜污染的影响因素研究,水处理技术,2009,35(6):28-31
    [17]M. Delnavaz, B. Ayati, H. Ganjidoust, Prediction of moving bed biofilm reactor(MBBR) performance for the treatment of aniline using artificial neural networks(ANN), J. Hazard. Mater.,2010,179:769-775
    [18]M. Strous, J.J. Beijnen, J.G. Kuenen, et al., The sequencing batch reactor as apowerful tool for the study of slowly growing anaerobic ammonium-oxidizingmicroorganisms, Appl. Microbiol. Biotechnol.,1998,50:589-596
    [19]黄霞,曹斌,文湘华,膜生物反应器在我国的研究与应用新进展,环境科学学报,2008,28(3):416-432
    [20]Z.M. Fu, F.L. Yang, F.F. Zhou, et al., Control of COD/N ratio for nutrient removalin a modified membrane bioreactor (MBR) treating high strength wastewater,Bioresour. Technol.,2009,100:136-141
    [21]T. Stephenson, K. Brindle, S. Judd, et al., Membrane Bioreactors for WastewaterTreatment Book, Cranfield University(UK), IWA Publishing,2000
    [22]张传义,黄霞,王丽萍,长期运行条件下膜生物反应器的膜污染特性,水处理技术,2005,31(5):42-45
    [23]E. Casey, B. Glennon, G. Hamer, Review of membrane aerated biofilm reactors.Resources, Conservation and Recycling,1999,27(1-2):203-215
    [24]K. Brindle, T. Stephenson, The Application of Membrane Biological Reactors forthe Treatment of Wastewaters, J. Biotechnol. Bioeng.,1996,49(6):601-610
    [25]E. Syron, E. Casey, Membrane-aerated biofilms for high rate biotreatment:performance appraisal engineering principles, scale-up, and developmentrequirements, Environ. Sci. Technol.,2008,42:1833-1844
    [26]李保安,闫庆元,于文志等,无泡曝气膜生物反应器去除生活污水有机物的研究,膜科学与技术,2009,29(6):56-60
    [27]T. Pankhania, T. Stephenson, M.J. Semmens, Hollow fiber bioreactor forwastewater treatment using bubble less membrane aeration, Water Res.,1994,28:233-236
    [28]M.J. Semmens, K. Dahm, J. Shanahan, et al., COD and nitrogen removal bybiofilms growing on gas permeable membranes, Water Res.,2003,37(18):4343-4350
    [29]R.C. Wang, A. Terada, S. Lackner, et al., Nitritation performance and biofilmdevelopment of co-and counter-diffusion biofilm reactors: modeling andexperimental comparison, Water Res.2009,43:2699-2709
    [30]H. Satoh, H. Ono, B. Rulin, et al., Macroscale and microscale analyses ofnitrification and denitrification in biofilms attached on membrane aerated biofilmreactors, Water Res.,2004,38(6):1633-1641
    [31]A.C. Cole, M.J. Semmens, T.M. LaPara, Stratification of activity and bacterialCommunity Strueture in biofilms grown on membranes transferring Oxygen,Appl. Environ. Microbiol.,2004,70(4):1982-1989
    [32]T.M. LaPara, A.C. Cole, J.W. Shanahan, et al., The effects of organic carbon,ammoniacal-nitrogen, and oxygen partial pressure on the stratification ofmembrane-aerated biofilms, J. Ind. Microbiol. Biotechnol.,2006,33(4):315-323
    [33]A. Terada, K. Hibiya, J. Nagai, et al., Nitrogen removal characteristics andbiofilm analysis of a membrane-aerated biofilm reactor applicable tohigh-strength nitrogenous wastewater treatment, J. Biosci. Bioeng.,2003,95(2):170-178
    [34]魏昕,新型MABR的设计及其去除有机物和氮素特性的研究:[硕士学位论文],天津,天津大学,2009
    [35]U. Abeling, C.F. Seyfried, Anaerobic-aerobic treatment of high-strength ammoniawastewater-nitrogen removal via nitrite, Water Sci. Technol.,1992,26(5-6):1007-1015
    [36]B. Rittmann, Aerobic biological treatment, Environ. Sci. Technol.,1987,21:128-136
    [37]K. Brindle, T. Stephenson, M. Semmens, Nitrification and oxygen utilization in amembrane aeration bioreactor, J. Membr. Sci.,1998,144:197-209
    [38]P.A. Wilderer, Technology of membrane biofilm reactor operated underperiodically changing process conditions, Water Sci. Technol.,1995,31(1):173-183
    [39]E. Münch, P. Lant, J. Keller, Simultaneous nitrification and denitrification inbench-scale sequencing batch reactors, Water Res.,1996,30:277-284
    [40]C. Pierre, Bubble-free aeration using membranes: mass transfer analysis, J.Membr. Sci.,1989,47(1):91-96
    [41]M. Studer, P.R. Von Rohr, Novel waste gas treatment process, able to cope withfluctuating loads, poorly water soluble VOCs and biomass accumulation, Chem.Ing. Tech.,2004,76(9):1235-1236
    [42]Y. Suzuki, N. Hatano, S. Ito, et al., Performance of nitrogen removal and biofilmstructure of porous gas permeable membrane reactor, Water Sci. Technol.,2000,41(4-5):211-217
    [43]F. Ahimou, M.J. Semmens, G. Haugstad, et al., Effect of protein, polysaccharide,and oxygen concentration profiles on biofilm cohesiveness, Appl. Environ.Microbiol.,2007,73:2905-2910
    [44]H.H. Chou, J.S. Huang, J.H. Jheng, et al., Influencing effect of intra-granule masstransfer in expanded granular sludge-bed reactors treating an inhibitory substrate,Bioresour. Technol.,2008,99:3403-3410
    [45]A. Cole, M. Semmens, T. LaPara, Stratification of activity and bacterialcommunity structure in biofilms grown on membranes transferring oxygen, Appl.Environ. Microbiol.,2004,70:1982-1989
    [46]S.J. Yeh, C.R. Jenkins, Pure oxygen fixed film reactor, J. Environ. Eng.,1978,104(4):611-623
    [47]H. Onishi, R. Numazawa, H. Takeda, Process and apparatus for wastewatertreatment, U.S.,4181604,1980
    [48]T.B ViekRoy, H.W Blaneh, C.R Wilke, Microbial hollow fiber bioreactors,Trends biotechnol.,1983,1(4):135-139
    [49]M.J. Semmens, Bubbleless aeration, water engineering and management,1991,138(4):18-19
    [50]S. Matsumoto, A. Terada, Y. Aoi, et al., Experimental and simulation analysis ofcommunity structure of nitrifying bacteria in a membrane-aerated biofilm. WaterSci. Technol.,2007,55(8-9):283-290
    [51]A. Terada, K. Hibiya, J. Nagai, et al., Nitrogen removal characteristics andbiofilm analysis of a membrane-aerated biofilm reactor applicable tohigh-strength nitrogenous wastewater treatment, J. biosci. Bioeng.,2003,95:170-178
    [52]刘鹏飞,朱文亭,刘旦玉,无泡曝气膜生物反应器去除高氨氮废水的试验研究,给水排水,2006,32(8):48-51
    [53]张雪琴,蒋柏泉,无泡曝气膜生物反应器处理生活污水的研究,南昌大学学报,2003,25(2):42-45
    [54]刘强,杨风林,张兴文,刘惠军,碳管膜曝气膜生物反应器处理高浓度氨氮污水的研究,2007,33(1):63-66
    [55]Z. Gong, F.L. Yang, S.T. Liu, et al., Feasibility of a membrane-aerated biofilmreactor to achieve single-stage autotrophic nitrogen removal based on Anammox,Chemosphere,2007,69:776-784
    [56]E. Casey, B. Glennon, G. Hamer, Biofilm development in a membrane-aeratedbiofilm reactor: effect of flow velocity on performance, Biotechnol. Bioeng.,2000,67(4):476-486
    [57]M. Pankhania, K. Brindle, T. Stephenson, Membrane aeration bioreactors forwastewater treatment: completely mixed and plug-flow operation, Chem. Eng. J.,1999,73(2):131-136
    [58]T. Ahmed, M.J. Semmens, M.A. Voss, Oxygen transfer characteristics of hollowfiber, composite membranes, Adv. Environ. Res.,2004,8:637-646
    [59]A.S. Kappell, M.J. Semmens, P.J. Novak, et al., Novel application ofoxygen-transferring membranes to improve an aerobic wastewater treatment,Biotechnol. Bioeng.,2005,89(4):373-380
    [60]M. González-Brambilaa, O. Monroya, F. López-Isunzab, Experimental andtheoretical study of membrane-aerated biofilm reactor behavior under differentmodes of oxygen supply for the treatment of synthetic waste water, Chem. Eng.Sci.,2006,61:5268-5281
    [61]E. Casey, S. Rishell, B. Glennon, et al., Engineering aspects of amixedmethanotrophic culture in a membrane-aerated biofilm reactor, Water Sci.Technol.,2004,49(1l-12):255-262
    [62]K. Hibiya, A. Terada, S. Tsuneda, et al., Simultaneous nitrification anddenitrification by controlling vertical and horizontal microenvironment in amembrane-aerated biofilm reactor, J. Biotechnol.,2003,100(1):23-32
    [63]A. Wobus, S. Ulrich, I. Roske, Degradation of chlorophenols by biofiims onsemi-permeable membranes in two types of fixed bed reactors, Water Sci.Technol.,1995,32(8):205-212
    [64]B.Q. Liao, S.N. Liss, A comparative study between thermophilic and mesophilicmembrane aerated biofilm reactors, J. Environ. Eng. Sci.,2007,6(2):247-252
    [65]刘贯一,刘晓阳,孙锦程,改良生物膜法的硝化与反硝化条件试验,中国给水排水,2003,19(5):64-66
    [66]D. de Beer, A. Schramm, CM. Santegoeds, et al., A nitrite microsensor forprofiling environmental biofilms, Appl. Environ. Microbiol.,1997,63(3):973-977
    [67]K. Hibiya, A. Terada, S. Tsuneda, et al., Simultaneous nitrification anddenitrification by controlling vertical and horizontal microenvironment in amembrane-aerated bioflim reactor, J. Biotechnol.,2003,100:23-32
    [68]H. Satoh, H. Ono, B. Rulin, Macroscale and microscale analyses of nitrificationand denitrification in biofilms attached on membrane aerated biofilm reactors,Water Res.,2004,38(6):1633-1641
    [69]A.C. Cole, M.J. Semmens, T.M. Lapara, Preliminary studies on the microbialcommunity structure of membrane-aerated biofilms treating municipalwastewater, Desalination,2002,146(1-3):421-426
    [70]N.J. Essilia, M.J. Semmens, V.R. Voller, Modelling biofilm on gas permeablesupports: concentration and activity profiles, J. Environ. Eng.,1997,26:250-267
    [71]E. Caesy, B. Glennor, G. Hamon, Oxygen mass transfer characterisation in amebrane attached biofilm, Journal of Biotechnology and Bioengineering,1999,62:183-192
    [72]J.W Shanahan, M.J. Semmens, Multipopulation model of membrane-aeratedbiofilms, Environ. Sci. Technol.,2004,38(11):3176-3183
    [73]A. Terada, T. Yamamoto, K. Hibiya, et al., Enhancement of biofilm formationonto surface-modified hollow-fiber membranes and its application to amembrane-aerated biofilm reactor, Water Sci. Technol.,2004,49(11-12):263-268
    [74]P.A. Wilderer, J. Brautigam, I. Sekoulov, Application of gas permeablemembranes for auxiliary oxygenation of sequencing batch reactors. Conserv,Recycling,1985,8:181-192
    [75]C. Rothemund, A. Camper, P.A. Wilderer, Biofilms growing on gas permeablemembranes, Water Sci. Technol.,1994,29:447-454
    [76]M.J. Semmens, J.S. Gulliver, A. Anderson, An analysis of bubble formation usingmicroporous hollow fiber membranes, Water Environ. Res.,1999,71(3):307-316
    [77]T. Ahmed, M.J. Semmens, M.A. Voss, Oxygen transfer characteristics ofhollowfiber, composite membranes, Adv. Environ. Res.,2004,8:637-646
    [78]J. Li, L.P. Zhu, Y.Y. Xu, et al., Oxygen transfer characteristics of hydrophilictreated polypropylene hollow fiber membranes for bubbleless aeration, J. Membr.Sci.,2010,362:47-57
    [79]H. Liu, F.L. Yang, T.H. Wang, et al., Carbon membrane aerated biofilm reactorfor synthetic wastewater treatment, Bioprocess Biosystems Eng.,2007,30:217-224
    [80]A.G. Livingston, A novel membrane bioreactor for detoxifying industrialwastewaters: Biodegradation of phenol in a synthetically concocted wastewater, J.Biotechnol. Bioeng.,1993,41:915-926
    [81]A.R. Motlagh, T.M. LaPara, M.J. Semmens, Ammonium removal inadvective-flow membrane-aerated biofilm reactors (AF-MABRs), J. Membr. Sci.,2008,319:76-81
    [82]E. Syron, E. Casey, Model-based comparative performance analysis of membraneaerated biofilm reactor configurations, Biotechnol. Bioeng.,2008,99(6):1361-1373
    [83]D. Ohandja, D.C. Stuckey, Biodegradation of PCE in a hybrid membrane aeratedbiofilm reactor, J. Environ. Eng.,2007,133(1):20-27
    [84]L.S. Downing, R. Nerenberg, Total nitrogen removal in a hybrid,membrane-aerated activated sludge process, Water Res.,2008,42:3697-3708
    [85]C.M. Ho, S.K. Tseng, Y.J. Chang, Simultaneous nitrification and denitrificationusing an autotrophic membrane-immobilized biofilm reactor, Lett. Appl.Microbiol.,2002,35(6):481-485
    [86]D.L. Timberlake, S.E. Strand, K.J. Williamson, Combined aerobic heterotrophicoxidation, nitrification and denitrification in a permeable-support biofilm, WaterRes.,1988,22(12):1513-1517
    [87]D. Ohandja, D. Stuckey, Development of a membrane‐aerated biofilm reactor tocompletely mineralise perchloroethylene in wastewaters, J. Chem. Technol.Biotechnol.,2006,81(11):1736-1744
    [88]张剑,MABR处理模拟采油废水的研究:[硕士学位论文],天津,天津大学,2010
    [89]K. Brindle, T. Stephenson, M.J. Semmens, Pilot-plant treatment of a high-strengthbrewery wastewater using a membrane-aeration bioreactor, Water Environ. Res.,1999,71:1197-1204
    [90]A. Stricker, H. Lossing, J.H. Gibson, et al., Pilot scale testing of a newconfiguration of the membrane aerated biofilm reactor (MABR) to treathigh-strength industrial sewage, Water Environ. Res.,2011,83(1):3-14.
    [91]郑兴灿,李亚新.污水除磷脱氮技术,北京,中国建筑工业出版社,1998
    [92]沈耀良,王宝贞,废水生物处理新技术理论与应用,北京,中国环境科学出版社,1999
    [93]S. Winogradsky, The nitrifying organisms, Washington, Milestones inMicrobiology,1890
    [94]章非娟,生物脱氮技术,北京,中国环境科学出版社,1992
    [95]H.P. Koops, A. Pommerening-Roser, Distribution and ecophysology of thenitrifying bacteria emphasizing cultured species, FEMS Microbiol. Ecol.,2001,37(l): l-9
    [96]C. Collivignarelli, G. Bertanza, Simultaneous nitrification and denitrificationprocess in activated sludge Plants: performance and applicability, Water Sci.Technol.,1999,40(4-5):187-194
    [97]A. Mosquera-Corral, F. Gonzalez, J.L. Campos, Partial nitrification in aSHARON reactor in the presence of salts and organic carbon compounds, ProcessBiochem.,2005,40(9):3109-3118
    [98]H. Yoo, K.H. Alm, H.J. Lee, et al., Nitrogen removal from synthetic wastewaterby simultaneous nitrification and denitrification (SND) via nitrite in anintermittently-aerated reactor, Water Res.,1999,33(1):145-154
    [99]C. Collivignarelli, G. Bertanza, Simultaneous nitrification and denitrificationprocess in activated sludge plants: performance and applicability, Water Sci.Technol.,1999,40(4-5):187-194
    [100]李锋,朱南文,李树平等,有氧情况下同时硝化/反硝化的反应动力学模式,中国给水排水,1999,15:58-60
    [101] K. Pochana, J. Keller, Study of factors affecting simultaneous nitrificationand denitrification (SND), Water Sci. Technol.,1999,39(6):61-68
    [102] A.T. Katie, B. Natalie, C.R. Ralf, Simu1taneous nitrification anddenitrification using stored substrate (pHB) as the electron donor in an SBR,Biotechnol. Bioeng.,2003,83(6):706-720
    [103] C. Hellinga, A. Schellen, J. Mulder, et al., The sharon process: an innovativemethod for nitrogen removal from ammonium-rich waste water, Water Sci.Technol.,1998,37:135-142
    [104] L.S. Downing, R. Nerenberg, M. van Loosdrecht, et al., Performance andmicrobial ecology of the hybrid membrane biofilm process for concurrentnitrification and denitrification of wastewater, IWA Publishing, UK,2007
    [105] Q. Yang, Y. Peng, X. Liu, et al., Nitrogen removal via nitrite from municipalwastewater at low temperatures using real-time control to optimize nitrifyingcommunities, Environ. Sci. Technol.,2007,41:8159-8164
    [106] E. Syron, E. Casey, Model-based comparative performance analysis ofmembrane aerated biofilm reactor configurations, Biotechnol. Bioeng.,2008,99:1361-1373
    [107] A.O. Sliekers, C.M.S. Haaijer, M.H. Stafsnes, et al., Competition andcoexistence of aerobic ammonium and nitrite oxidizing bacteria at low oxygenconcentrations, Appl. Microbiol. Biotechnol.,2005,68:808-817
    [108] J.L. Wang, J. Kang, The characteristics of an aerobic ammonium oxidation(ANAMMOX) by granular sludge from an EGSB reactor, Process Biochem.,2005,40(5):1973-1978
    [109] A.A. Van de Graaf, A. Mulder, P. de Bruijn, et al., Anaerobic oxidation ofammonia is a biologically mediated process, Appl. Environ. Microbiol.,1995,61(4):1246-1251
    [110] A. Mulder, A.A. Van de Graaf, L.A. Robertson, et al., Anaerobic ammoniumoxidation discovered in a denitrifying fluidized bed reactor, FEMS Microbiol.Ecol.,1995, l6(3):177-184
    [111] M. Jetten, M. Wagner, J. Fuerst, et al., Microbiology and application of theanaerobic ammonium oxidation (anammox) process, Curr. Opin. Biotechnol.,2001,12(3):283-288
    [112] M. Strous, J.A. Fuerst, E.H. Kramer, et al., Missing lithotroph identified asnew planctomycete, Nature,1999,400(6743):446-449
    [113] M.C. Sclunid, B. Maas, A. DaPena, et al., Biomarkers for in situ detection ofanaerobic ammonium oxidizing (anammox) bacteria, Appl. Environ. Microbiol.,2005,71(4):1677-1684
    [114] X. Hao, J. Heijnen, M. van Loosdreche, Model-based evaluation oftemperature and inflow variations on a partial nitrification-ANAMMOX biofilmprocess, Water Res.,2002,36:4839-4849
    [115] S. Downing, R. Nerenberg, Effect of oxygen gradients on the activity andmicrobial community structure of a nitrifying, membrane-aerated biofilm,Biotechnol. Bioeng.,2008,101:1193-1204
    [116]沈耀良,王宝贞,废水生物除磷工艺中聚磷菌的作用机制及运行控制要点,环境科学与技术,1995,69(2):11-16
    [117]魏深,张晚凉,废水除磷工艺中聚磷菌及其缺氧态下吸磷现象,重庆环境科学,2000,22(4):44-46
    [118]罗志腾,污染控制工程微生物学,北京,北京科学技术出版社,1988
    [119]徐亚同,废水氮磷的处理,上海,华东师范大学出版社,1996
    [120] P.C. Lemos, C. Viana, E.N. Salgueiro, et al., Effect of carbonsource on theformation of polyhydroxyalkanoates (PHA) by aphosphate-accumulating mixedculture, Enzyme Microb. Technol.,1998,22(8):662-671
    [121] H. Pereira, P.C. Lemos, M. Reis, et al., Model for carbon metabolism inbiological phosphorus removal processes based on vivoll3C-NMR labelingexperiments, Water Res.,1996,30(9):2128-2138
    [122]郝晓地,汪慧贞,钱易,等,欧洲城市污水处理技术新概念-可持续生物除磷脱氮工艺(上),给水排水,2002,28(6):6-11
    [123] J. Kerrn-Jespersen, M. Henze, Biological phosphorus uptake under anoxicand aerobic conditions, Water Res.,1993,27(4):617-624
    [124] M. Pijuan, A. Guisasola, J.A. Baeza, et al., Aerobic phosphorus releaselinked to acetate uptake: Influence of PAO intracellular storage compounds,Biochem. Eng. J.,2005,26(2-3):184-190
    [125] S. Tsuneda, T. Ohno, K. Soejima, et al., Simultaneous nitrogen andphosphorus removal using denitrifying phosphate-accumulating organisms in asequencing batch reactor, Biochem. Eng. J.,2006,27(3):191-196
    [126] T. Kuba, M. van Loosdrecht, J. Heijnen, Phosphorus and nitrogen removalwith minimal COD requirement by integration of denitrifying dephosphatationand nitrification in a two-sludge system, Water Res.,1996,30(7):1702-1710
    [127] K.S. Jorgensen, A. Pauli, Polyphosphate accumulation among denitrifyingbacteria in activated sludge, Anaerobe,1995,1(3):161-168
    [128] P. Barker, P. Dold, Denitrification behavior in biological excess phosphorusremoval activated sludge systems, Water Res.,1996,30(4):769-750
    [129] T. Kuba, M. van Loosdrecht, Phosphorus removal from wastewater byanaerobic-anoxic sequencing bateh reaetor, Water Sci. Technol.,1993,27(5-6):241-252
    [130] T. Mino, W. Liu, F. Kurisu, et al., Modelling glycogen storage anddenitrification capability of microorganisms in enhanced biological phosphateremoval processes, Water Sci. Technol.,1995,31(2):25-34
    [131] A. Wachtmeister, T. Kuba, M. Van Loosdrecht, A sludge characterizationassay for aerobic and denitrifying phosphorus removing sludge, Water Res.,1997,31(3):471-478
    [132] J. Hu, S. Ong, W. Ng, et al., A new method for characterizing denitrifyingphosphorus removal bacteria by using three different types of electron acceptors,Water Res.,2003,37:3463-3471
    [133] T. Kuba, M. Van Loosdrecht, Biological dephosphatation by activated sludgeunder denitrifying conditions: PH Influence and occurrence of dentrifyingdephosphatation in a full-scale wastewater treatment plant, Water Sci. Technol.,1999,36(12):75-82
    [134] J. Li, X. Xing, B. Wang, Characteristics of phosphorus removal fromwastewater by biofilm sequencing batch reactor (SBR), Biochem. Eng. J.,2003,16:279-285
    [135] F. Rogalla, T. Johnson, J. Mcquarrie, Fixed film phosphorus removal flexibleenough?, Water Sci. Tech.,2006,53:75-81
    [136] B. Wang, J. Li, L. Wang, et al., Mechanism of phosphorus removal by SBRsubmerged biofilm system, Water Res.,1998,32(9):2633-2638
    [137] T. Clark, T. Stepphenson, P. Pearce, Phosphorus removal by chemicalprecipitation in a biological aerated filter, Water Res.,1997,31(10):2557-2563
    [138] H. Satoh, H. Ono, B. Rulin, et al., Macroscale and microscale analyses ofnitrification and denitrification in biofilms attached on membrane aerated biofilmreactors, Water Res.,2004,38(6):1633-1641
    [139] P. A. Castillo, S. Gonzalez-Martinez, I. Tejero, Biological phosphorusremoval using a biofilm membrane reactor: operation at high organic loadingrates, Water Sci. Technol.,1999,40(4-5):321-329
    [140] O.V. Enick, M.M. Moore, Assessing the assessments: pharmaceuticals in theenvironment, Environ. Impact Assess. Rev.,2007,27:707-729
    [141] Y.A. Oktem, O. Ince, P. Sallis, et al., Anaerobic treatment of a chemicalsynthesis-based pharmaceutical wastewater in a hybrid upflow anaerobic sludgeblanket reactor, Bioresour. Technol.,2007,99:1089-1096
    [142] M. Carballa, F. Omil, J.M. Lema, et al., Behavior of pharmaceuticals,cosmetics and hormones in a sewage treatment plant, Water Res.,2004,38:2918-2926
    [143] R. Juang, S. Tsai, Role of membrane-attached biofilm in the biodegradationof phenol and sodium salicylate in microporous membrane bioreactors, J. Membr.Sci.,2006,282(1-2):484-492
    [144] Y. Feng, S. Tseng, T. Hsia, et al., Partial nitrification of ammonium-richeastewater as pretreatment for anaerobic ammonium oxidation (anammox) usingmembrane aeration bioreactor, J. Biosci. Bioeng.,2007,104(3):182-187
    [145] T. Li, J. Liu, R. Bai, et al., Membrane-aerated biofilm reactor for thetreatment of acetonitrile wastewater, Environ. Sci. Technol.,2008,42(6):2099-2104
    [146] C. Cao, L. Zhao, D. Xu, et al., Membrane-aerated biofilm reactor behaviorsfor the treatment of high-strength ammonium industrial wastewater, Chem. Eng.Technol.,2009,32(4):613-621
    [147] D.G. Ohandja, D.C. Stuckey, Effect of perchloroethylene (PCE) andhydraulic shock loads on a membrane-aerated biofilm reactor (MABR)biodegrading PCE, J. Chem. Technol. Biotechnol.,2010,85(2):294-301
    [148] S. Mudliar, S. Baneriee, A. Vaidya, et al., Steady state model for evaluationof external and internal mass transfer effects in an immobilized biofilm, Bioresour.Technol.,2008,99:3468-3474
    [149] H. Beyenal, Z. Lewandowski, Internal and external mass transfer in biofilmsgrown at various flow velocities, Biotechnol. Prog.,2002,18:55-61
    [150] C. Picioreanu, M. van Loosdrecht, J. Heijnen, Two-dimensional model ofbiofilm detachment caused by internal stress from liquid flow, Biotechnol.Bioeng.,2001,72:205-218
    [151] E. McLamore, W.A. Jackson, A. Morse, Abiotic transport in a membraneaerated bioreactor, J. Membr. Sci.,2007,298:110-116
    [152] N.K. Rahman, M.Z. Abu Bakar, M.H. Uzir, et al., Modelling on the effect ofdiffusive and convective substrate transport for biofilm, Math. Biosci.,2009,218:130-137
    [153] T.M. LaPara, A.C. Cole, J.W. Shanahan, et al., The effects of organic carbon,ammoniacal-nitrogen, and oxygen partial pressure on the stratification ofmembrane-aerated biofilms, J. Ind. Microbiol. Biotechnol.,2006,33:315-323
    [154] S. Matsumoto, A. Terada, Y. Aoi, et al., Experimental and simulation analysisof community structure of nitrifying bacteria in a membrane-aerated biofilm,Water Sci. Technol.,2007,55:283-290
    [155] W. Kwok, C. Picioreanu, S. Ong, et al., Influence of biomass production anddetachment forces on biofilm structures in a biofilm airlift suspension reactor,Biotechnol. Bioeng.,1998,58:400-407
    [156] Y. Liu, Chemically reduced excess sludge production in the activated sludgeprocess, Chemosphere,2003,50(1):1-7
    [157] G.D. Zupancic, M. Ros, Aerobic and two-stage anaerobic-aerobic sludgedigestion with pure oxygen and air aeration, Bioresour. Technol.,2008,99(1):100-109
    [158] W. Ghyoot, W. Verstraete, Reduced sludge production in a two-stagemembrane-assisted bioreactor, Water Res.,2000,34(1):205-215
    [159] Q.Y. Wang, Z.W. Wang, Z.C. Wu, Sludge reduction and process performancein a submerged membrane bioreactor with aquatic worms, Chem. Eng. J.,2011,172:929-935
    [160]魏源送,郑祥,刘俊新,国外膜生物反应器在污水处理中的研究进展,工业水处理,2003,23(1):1-7
    [161] B. Abbassi, S. Dullstein, N. Rabiger, Minimization of excess sludgeproduction by increase of oxygen concentration in activated sludge flocs;experimental and theoretical approach, Water Res.,2000,34(1):139-146
    [162] C.M. Mark, V. Loosdrecht, M. Henze, Maintenance endogeneous respirationlysis decayand predation, Water Sci. Technol.,1999,39(1):107-117
    [163] A. Schramm, D. Beer, M. Wagner, et al., Identification and activities in situof Nitrosospira and Nitrospira spp. as dominant populations in a nitrifyingfluidized bed reactor, Appl. Environ. Microbiol.,1998,64:3480-3485
    [164] P.N Carles, S.P. Sun, S. Lackner, et al., Sequential Aeration ofMembrane-Aerated Biofilm Reactors for High-Rate Autotrophic NitrogenRemoval: Experimental Demonstration, Environ. Sci. Technol.,2010,44:7628-7634
    [165] T. Zhang, H. Herbert, P. Fang, Applications of real-time polymerase chainreactionfor quantification of microorganisms in environmental samples, Appl.Microbiol. Biot.,2006,70(3):281-289
    [166]杨座国,膜科学技术过程与原理,上海,华东理工大学出版社,2009
    [167]黄维菊,魏星,膜分离技术概论,北京,国防工业出版社,2008
    [168]华耀祖,超滤技术与应用,北京,化学工业出版社,2004
    [169]顾国维,何义亮.膜生物反应器,北京,化学工业出版社,2002
    [170]刘茉娥,蔡邦肖,陈益棠.膜技术在污水治理及回用中的应用,北京:化学工业出版社,2004
    [171]祁佩时,王娜,刘云芝,马超. Fenton氧化-活性炭吸附协同深度处理抗生素制药废水研究,净水技术,2008,27(6):38-41
    [172]范举红,刘锐,冯军,H2O2预氧化—粉末活性炭吸附深度处理制药废水二级生化出水的研究,工业用水与废水,2011,42(3):17-20
    [173] L. Tong, P. Li, Y. Wang, et al., Analysis of veterinary antibiotic residues inswine wastewater and environmental water samples using optimizedSPE-LC/MS/MS, Chemosphere,2009,74:1090-1097
    [174] C. Lacey, G. McMahon, J. Bones., et al., An LC-MS method for thedetermination of pharmaceutical compounds in wastewater treatment plantinfluent and effluent samples, Talanta,2008,75:1089-1097
    [175] R.F. de Sena, J.L. Tambosi, Genenaa,Treatment of meat industry wastewaterusing dissolved air flotation and advanced oxidation processes monitored byGC-MS and LC-MS, Chem. Eng. J.,2009,152:151-157

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700