用户名: 密码: 验证码:
应变速率对不同强度级别TRIP钢力学行为影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为车身用钢,车身部件在成形过程中的变形速率约在10-1~10s-1之间,在汽车行驶过程中发生撞击时其变形速率则处于102~103s-1范围。因此,研发TRIP(TRansformation Induced Plasticity)钢必须了解其在各种应变速率条件下的变形行为和微观组织的演化规律;认识钢中各组成相的力学响应特性,从本质上掌握TRIP钢在各种变形速率下的强化及失效机制。
     本工作以600MPa、700MPa以及900MPa级TRIP钢作为主要研究对象,同时将DP钢(Dual Phase,拉伸过程中不发生相变)作为“参照系”展开实验分析。首先采用电子万能试验机、旋转盘式杆杆型冲击拉伸试验机和Zwick HTM5020并辅以红外测温仪对TRIP钢在不同应变率条件下的力学行为进行了分析,而后采用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)等对拉伸前、后TRIP钢中的组织形貌进行了观察。此外,采用内耗仪以及原位测试试验装置对钢中相变行为进行了研究,并结合相图热力学理论对TRIP钢相变行为进行了初步的揭示。主要研究结果如下:
     1、通过对实验钢在0.001~2000s-1应变率范围内的力学研究发现:随着应变速率的提高,三种TRIP钢的屈服强度、抗拉强度都增加,而断裂延伸率则先减小后增加,在应变速率600s-1附近时,三种TRIP钢断裂延伸率都达到最小;600MPa级TRIP钢应变率敏感性最大,不同应变速率下其强度和延伸率波动都最大。变形局部化导致动态下的TRIP钢和DP钢断裂延伸率都比静态下小,高应变速率下的绝热温升效应使得TRIP钢和DP钢的断裂延伸率增大。DP钢的绝热温升效应大于变形局部化效应,导致2000s-1应变速率下DP钢的断裂延伸率超过静态时的水平;TRIP钢中残余奥氏体“渐进式相变”被变形局部化所抑制,造成动态下TRIP钢的断裂延伸率无法达到静态时的水平。
     2、TRIP钢的力学性能主要取决于残余奥氏体的含量和稳定性,通过对600MPa、700MPa以及900MPa级TRIP钢进行原位测试试验发现:600MPa级TRIP钢在屈服结束之后才产生马氏体相变,700MPa和900MPa级TRIP钢中的残余奥氏体分别在外加载荷502MPa(σ0.2=486MPa)和657.8MPa(σ0.2=538.8MPa)时产生向马氏体的转变;由此可以认为,TRIP钢中的残余奥氏体向马氏体的相变是应变导致相变。另外,通过TRIP钢在不同热处理条件下的残余奥氏体含量随应变转变的实验数据和文献中的相关数据,建立起残余奥氏体量与应变量的关系式,该公式预测的结果与实验结果符合的较好。
     3、钢的马氏体转变开始温度(Ms点)对分析马氏体相变过程,指导合金设计,制定热处理工艺方面有重要意义。基于马氏体相变热力学和亚点阵模型,建立了Fe-C-Mn-Si系合金马氏体相变自由能表达式;利用Compaq VisualFortran6软件自行编写程序,应用Thermo-Calc软件及TQ接口模块,成功预测了不同成分Fe-C-Mn-Si系合金的Ms温度;
     4、建立了TRIP钢静态下真应力-真应变表达式,该公式模拟的曲线与实验获得的数据非常吻合。结合前面残余奥氏体量与应变量的关系式和Ms温度计算方法,利用该表达式对残余奥氏体发生马氏体相变所需要的功做出量化描述。
     5、在对TRIP钢变形与断裂机理研究时发现:TRIP钢的断裂形式为微孔洞的形核、长大和聚合引起的延性断裂。随着应变率增加孔洞长大速率增加,残余奥氏体的形变诱发相变延缓或者抑制孔洞的形核、减缓孔洞的长大速率,动态拉伸过程中孔洞主要集中在铁素体中。相同铁素体含量的DP钢的微孔洞形成临界应变量比TRIP钢的要小。在600MPa级TRIP钢准静态拉伸断裂后的颈缩区域中同时观察到孤岛状和薄膜状两种形态的残余奥氏体,而在动态拉伸后的断裂试样的颈缩区仅发现了薄膜状残余奥氏体。
When applied to manufacture car body parts, the steel is deformed at a rate inthe range of10-1~10s~(-1).Nevertheless, during a car crash, the steel is deformed at arate up to102~103s~(-1).Therefore, to clarify the mechanical behavior andmicrostructure evolution under various strain rates becomes a critical important topicduring the development of TRIP (TRansformation Induced Plasticity) steel. Withinthis topic, it is crucial to understand the mechanical response of each phase of thematerial and elucidate the strengthening and failure mechanism under various strainrates.
     Three grades of TRIP-aided steels,600MPa、700MPa and900MPa, wereselected in the current work. A Dual Phase steel (DP) is employed as a reference dueto its characteristic of no phase transformation during dynamic impact. Themechanical behaviors of samples were investigated by universal material testmachine, rotation disk bar-bar tensile impact apparatus as well as high-speedmaterial testing machine Zwick HTM5020equipped with an infrared radiationthermometer. The microstructure of the samples before and after tensile test wascharacterized by OM (optical microscopy), SEM (scanning electron microscope) andTEM (transmission electron microscope). Moreover, the phase transformationbehaviors of steels were investigated by thermodynamics and experiments via aninternal friction instrument plus an in-situ tensile test apparatus. The mainconclusions can be drawn as follows:
     1, The results of mechanical behaviors show that the yield strength and tensilestrength of TRIP-aided steels increase with the strain rate in the range of0.001~2000s~(-1). The elongation to fracture of TRIP-aided steels firstly decrease with strainrate, then increase as the rate reached around600s~(-1).600MPa grade TRIP-aided steelhas the biggest strain rate sensitivity because its strength and elongation are most fluctuant. Compared with the situation under static tensile load, the localization ofdeformation leads to even lower fracture elongation, while the adiabatic heating athigh strain rate leads to the increase of fracture elongation. Since the influence ofadiabatic heating is greater than that of deformation localization under the rate of2000s~(-1), DP steel shows higher elongation to fracture compared with that under statictensile load. Because the “gradual transformation” of retained austenite is inhibitedby deformation localization, TRIP-aided steels show lower elongation than thatunder static tensile load.
     2, The mechanical properties of TRIP-aided steel mainly depends on the contentand stability of retained austenite. The in-situ tensile test results of three grades ofTRIP-aided steels show that the martensite transformation in600MPa gradeTRIP-aided steel only occurred after the yielding stage, and the retained austenite in700MPa and900MPa grade TRIP-aided steel transform to martensite at the appliedload502MPa(σ0.2=486MPa) and657.8MPa(σ0.2=538.8MPa). It can be concludedthat this martensite transformation is caused by the strain. Furthermore, this workdetermined a relationship between the content of retained austenite and strain. Therelationship is based on experiment results on strain induced transformation behaviorof retained austenite and some other data from literatures. It shows that theprediction of this expression accords very well with the experiment results.
     3, The martensite transformation start temperature is of great importance forunderstanding the martensite transformation, designing new alloys and establishingthe heat treatment procedures. Based on the thermodynamics of martensitetransformation and sub-lattice model, this work worked out the expression of Gibbsenergy for martensite transformation of Fe-C-Mn-Si alloy. Combined withThermo-Calc and TQ interface, modeling with Compaq Visual FORTRAN6wascarried out to calculate the Ms temperature of Fe-C-Mn-Si alloy.
     4, Established the relationship between the real stress and real strain. And themodeling results agree well with the experiment. Combined with the relationship between retained austenite and strain as well as the Ms temperature model, it made aquantitative description about the energy of martensitic transformation of retainedaustenite.
     5, The investigation on the mechanism of fracture shows that TRIP-aided steelsshow a typical ductile fracture pattern including the nucleation, growth andcoalescence of micro-voids. The growth rate of micro-voids increases with the strainrate. And the nucleation and growth of micro-voids are retarded by the strain inducedtransformation of retained austenite. Moreover, the micro-voids are mainlydistributed in ferrite under dynamic tensile load. The critical strain for formation ofmicro-voids in TRIP-aided steels is higher than that in DP steel which possesses thesame content of ferrite with the former. For600MPa grade TRIP-aided steel, islandand film shaped retained austenite was detected in necking zone after static tensiletest, while only film shaped retained austenite was detected in necking zone afterdynamic tensile test.
引文
[1]陈祖达,外商直接投资、技术创新与中国汽车产业集中度研究[D],[硕士论文],东南大学,2006
    [2]http://politics.people.com.cn/GB/15580221.html人民网
    [3]沈迪新,陈宏德,田群,我国汽车尾气污染,污染控制与对策[J],环境科学进展,1997,5(6):23-32
    [4]马超群,储慧斌,李科等,中国能源消费与经济增长的协整与误差校正模型研究[J],2004,22(10):47-50
    [5]http://auto.163.com/10/0709/10/6B53JH6B000816HJ.html
    [6]Advanced high strength steel (AHSS) application guidelines,2009, Available onhttp://www.worldautosteel.org/Projects/AHSS-Guidelines.aspx.
    [7]V. F. Zackay, E. R. Parker, D. Fahr et al, The Enhancement of Ductility on High-StrengthSteels [J], Trans. of ASM,1967,60(2),252-258
    [8]王利,朱晓东,张丕军等,宝钢技术[J],2003,5:53-59.
    [9]史巨元,钢的动态力学性能及应用[M],冶金工业出版社,1993
    [10]韦习成,谢群,符仁红等,HSLA TRIP钢的动态拉伸行为及其模拟[J],材料研究学报,2006,20(5):556-560
    [11]徐祖耀,马氏体相变和马氏体[M],北京,科学出版社,1999.
    [12]A. K. Sinha, Ferrous Physical Metallurgy[M], Stoneham, MA(USA), Butterworths,1989
    [13]S. Hayami, T. Furukawa, In: Korchynsky M, editor. Microalloying75proceedings of aninternational symposium on high-strength, low-alloy steels. New York: Union CarbideCorporation;1977.311.
    [14]J. Wang, S. Zwaag, Stabilization mechanisms of retained austenite in transformation–induced plasticity steel[J], Metallurgical and Materials Transaction A,2001,32:1527-1539
    [15]S.Sun, M.Pugh, Manganese Partitioning in Dual-phase Steel during Annealing[J], MaterialsScience and Engineering A,2000,276:167-174
    [16]A.I.Katsamas, A.N.Vasilakos, G.N.Haidemenopoulos, Simulation of Intercritical Annealingin Low-alloy TRIP Steels[J], Steel Research,2000,71(9):351-356
    [17]G.Ghosh, G.B.Olson, Simulation of Paraequilibrium Growth in Multicomponent Systems[J],Metallurgical and Materials Transactions A,2001,32:455-467
    [18]G.R.Purdy, M.Hillert, On the Nature of the Bainite Transformation in Steels[J], ActaMetallurgica,1984,6:823
    [19]H.K.D.K. Bhadeshia, Bainite in steels[M], London, UK, The Institute of Materials,2001
    [20]G.I. Rees, H.K.D.K. Bhadeshia, Bainite Transformation Kinetics: Modified Model [J],Materials Science and Technology,1992,8:306
    [21]H.K.D.H.Bhadeshia, Some Phase Transformations in Steels [J], Materials Science andTechnology,1999,15:22-29
    [22]D.Quidort, Y.Brechet,Isothermal growth kinetics of bainitein0.5%C steels[J], Acta Mater.2001,49:4161-4170
    [23]D.Quidort, Y.Brechet, The Role of Carbon on the Kinetics of the Bainite Transformation inSteels[J], Scripta Materialia,2002,47(3):151-156
    [24]D.Quidort, D.Bouaziz, The Bainite Transformation Stage in the Processing of TRIP-aidedSheet Steels[J], Canadian Metallurgical Quarterly,2004,43(1):25-34
    [25]D.Van Dooren, B.C.De Cooman, P.Thibaux, Proceedings of the International Conference onAdvanced High Strength Sheet Steels for Automotive Applications, Winter Park, Colorado, June6-9,2004,247-257
    [26]Y. Sakuma, O. Matsumura, O. Akisue, Influence of C Content and Annealing Temperatureon Microstructure and Mechanical Properties of400Transformed Steel Contained RetainedAustenite[J]. ISIJ International,1991,31(9):1348-1353
    [27]P.J. Jacques, E. Girault, P. Harlet, F. Delannay. The Development of Cold RolledTRIP-Assisted Multiphase Steels Al-alloyed TRIP–Assisted Multi-Phase Steels[J]. ISIJInternationl,2001,41(9):1068-1074
    [28]A.Z. Hanzaki, P.D. Hodgson, S. Yue. Ferrite Formation Characteristics in Si-Mn TRIPSteel[J]. ISIJ International,1997,37(6):583-589
    [29]Y. Sakuma, D.K. Matlock, G. Krauss, Intercritically Annealed and Isothermally Transformed0.15Pct C Steels Containing1.2Pct Si-1.5Pct Mn and4Pct Ni: Part I. Transformation,Microstructure, and Room-Temperature Mechanical Properties[J]. Metallurgical Transaction A,1992,23:1221-1232
    [30]I. Tsukatani, S. Hashimoto, T. Inoue, Effects of Silicon and Manganese AdditionalMechanical Properties of High-Strength Hot-Rolled Sheet Steel Contained Retained Austenite [J].ISIJ International,1991,31(9):992-1000
    [31]B.C. De Cooman, Structure-properties Relationship in TRIP Steels Containing Carbide-FreeBainite[J]. Current Opinion in Solid State and Materials Science,2004,8:285-303
    [32]A.Z. Hanzaki, P.D. Hodgson, S.Yue. Retained Austenite Characteristics inThermo-Mechanically Processed Si-Mn Transformation Induced Plasticity Steels[J]. MetallTrans,1997,28:2405-2411
    [33]Y. Sakuma, D.K. Matlock, G. Krauss. Intercritically Annealed and Isothermally Transformed0.15%C Steels Containing1.2%Si-1.5%Mn-4%Ni: Part II: Effect of Testing Temperature onStress-Strain Behavior and Deformation-Induced Austenite Transformation [J].METALLURGICAL TRANSACTIONS A,1992,23:1233-1241
    [34]P. Jacques, X. Cornet, P Harlet et al. Enhancement of the Mechanical Properties of a LowCarbon, Low Silicon Steel by Formation of a Multiphased Microstructure Containing RetainedAustenite [J]. Metall Trans A,1998,29A (11):2383-2393
    [35]A. AIROD, R. PETROV, R. COLAS et al. Analysis of the Trip Effect by Means ofAxisymmetric Compressive Tests on Si-Mn Bearing Steel[J]. ISIJ International,2004,44:179-186
    [36]D.V. Edmonds, R.C. Cochrane. Microstructure Relationships in Bainitic Steels[J].Metallurgical Transactions A,1990,21A:1527-1540
    [37]J.H. Chung. A Study on the Transformation Induced Plasticity in High Strength Cold RolledSheet Steel Containing Retained Austenite [D]. POSTECH, Pohang, Korea,1993
    [38]Q. Liu, D. Tang, H.T. Jiang, Research and Development of780MPa Cold RollingTRIP-aided Steel [J]. International Journal of Minerals, Metallurgy and Materials,2009,16:399-406
    [39]J.H. Holloman, Tensile Deformation, Trans. AIME,1945,162:268–290
    [40]P. Ludwik, Elemente der Technologischen Mechanik, Berlin, Springer,1909
    [41]H.W. Swift, Plastic instability under plane stress[J]. J. Mech. Phys. Solids,1952,1(2):1-18.
    [42]S.K. Samanta, Resistance to Dynamic Compression Testing of Low Carbon Steel and AlloySteels at Elevated Temperatures and High Strain-rates. Int. J Mech. Sci.,1968,10:613
    [43]E. Voce, A practical strain-hardening function [J]. Metallurgia,1955,51:219-226
    [44]K. Araki,Y. Takada, K. Nakaoka,Workhardening of continuously annealed dual-phasesteels[J].Transactions lSIJ,1977,17:710-717.
    [45]Y. Tomota, S. Nakamura, K. Kuroki, On the average internal stresses in each constituentphase in plastically deformed two-ductile-phase alloys. Materials Science and Engineering,1980,46:69-74.
    [46]余海燕,复杂应变状态下TRIP钢相变诱发塑性行为及其在车身覆盖件中的应用研究
    [D],上海交通大学博士学位论文,2005
    [47]A. Perlade, O. Bouaziza, Q. FurnEmont, A physically based model for TRIP-aided carbonsteels behavior[J], Materials Science and Engineering A,2003,356:145-152.
    [48]K.I. Sugimoto, M. Kobayashi, S.I. Yasuki, Influence of deformation temperature on theBauschinger effect of a TRIP-aided dual-phase steel [J], Materials transactions,1995,36(5):632-638
    [49]Y. Tomita, T. Iwamoto, Computational prediction of deformation behavior of TRIP steelsunder cyclic loading [J], International Journal of Mechanical Sciences,2001,43:2017-2034
    [50]K.I. Sugimoto, M. Kobayashi, S.I. Yasuki, Cyclic deformation behavior of atransformation-induced plasticity-aided dual-phase steel[J], Metallurgical and MaterialsTransactions A,1997,28A(12):2637-2644,
    [51]A. Wasilkowska, E. Werner, M. Bartsch et al., Influence of the Test Conditions onTransformation Induced Plasticity in Multiphase Steels[C], Materials Science&TechnologyConference, Chicago, USA,2003,495-507.
    [52]D.C. Ludwigson, J.A. Berger, Plastic behavior of metastable austenitic stainless steels[J], J.Iron Steel Inst.,1969,207(01):63-67.
    [53]G.B. Olson, M. Cohen, Kinematics of strain-induced martensitic nucleation[J], Metall TransA,1975,6:791–795.
    [54]K.I. Sugimoto,N. Usui, M. Kobayashi, Effects of volume fraction and stability of retainedaustenite on ductility of TRIP-aided dual-phase steels [J], ISIJ Inter.,1992,32(12):1311-1318.
    [55]T. Angel, Deformation of martensite in austenitic stainless steels,effects of deformation,temperature and composition[J], J. iron and steel inst.,1954,5:165-174.
    [56]W.C. Jeong, D.K. Matlock, G. Krauss, Observation of deformation and transformationbehavior of retained austenite in a0.14C-1.2Si-1.5Mn steel with ferrite-bainite-austenitestructure[J], Materials Science and Engineering: A,1993,165(1):1-8
    [57] T.C. Tszeng. A Model of Void Nucleation from Ellipsoidal Inclusions in Ductile Fracture[J].Scripta Metallurgica Materialia,1993,28(9):1065~1070
    [58]符仁钰,苏钰,李麟,张梅. Si-Mn系TRIP钢FLD及断裂机理的研究[J].汽车工艺与材料,2004,6:75~77
    [59] P. Jacques, Q. Furnémont, T. Pardoen, F. Delannay. On the Role of MartensiticTransformation on Damage and Cracking Resistance in TRIP-assisted Multiphase Steels[J]. ActaMater,2001,49:139~152
    [60] Wei xi-cheng, Li Lin, Fu ren-yu. Effects of microstructure morphology in TRIP steel on itstensile characteristics at high strain rate [J]. Iron and Steel Research,2003,10(1):49~54
    [61]J. Van Slycken, P. Verleysen, J. Degrieck, et al., High strain rate behaviour of low-alloymultiphase aluminum-and silicon-based transformation-induced plasticity steels[J]. MetallMater Trans A,2006,37:1527-1539.
    [62]W. Bleck, I. Schael, Determination of crash-relevant material parameters by dynamic tensiletests [J]. Steel Res.,2000,71:173-178.
    [63]I.D. Choi, D.M. Bruce, S.J. Kim, et al., Deformation behavior of low carbon TRIP sheetsteels at High strain rates[J]. ISIJ Int.,2002,42:1483-1489
    [64]I.Y. Pychmintsev, R.A. Savrai, B.C. De Cooman BC, High strain rate behavior ofTRIP-aided automotive steels[C], In: Conference on TRIP–aided high strength ferrous alloys,Ghent, Belgium,2002,299-302
    [65]X.C. Wei, R.Y. Fu, L. Li, Tensile deformation behavior of cold-rolled TRIP-aided steels overlarge range of strain rates [J]. Mater Sci Eng A.2007,465:260-266
    [66]韦习成,高强度低合金Si-Mn系TRIP钢的动态拉伸性能[D],上海大学博士论文,2002.
    [67]L. Samek, B. C. De Cooman, J. Van Slycken, et al., Physical metallurgy of multi-phase steelfor improved passenger car crash-worthiness[J], Steel Research Inter.,2004,75(11):716-723.
    [68]F.P. Bowden, D. Tabor, the Friction and Lubrication of Solids [M], Oxford, Clarendon Press,1964
    [69]T. Zehnder, E. Babinsky, T. Palmer, Hybrid Method for Determining the Fraction of PlasticWork Converted to Heat [J], Experimental Mechanics,1998,38(4):295-302.
    [70]K.N.G. Fuller, P.G. Fox, J.E. Field, The Temperature Rise at the Tip of fast-moving Cracks inglassy Polymers[J], Proc. R. Soc. A,1975,341:537-557.
    [71]G.L. Moss, R.B. Pond, Inhomogeneous Thermal During Plastic Elongation Changes inCopper [J], Metallurgical Transactions A,1975,6A:1223-1235
    [72]K.A. Hartley, J. Duffy, R.H. Hawley, Measurement of the temperature profile during shearband formation in mild steels deforming at high-strain rates[J], J. Mech. Phys. Solids,1987,35(3):283-301.
    [73]D. Macdougall, Determination of the Plastic Work Converted to Heat Using Radiometry [J],Experimental Mechanics,2000,40(3):298-306.
    [74]D. Rittel, A different viewpoint on adiabatic shear localization [J], Journal PhysicsD:Applied Physics,2009,42(21):1-6
    [75]夏源明,饶世国,杨报昌,红外瞬态测温装置及其在冲击拉伸试验中的应用[J],实验力学,1990,5(2):170-177.
    [76]徐祖耀,材料的相变研究及其应用,上海交通大学学报[J],2001,35(3):323-330.
    [77]徐祖耀,低碳钢中的残余奥氏体,上海金属[J],1995,17(1):1-6.
    [78]M. Hillert, The compound energy formalism [J], Journal of Alloys and Compounds,2001,320(2):161-176.
    [79]J.O. Andersson, A thermodynamic evaluation of the Fe-Cr-C system [J]. Metallurgical andMaterials Transactions A,1988,19(3):627-636.
    [80]李麟,何燕霖,黄水根,等.第十二届全国相图学术会议论文集[C].深圳:深圳大学出版社,2004.
    [81]何燕霖.高性能预硬型塑料模具钢的计算机合金设计[D].上海:上海大学,2004.
    [82]张鸿冰,倪乐民,徐祖耀. Fe-Mn-C系Ms及马氏体相变驱动力的热力学计算[J].金属学报,1987,23(1):42-49.
    [83]H.B. Chang, T.Y. Hsu, Thermodynamic prediction of MS and driving force for artensitictransformation in Fe-Mn-C alloys [J]. Acta Metallurgica,1986,34(2):333-338.
    [84]M. D. JEPSON, F. C. THOMSON, Acceleration of the Rate of Isothermal Transformation ofAustenite [J], J. Iron Steel Inst.1949,162:49-56
    [85]刘云旭,金属热处理原理,北京,机械工程出版社,1981.
    [86]P.C. Maxwell, A. Goldberg, J.G. Shyne, Stress-assisted and strain induced martensite inFe-Ni-C alloys[J], Metall. Trans.,1974,4:1305-1317.
    [87]D. Bhandarkar, Stability and mechanical properties of some metastable austenitic steels [J],Metall. Trans.,1972,3:2619-2631.
    [88]I. Tamura, Deformation-induced transformation and Transformation-induced plasticity insteels [J], Metal Science,1982,16:245-253.
    [89]R.G. Stringfellow, D.M. Parks, G.B. Olson, A constitutive model for transformation plasticityaccompanying strain-induced martensitic transformation in metastable austenitic steels[J], ActaMetall,1992,40:1703-1716.
    [90]Y. Tomita, T. Iwamoto, Constitutive modeling of TRIP steel and its application to theimprovement of mechanical properties[J], Int. J. Mech. Sci.,1995,37(12):1295-1305.
    [91]T. Iwamoto, T. Tsuta, Y. Tomita, Investigation on deformation mode dependence ofstrain-induced martensitic transformation in TRIP steels and modeling of transformationkinetics[J], Int. J. Mech. Sci.,1998,40(2-3):173-182.
    [92]乔芝郁,许志宏,刘洪霖,冶金和材料计算物理化学[M],冶金工业出版社,1999
    [93]N. Saunders, A. P. Miodownik, CALPHAD[M], Edited by Robert W. Cahn FRs, Departmentof Materials Science and Metallurgy, University of Cambridge, UK,1998:299-410.
    [94]马兹.希拉特(M. Hillert),合金扩散和热力需[M],冶金工业出版社,1984:1-100
    [95]M. Hillert. The Compound Energy Formalism[J], Journal of Alloys and Compounds,2001,320:161-176.
    [96]K. Frisk, M. Selldby, The compounds energy formalism: application[J], Journal of Alloysand Compounds,2001,320:177-188
    [97]J.O. Andersson, A thermodynamic evaluation of the Fe-Cr-C system[J], MetallurgicalTransactions A,1988,19A:627-636.
    [98]M. Hillert, Predicting carbides in alloy steels by computer[J]. ISIJ International,1990,30(7):559-566.
    [99]B. Sundman, B. Jansson, J.O. Andersson, The Thermo-Calc database system[J], CALPHAD,1985,9:153-190.
    [100]B. Sundman, Thermodynamic databanks, visions and facts[J], Scandinavian Journal ofmetallurgy,1991,20:79-85.
    [101]Q. Chen,A. Engstrom, L. Hoglund,et al., Thermo-Calc Program Interfaces and TheirApplications-Direct Insertion of Thermodynamic and Kinetic Data into Modeling of MaterialsProcessing,Structure and Property[J]. Materials Science Forum,2005,475:3145-3148
    [1]P. Jacques, X. Cornet, Ph. Harlet, Enhancement of the mechanical properties of a low-carbon,low-sillicon steel by formation of a multiphased microstructure containing retained austenite[J],Metall. Trans. A,1998,29A:2383-2393
    [2]B.C. De Cooman, Structure-properties Relationship in TRIP Steels Containing Carbide-FreeBainite[J]. Current Opinion in Solid State and Materials Science,2004,8:285-303
    [3]史文,含钒低碳低硅相变诱发塑性钢的组织和性能的研究[D],上海大学博士论文,2006.
    [4]张梅,高强度和超高强度相变塑性钢的开发和研究[D],上海大学博士论文,2007.
    [5]A. B. Cota, P.J. Modenesi, R Barbosa et al. Determination of CCT Diagrams by ThermalAnalysis of an HSLA Bainitic Steel Submitted to Thermomechanical Treatment [J]. ScriptaMaterialia,1998,40(2):165-169
    [6]C.G. Lee, S.J. Kim, T.H. Lee. Effects of volume fraction and stability of retained austenite onformability in a0.1C-1.5Si-1.5Mn-0.5Cu TRIP-aided cold-rolled steel sheet[J]. Material Scienceand Engineer A,2004,371:16-23.
    [7]闫翠,980MPa级TRIP钢的组织、工艺和力学性能研究[D],上海大学硕士论文,2009.
    [8]黄澍,中碳低硅无铝TRIP钢的组织与力学性能研究[D],上海大学硕士论文,2011.
    [9]A. Pichler, P. Stiaszny. TRIP Steels with Reduced Silicon Content[J]. Steel Research,1999,70:459-465
    [10]G.N. Haidemenopoulos, A.N. Vasiliakos. Modelling of Austenite Stability in Low-AlloyTriple Phase steels[J]. Steel Research,1996,67(11):513-519
    [11]D.D. Tjahjanto, A.S.J. Suiker, S. Turteltaub et al. Micromechanical Predictions of TRIP SteelBehavior as a Function of Microstructural Parameters[J]. Computational Materials Science,2007,41(1):107-116
    [12]N. Ohkub, K. Miyakusuy, Y.U.H. Kimura. Effect of Alloying Elements on the MechanicalProperties of the Stable Austenitic Stainless Steel[J]. ISIJ International,1994,34(9):764-772
    [13]E. Jimenez-Melero, N.H. van Dijk, L. Zhao et al. The effect of aluminium and phosphoruson the stability of individual austenite grains in TRIP steels[J]. Acta Materialia,2009,57:533-543
    [14]D.J. Dyson, B. Holmes, Effect of Alloying Additions on the Lattice Parameter of Austenitic[J]. Journal of the Iron and Steel Institute,1970,208:469-474
    [15]汪洋,夏源明.杆杆型冲击拉伸试验装置一维试验原理有效性的论证[J].实验力学,1997,12(1):126-134
    [16]王业宁,朱建中,马氏体式相变过程中所引起的内耗变化[J],物理学报,1959,15(7):341-352
    [1]史巨元,钢的动态力学性能及应用[M],冶金工业出版社,1993
    [2]韦习成,谢群,符仁红等,HSLA TRIP钢的动态拉伸行为及其模拟[J],材料研究学报,2006,20(5):556-560
    [3]石德柯,材料科学基础[M],机械工业出版社,2003.
    [4]Q. Furnemont, P.J. Jacques, T. Pardoen, The macro-and micro-mechanics of TRIP-assistedmultiphase steels, experiments and modeling[C]. J. Phys. IV France,2001,11(5):5325-5332
    [5]Y.P. Igor, A.S. Roman, B.C. De Cooman, et al., International Conference On TRIP-AidedHigh Strength Ferrous Alloys[C]. Belgium, Ghent.2002:299-302.
    [6]韦习成,高强度低合金Si-Mn系TRIP钢的动态拉伸性能[D],上海大学,2002.
    [7]X.C. Wei, R.Y. Fu, L. Li, Tensile deformation behavior of cold-rolled TRIP-aided steels overlarge range of strain rates[J]. Materials science and engineering A,2007,465:260-266.
    [8]徐祖耀,马氏体相变与马氏体[M],科学出版社,1999.
    [9]沙桂英,孙晓光,刘腾等,Mg-3.04Li-0.77Sc合金的高应变率变形局部化行为[J].材料研究学报,2010,24(6):567-571
    [10]周媛,李麟,史文,朱晓东, Si-Mn系TRIP钢两相区等温处理的组织转变模型[J].材料热处理学报,2002,23(1):15-18.
    [11]M. Itabashi, K. Kawata. Carbon Content Effect on High-Strain-Rate Tensile Properties forCarbon Steels[J]. International Journal of Impact Engineering,2000:117-131.
    [12]吴三灵,李科杰,张振海等.强冲击试验与测试技术[M].国防工业出版社.2010
    [13]马鸣图.双相钢一物理和力学冶金[M].北京:冶金工业出版社,2009
    [1] P. C. Maxwell, A. Goldberg, J. G. Shyne. Stress-assisted and strain-induced martensites inFe-Ni-C alloys[J]. Metall. Trans.,1974,4:1305-1317.
    [2] D. Bhandarkar et al. Stability and mechanical properties of some metastable austenitic steels[J].Met. Trans.,1972,3:2619-2631.
    [3] I.Tamura. Deformation-Induced Transformation and transformation-Induced Plasticity inSteels[J]. Metal Science,1982,16:245-253.
    [4]张旺峰.亚稳态材料力学行为特征及机理[D].西安交通大学博士学位论文,2000.
    [5]徐祖耀著.马氏体相变与马氏体[M].北京:科学出版社,1999.
    [6] G. B. Olson, M. Cohen, A mechanism for the strain-induced nucleation of martensitictransformations[J]. Less-Common Met.,1972,28:107-118.
    [7] G. B. Olson and M. Cohen, A General Mechanism of Martensitic Nucleation: Part2.FCC→BCC and Martensitic Transformation[J]. Metall.Trans.1976,7A:1897-1904.
    [8] Y. Igor. Pychmintsev, A. Roman. Savral, B. C. De Cooman et. al., Int. Conf. On TRIP-aidedhigh strength ferrous Alloys[J]. Belgium, Ghent,2002:299-302.
    [9]韦习成,高强度低合金Si-Mn系TRIP钢的动态拉伸性能[D].上海大学博士论文,2002.
    [10] S. Oliver, T. B. Jones, G. Fourlaris, Dual phase versus TRIP strip steels: comparison ofdynamic properties for automotive crash performance, Materials Science andd Technology,2007,23(4):423-431.
    [11] S. V. D Zwaag, L. Zhao, S. O. Kruijver, et al., Thermal and mechanical stability of retainedaustenite in aluminum-containing multiphase TRIP steel[J]. ISIJ Int.,2002,42(12):1565-1570.
    [12] E. V. Pereloma, I. B. Timokhina, P. D. Hodgson. Transformation behaviour inthermo-mechanically processed C-Mn-Si TRIP steels with and without Nb[J]. Materials Science&Engineering,1999, A273-275:448-452.
    [13] K. I. Sugimoto, T. Iida, Sakaguchi J, et al. Retained austenite characteristics and tensileproperties in TRIP type bainitic sheet steel[J]. ISIJ Int.,2000,40:902-908
    [14] S. Kurijver, L. Zhao, J. Sietsma, et al. In situ observations on the austenite stability inTRIP-steel during tensile testing [J].Steel Research,2002,73:236-241
    [15] Angel T. Deformation of martensite in austenitic stainless steels, effects of deformation,temperature and composition [J]. Journal of the iron and steel institute,1954,5:165-174
    [16] D. C. Ludwigson, J. A. Berger, Plastic behavior of metastable austenitic stainless steels [J].Journal of the iron and steel institute,1969,207:63-69
    [17] K. I. Sugimoto, Usui N, M. Kobayashi, Effects of volume fraction and stability of retainedaustenite on ductility of TRIP-aided dual-phase steels [J].ISIJ Int.,1992,32(12):1311-1318
    [18]Wang Si-gen, Wang Xu, Hua Li-xian, et al. Relationship between retained austenite and strainfor Si-Mn TRIP steel [J]. Journal of University of Science and Technology Beijing,1995,2(1):7-10
    [19]Yu Hai-yan, Gao Yun-kai, Meng De-jian. Transformation behavior of retained austenite underdifferent deformation models for low alloyed TRIP-assisted steels [J]. Materials Science&Engineering,2006, A441:448-452.
    [20] S. Van Der Zwaag, L. Zhao, S. O. Kruijver, J. Sirtsma, Thermal and Mechanical Stability ofRetained Austenite in Aluminum-containing Multiphase TRIP Steels[J].ISIJ Int.,2002,42(12):1565-1570.
    [21] K. I. Sugimoto, M. Kobayashi, S. I. Hashimoto. Ductility and strain-induced transformationin a high-strength transformation-induced plasticity-aided dual-phase steel [J]. Metallurgical andMaterials Transactions A,1992,23(11):3085-3091
    [22]闫翠.980MPa级TRIP钢的组织、工艺和力学性能研究[D].上海:上海大学,2009.
    [23]周磊.含铝TRIP钢的制备工艺、组织和力学性能研究[D].上海:上海大学,2011.
    [24]Shi Wen, Li Lin, Yang Chun-xia, et al. Strain-induced transformation of retained austenite inlow-carbon low-silicon TRIP steel containing aluminum and vanadium[J]. Materials Science&Engineering,2006, A429:247-251
    [25] M. D. JEPSON, F. C. THOMSON, Acceleration of the Rate of Isothermal Transformation ofAustenite [J], J. Iron Steel Inst.1949,162:49-56
    [26] V. F. Zackay, E. R. Parker, D. Fahr et al, The Enhancement of Ductility on High-StrengthSteels [J], Trans. of ASM,1967,60(2):252-258
    [27] B.C. De Cooman, Structure-properties Relationship in TRIP Steels Containing Carbide-FreeBainite[J]. Current Opinion in Solid State and Materials Science,2004,8:285-303
    [28] P. Jacques, X. Cornet, P Harlet et al. Enhancement of the Mechanical Properties of a LowCarbon, Low Silicon Steel by Formation of a Multiphased Microstructure Containing RetainedAustenite [J]. Metall Trans A,1998,29A (11):2383-2393
    [29]姜越,康鹏超,尹钟大,等.模糊辨识方法预测马氏体不锈钢Ms温度[J].材料热处理学报,2004,25(3):85-88.
    [30]李智超,刘鹏砚,王明罡. Ms点的碳当量计算法[J].辽宁工程技术大学学报:自然科学版,1998,17(3):293-295.
    [31]徐祖耀.Fe-C合金马氏体相变热力学[J].金属学报,1979,15(3):329-338.
    [32]徐祖耀. Fe-X系马氏体相变热力学[J].金属学报,1980,16(4):420-425.
    [33]徐祖耀.Fe-X-C系马氏体相变热力学[J].金属学报,1980,16(4):426-429.
    [34]徐祖耀,张鸿冰,罗守福. Fe-C合金Ms的热力学计算及马氏体相变驱动力[J].金属学报,1984,20(3):151-161.
    [35]李箭,徐祖耀. Fe-Ni-C合金马氏体相变驱动力及Ms的计算[J].金属学报,1987,23(4):321-328.
    [36]张鸿冰,倪乐民,徐祖耀. Fe-Mn-C系Ms及马氏体相变驱动力的热力学计算[J].金属学报,1987,23(1):42-49.
    [37]徐祖耀,潘牧. Fe-Mn-C及Fe-Ni-C合金马氏体相变热力学[J].金属学报,1989,25(4):16-22.
    [38] L. Li, P. Wollants, Z. Y. Xu, et al. Effects of Alloying Elements on the Concentration Profileof Equilibrium Phases in Transformation Induced Plasticity Steel[J]. J Mater Sci Technol,2003,19(3):273-277.
    [39] L. Li, B. C. De Cooman, P. Wollants,et al. Effect of Aluminum and Silicon on TransformationInduced Plasticity of the TRIP Steel[J]. J Mater Sci Technol,2004,20(2):135-138.
    [40] L. Li, B. C. De Cooman, R. D. Liu, et al. Design of TRIP steel with high welding andgalvanizing performance in light of thermodynamics and kinetics[J]. Journal of Iron and SteelResearch International,2007,14(6):37-41.
    [41]何燕霖,李麟,叶平,等. Thermo-Calc和DICTRA软件系统在高性能钢研制中的应用[J].金属热处理学报,2003,24(4):73-77+85.
    [42] Y. L. HE, L. Li, X. C. Wu,et al. Computer Aided Composition Design of Prehardened-MouldSteel for Plastic[J]. J Mater Sci Technol,2004,20(1):71-74
    [43] Y. L. He, L. Li, S. G. Huang, et al. Computer simulation of W-C-Co-V system diffusioncouples[J]. Rare Metals,2007,26(5):492-497.
    [44] Y. L. He, L. Li, S. G. Huang, et al. Computer simulating the diffusion behavior of V and W inCo binder layer of WC-Co cemented carbide[J]. Journal of Alloys and Compounds,2007,436(1-2):146-149.
    [45] Huachu L, Yanlin H Lin L. Application of thermodynamics and Wagner model on twoproblems in continuous hot-dip galvanizing[J]. Applied Surface Science,2009,256:1399-1403.
    [46] Huachu L, Wen S, Yanlin H, et al. The effect of alloy elements on selective oxidation andgalvanizability of TRIP-aided steel[J]. Surface and Interface Analysis,2010,42:5-9.
    [47]刘华初,何燕霖,李麟.自建数据库在高铝钢组织预测上的应用[J].材料热处理学报,2010,31(1):160-163.
    [48]M. Hillert, The compound energy formalism[J]. Journal of Alloys and Compounds,2001,320(2):161-176.
    [49] J. O. Andersson. A thermodynamic evaluation of the Fe-Cr-C system[J]. Metallurgical andMaterials Transactions A,1988,19(3):627-636.
    [50]李麟,何燕霖,黄水根,等.第十二届全国相图学术会议论文集[C].深圳:深圳大学出版社,2004.
    [51]何燕霖.高性能预硬型塑料模具钢的计算机合金设计[D].上海:上海大学,2004.
    [52]H.B. Chang, T.Y. Hsu, Thermodynamic prediction of Ms and driving force for artensitictransformation in Fe-Mn-C alloys[J]. Acta Metallurgica,1986,34(2):333-338.
    [53] L. Kaufman, S. V. Radcliffe, M. Cohen. Decomposition of austensite by siffusional processes[M]. New York: Interscience Press,1962.
    [54] A. B. Greninger. The martensite Thermal arrest in iron-carbon alloys and plain carbonsteels[J]. Trans ASM,1942,30:1-26.
    [55]赵光伟.基于Thermo-Calc的多尺度合金凝固传输行为计算机模拟[D].哈尔滨:哈尔滨工业大学,2007.
    [56]黄澍,符仁钰,李志峰,等.退火温度对C-Mn-P-V高强度TRIP钢组织和力学性能的影响[J].上海金属,2009,31(6):15-18.
    [57]毛兴锋.工艺参数对低碳微合金高强度双相钢显微组织演变的影响[D].武汉:武汉科技大学,2007.
    [58]M. Zhang, L. Li, R.Y. Fu, et al. Continuous cooling transformation diagrams and properties ofmicro-alloyed TRIP steels[J]. Materials Science and Engineering: A,2006,438-440:296-299.
    [59]C. Zhao, D. Tang, H.T. Jiang, et al. Process simulation and microstructure analysis of lowcarbon Si-Mn quenched and partitioned steel[J]. Journal of Iron and Steel Research, International,2008,15(4):82-85.
    [60]M. De Meyer, D. Vanderschueren, B.C. De Cooman. The influence of the substitution of Si byAl on the properties of cold rolled C-Mn-Si TRIP steels[J]. ISIJ International,1999,39(8):813-822.
    [61]X. Wang, Y.L. Kang, H. Yu, et al. Dynamic CCT diagram of automobile beam steel with highstrength produced by FTSR technology[J]. Journal of Iron and Steel Research, International,2008,15(2):60-64.
    [62]Z. Li, D. Wu, R. Hu, Austempering of hot rolled Si-Mn TRIP steels[J]. Journal of Iron andSteel Research, International,2006,13(5):41-46.
    [63]马鸣图.双相钢一物理和力学冶金[M].北京:冶金工业出版社,2009
    [64]余海燕,复杂应变状态下TRIP钢相变诱发塑性行为及其在车身覆盖件中的应用研究[D].上海交通大学博士论文,2005.
    [65]K. Araki, Y. Takada, K. Nakaoka, Work hardening of continuously annealed dual phasesteels[J],Transactions ISIJ,1977,17:710-717.
    [66]Y.Tomota, S. Nakamura, K. Kuroki, Onthe average internal stresses meach constituent phasein plastically deformed two-ductile-phase alloys[J],Materials Science and Engineering,1980,46:69-74.
    [67] I. Gutiérrez, M.A. Altuna., Work-hardening of ferrite and microstructure-based modelling ofits mechanical behaviour under tension[J].Acta Materialia,2008,56:4682-4690.
    [68]S. Young, K.L. Young, Kyung-Tae Park et al.Ultrafine grained ferrite–martensite dual phasesteels fabricated via equal channel angular pressing: Microstructure and tensile properties ActaMaterialia,2005,53:3125–3134
    [69]T. Huper, S. Endo, N. Ishikawa, et al., Effect of Volume Fraction of Constituent Phases on theStress-strain Relationship of Dual Phase Steels[J].ISIJ International,1999,39(3):288-294
    [70]P. Jacques, Q. Furnémont, T. Pardoen, et al., On the role of martensitic transformation ondamage and cracking resistance in TRIP-assisted multiphase steels.Acta Mater,2001,49:139-152
    [1]Papaefthymiou Spyros, Bleck Wolfgang, Prahl Ulrich, Acht Carmen, Sietsma Jilt, Van derZwaag Sybrand. Micromechanical damage simulations of TRIP steels[J]. Materials ScienceForum,2003,426-432(2):1355-1360.
    [2]R. W.卡恩, P.哈森和E. J.克雷默主编,颜鸣皋等译,材料科学与技术丛书, Vol.6:材料的塑性变形与断裂[M].北京:科学出版社,1998:518-528
    [3]K. Sugimoto, A. Nagasaka, M. Kobayashi et al. Effects of retained austenite parameters onwarm stretch-flange-ability in TRIP-aided dual phase sheet steels[J]. ISIJ international,1999,39(1):56-63
    [4]P. Jacques, Q. Furnemont, T. Pardoen, and F. Delannay, On the role of martensitictransformation on damage and cracking resistance in TRIP-assisted multiphase steels. Acta Mater,2001,49:139-152.
    [5]A. K. Sinha, Ferrous Physical Metallurgy [M]. Butterworths, London,1989.
    [6]I. Tsukatani, S. Hashimoto, T. Inoue. Effects of silicon and manganese addition on mechanicalproperties of high-Strength hot-rolled sheet steel contained retained austenite[J]. ISIJInternational,1991,31(9):992-1000.
    [7]D. V. Edmonds, R. C. Cochrane, Microstructure relationships in bainitic Steels[J].Metallurgical Transactions A,1990,21A:1527-1540.
    [8]J.J. Wang, S.V.D. Zwaag, Stabilization mechanism of retained austenite intransformation-induced plasticity steel[J]. Metallurgical and Materials Transactions A.2001,32A:1527-1539.
    [9]宋维锡,金属学第二版[M].北京:冶金工业出版社,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700