用户名: 密码: 验证码:
热喷涂(焊)金属WC涂层组织、性能及抗磨粒磨损行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统镀硬铬涂层具有良好的防腐蚀和抗磨损性能,但是,镀硬铬会带来严重的环境污染,随着社会发展对环保要求越来越高,急需寻找一种新的替代镀硬铬的表面工程技术。热喷涂(焊)金属WC涂层具有优异的抗磨损和良好的抗腐蚀性能,在工业生产中被广泛地应用到各种需要防腐和抗磨粒磨损的场合。
     我国是钨资源丰富的国家,一方面大量低价出口WC原材料,但是,另一方面,又从国外进口大量价格昂贵的金属WC喷涂(焊)粉末。为此,本文开展新型金属WC粉末设计和相应的涂层工艺优化,以期得到性能优异的金属WC喷涂(焊)粉末和与之相匹配的喷涂工艺,以替代价格昂贵的进口粉末。对新设计的粉末制备的涂层开展组织、抗磨粒磨损和抗腐蚀性能以及相应的机理研究,为更好地替代镀硬铬涂层提供理论和实践依据。
     本文从改变WC粒度及粒度分布的角度,设计了超细、亚微米、微米和双峰等四种WC-12Co、微米和双峰两种WC-10Co-4Cr超音速火焰喷涂粉末和14种WC粒度和添加比例不同的Ni基喷焊粉末。在JP-8000型超音速火焰喷涂系统上,采用正交实验方法对设计的喷涂粉末开展工艺参数优化,每种粉末按L9(34)正交表设定的参数各制备9组涂层;采用成熟的“一步法”氧乙炔火焰喷焊工艺将设计的14种喷焊粉末制成相应的喷焊涂层。采用X衍射仪测试了各粉末和相应涂层的相结构,用扫描电镜观察了各粉末的形貌,用金相显微镜、扫描电镜和透射电镜研究了各涂层的截面和表面组织、结构和形貌,分别测试了这些涂层的抗磨损和腐蚀性能,并与进口粉末制备的涂层和镀硬铬涂层进行了对比。得出以下结论:
     1.在采用JP-8000型超音速火焰(HVOF)喷涂工艺制备金属基陶瓷涂层时,参数变化对涂层的相结构影响不大,但对涂层的其它性能却有不同程度的影响。增大煤油和氧气的流量、减小喷涂距离以及减小送粉量一般会使涂层的硬度提高、气孔率降低,但同时也会降低喷涂粉末的沉积效率和涂层的开裂韧性。其中煤油流量对涂层的硬度、孔隙率和开裂韧性影响最大;送粉率对单道次沉积厚度影响最大。根据涂层的制备成本和应用场合对涂层的性能要求,可以分别选择经济型(煤油流量22.7L/h,氧气流量:55.2m3/h,送粉率:75g/min,喷涂距离:380mm)、中档型(煤油流量24.6L/h,氧气流量:55.2mmg/h,送粉率:75g/min,喷涂距离:326mm)和高档型(煤油流量26.5L/h,氧气流量:59.5L/h,送粉率:75g/min,喷涂距离:326mm)喷涂参数制备相应WC/Co(Cr)涂层。
     2.采用HVOF工艺制备WC/Co(Cr)涂层的开裂韧性与硬度成反比,抗磨粒磨损性能与其硬度成正比,因此,当涂层零件所受冲击力不大时,可以采用提高涂层硬度的方法来提高其抗磨粒磨损性能。
     3.采用HVOF工艺制备WC/Co(Cr)涂层时,喷涂粒子中的WC在焰流中氧化分解有直接脱碳和间接脱碳两种形式,WC的分解程度主要取决于焰流的温度和性质(氧化焰、中性焰和还原焰)、粒子在焰流中的停留时间、WC粒子的粒度大小和粉末的致密度等因素。焰流温度越高、粒子在焰流中停留时间越长、WC的粒度越小、WC/Co粉末的粒子越疏松、粘结相的分布越不均匀、并且熔融半熔融的高温粒子沉积到基体上的冷却速度越慢,WC的分解脱碳就越严重。其中,粘结相分布不均匀既促进了WC的直接氧化分解,又加强了WC的间接氧化分解。WC发生轻微的脱碳将生成W2C相,脱碳较严重时,在涂层中不仅生成WzC相,还会生成W相,其中粘结相Co在涂层中主要以非晶的形式存在。
     4. WC/Co(Cr)涂层磨粒磨损失效机理随磨粒的硬度不同而有所不同,当磨粒是比涂层硬度高的SiC时,涂层的磨损率很大,涂层中的粘结相和硬质颗粒同时被磨粒犁沟和切削,涂层快速微切削磨损。当磨粒是比涂层硬度稍低的Si02时,属于过渡区域磨损,涂层的磨损率较低,但涂层磨损率随着磨损载荷和磨粒的尺寸增加而增加。其磨损机理是粘结相优先被切除,逐渐失去固结作用的WC粒子在磨粒的作用下发生破碎、松动、直至脱落。
     5.WC的粒度及粒度分布对WC/Co(Cr)涂层的性能影响较大。在同种喷涂工艺条件下,当涂层中的WC粒子呈双峰分布时,相对于其它涂层,该双峰涂层中的粘结相分布更均匀且其名义自由路径更小,使得这种双峰WC/Co(Cr)涂层中WC分解较少、涂层结构更致密、开裂韧性和硬度更高,从而表现出更优异的抗磨粒磨损性能。
     6.采用超音速火焰喷涂的WC/Co(Cr)涂层,在WC分解不是十分严重时,在WC边缘分布的W2C薄层对涂层的抗磨粒磨损性能并没有损害。在这种情况下,由于粉末在焰流中熔融相对较充分,涂层结构更致密,反而还会使得这种涂层具有更好的抗磨粒磨损和抗腐蚀性能。可见,在WC只发生轻微脱碳的情况下,涂层中的金属粘结相分布情况和涂层组织致密度对涂层硬度和抗磨粒磨损的影响更为显著。
     7.对WC-12Co涂层分别在550℃、750℃、950℃和1150℃下进行1h的保护气氛热处理,涂层中的W2C和W相逐渐减少直至消失,涂层中逐渐生成Co3W3C、Co6W6C和Co2W4C等η相。这些η相的形核位置一般在W2C与粘结相的交界部位,在这些部位发生固态相变所需的元素成分容易通过短程扩散而达到。涂层的硬度和脆性都随着热处理温度的升高呈现出先升高后逐渐降低的趋势。经过950℃下进行保护气氛热处理的WC-12Co涂层具有较高的韧性、硬度和最好的抗磨粒磨损性能。另外,涂层与基体界面元素的扩散速度随着热处理温度的升高而增加,特别在1150℃下进行保护气氛热处理后,在涂层与基体的界面发生大量的元素扩散,在界面靠涂层一侧形成接近10μm宽的扩散带,在基体侧形成了尺寸为1~10μm的Kirkendall扩散孔洞。
     8.采用氧乙炔火焰喷焊Ni基WC涂层的硬度随WC添加比例的增加,呈现先增加后降低的变化趋势,其中采用熔铸方式添加的细颗粒WC的最佳添加比例为25wt.%,采用机械混合方式添加粗颗粒WC的最佳比例为35wt.%。当喷焊涂层中WC含量相同时,采用机械混合方式添加粗颗粒WC制备的涂层硬度和耐磨粒磨损性能均高于采用熔铸方式添加的细颗粒WC制备的涂层。在所有Ni基WC喷焊涂层中,WC粒子呈双峰分布(细颗粒WC与粗颗粒的总量为35wt.%,比例为3:7)的Ni基WC复合喷焊涂层抗磨粒磨损性能最好,均匀分布的金属粘结相是这种Ni基WC喷焊涂层具有优异抗磨粒磨损性能的主要原因。
     9.采用HVOF制备的双峰WC-12Co、WC-10Co-4Cr和氧乙炔火焰工艺制备的双峰Ni-35WC喷焊涂层的抗磨粒磨损性能和抗腐蚀性能与国外同类涂层抗磨损性能相当甚至更好;与较厚的镀硬铬涂层相比,其抗磨粒磨损性能分别提高10.6、9.2和2倍,相应的抗腐蚀性能也更好。因此,采用优化后的工艺制备的这些WC粒子呈双峰分布的WC/Co(Cr)喷涂层和Ni基WC喷焊涂层完全可以取代价格昂贵的进口粉末制备的相应涂层,另外,还可以在既受到磨损又受到腐蚀的场合应用该涂层代替电镀硬铬涂层,减小电镀硬铬涂层给环境带来巨大污染。
Electrolytic hard chrome (EHC) plating is an industrially widespread technology for their high wear and corrosion resistance, restrictive environmental norms which will increasingly limit the applicability of EHC plating because of its giving of a lot of Cr6+and SO42-ions which can cause great damage to human health. Therefore, the need to find technically and economically feasible alternatives arises.
     Metals and cermets deposited by HVOF-spraying and oxy-acetylene flame spraying and fusing is one of the most promising coatings for the replacement of EHC plating in those field which need high wear and corrosion resistance coatings.
     China is a country rich in tungsten, on the one hand, a lot of low-cost WC raw materials were exported, on the other hand a lot of spraying or spraying and fusing WC based powder with promising quality were imported with high price.
     In order to obtain high quality spraying and fusing WC based powder and high quality coatings which can replace of the importing materials, some new metals and WC were designed and corresponding process optimization were also carried.
     Microstructure, abrasive wear and corrosion resistance of these coatings deposited by new designing powders have been tested in order to obtain theoretical and practical basis for an alternative method for EHC process.
     In this paper, ultra-fine, submicron, micron and bimodal WC-12Co as well as micron and bimodal WC-10Co-4Cr HVOF spray powder were designed by means of changing the grain of WC,14kinds of spraying and fusing powders were also designed by means of changing the grain or proportion WC with NiCrBSi alloy.
     WC/Co(Cr) coatings were deposited by JP-8000HVOF spraying system using L9(34) orthogonal experiment, NiCrBSi/WC coatings were produced by promising oxy-acetylene flame spraying and fusing process.
     The abrasive wear resistances of all the coatings have been studied by wet sand rubber wheel abrasion tester. The phase compositions of the feedstock powders and coatings were analyzed by XRD. The characterizations of spraying feedstock powders, microstructure and surface micrographs of the prophase and anaphase attrition surfaces of these coatings were analyzed by SEM, the hardness, porosity and fracture toughness of these coatings have also been examined. The results indicated that:
     The spraying parameters had little effects on the phase composition but can brought great influence on the performance of sprayed coatings by using of JP-8000HVOF spraying system.
     The porosity, fracture toughness and the depositing efficient decreased while the hardness of all the coatings increase with the kerosene and oxygen flux, while all the coatings show reverse tendency when increase the feed rate and the spraying distance. The kerosene flux affects hardness mostly, and the feed rate is the most important parameters which affect the per pass thick of coating.
     According to the costing and the required performance of the coating, three group parameters could be obtained by optimizing spraying permanents. The economical spraying parameter is22.7L/h kerosene flux,55.2m3/h oxygen flux,75g/min powder feed rate and380mm spray distance, The moderate parameter is24.6L/h kerosene flux,55.2m3/h oxygen flux,75g/min powder feed rate and326mm spray distance, The highest spraying parameter is26.5L/h kerosene flux,59.5m3/h oxygen flux,75g/min powder feed rate and326mm spray distance,
     The hardness is inversely proportional to fracture toughness and proportional to the abrasive wear resistance, the abrasive wear resistance of coating can be increased in great degree by mean of increasing its hardness, when the coating service in the low attacking field.
     WC decarburizes in the model of direct and indirect during spraying HVOF process, the decarburizing degree of WC/Co(Cr) coating increases with the residual time in the flame, the temperature of the flame, distribution of bonding metal phase and decrease with the size of the WC grain and the density of sprayed powder. The inhomogeneity distribution of bonding metal phase increases the decomposition of WC both on the direct and indirect way. HVOF-sprayed WC-Co coatings still suffer from decomposition and decarburization during spraying process leading to generating of detrimental phases such as W2C, W and amorphous Co-W-C phase.
     The wear rate was primary affected by the relative hardness of abrasive compared with coating, when the hardness of abrasive is higher than WC/Co(Cr) coating such as SiC, the coating was severely cut by the SiC with high hardness and the wear rate of coating was high. When the hardness of abrasive is lower than WC/Co(Cr) coating such as SiO2, the wear rate of coating was low but increase with size of abrasive and the applied load. The mechanism of wear for WC-Co coatings was by selective removal of the binder caused probably by plastic deformation and fatigue due to the repeated action of the abrasive particles followed by the undermining of the carbide particles resulting in their eventual pull out.
     The grain size and distribution of WC affected the performance of HVOF WC/Co(Cr) coatings in great degree, the bimodal coating showed the highest hardness, fracture toughness and abrasive wear resistance in all the coatings, the smallest the mean free path of Co phase was responsible for the highest abrasive wear resistance.
     The small content of W2C phase in the WC/Co(Cr) coating showed no harmfulness on the abrasive resistance. In this case, the microstructure of coating was much more compact and the hardness of coating was higher which can lead to the increase of the abrasive and corrosion resistance of coating. As a result, the primary factors that affected the performance of coating are the distribution of Co bonding phase and the microstructure of the WC/Co(Cr) coating.
     The bimodal and conventional micron WC-12Co coating were heat treated at the temperature of550℃,750℃,950℃and1150℃in the protection of argon. The W2C and W phase disappear and the η phase such as Co3W3C, Co6W6C and Co2W4C gradually appear in the WC-12Co coating with the increase of heat treatment temperature. These η phase usually nucleate at the interface between W2C phase and bonding metal phase, because content of Co, C and W can easily attained by short distance diffusion of these elements. Both the hardness and fracture toughness of coating increased with heat treatment temperature first and then decrease after the950℃.The best abrasive wear resistance of the coating appeared at the temperature of950℃. The diffusion speed of element such as W, Fe and Co at the interface of coating and substrate also increase with the heat treatment temperature, an obvious diffusion bond at the width of10μm at the coating side and some Kirkendall voids with the size of1-10μm at the side of substrate appeared at the temperature of1150℃.
     The hardness of spray and fused Ni base WC composite coatings firstly increased and then decreased with content of an added WC, the WC content for the highest hardness of coating with the WC added in the way of mechanical blended is35wt.%, while the WC content for the highest hardness of coating with the WC added in the way of melt and casting was25wt.%.
     When the WC content were similar, the hardness of the coatings that the WC added in the way of mechanically blended were higher than those coatings that the WC added in the way of melt and casting. The highest abrasive wear resistance of coating in all the spray and fused Ni base WC composite coatings was the bimodal coating with the WC content of35wt.%, and the ratio of fine and coarse WC in the coating were3:7.The excellent abrasive wear resistance of bimodal Ni based WC spray and fused coating can be attributed to the homogeneous distribution of bonding metal phase and dense coating microstructure.
     The HVOF WC/Co(Cr) coatings and the Ni based with WC composite coatings deposited by these bimodal powders designed in this paper showed similar or even higher abrasive wear and corrosion resistance compared with those coatings produced by imported powder and showed similar corrosion resistance and10.6,9.2and2times abrasive wear resistance in comparison to the EHC coating with high thickness respectively. As a result, the new bimodal HVOF WC/Co(Cr) coatings and spraying and fused Ni based WC composited coatings deposited by optimal process and parameter can replace the corresponding coatings deposited by expensive imported powders and EHC that can bring great damage to human health.
引文
[1]薛群基.中国摩擦学研究和应用的重要进展.科技导报2008,23:1
    [2]张嗣伟.我国摩擦学工业应用的节约潜力巨大——谈我国摩擦学工业应用现状的调查.中国表面工程,2008,21(2):50-52
    [3]中国农业机械化科学研究院工艺材料研究所编译.磨粒磨损与抗磨技术译文集.北京:中国农业机械出版社,1982:2-3
    [4]何奖爱,王玉玮.材料磨损与耐磨材料.沈阳:东北大学出版社,2001:4-5
    [5]西安交通大学耐磨课题组(译文集).磨料磨损与耐磨合金.北京:电力工业出版社,1980:1-10
    [6]Nascimento M P,Souza R C,Miguel I M,et al. Effects of tungsten carbide thermal spray coating by HP/HVOF and hard chromium electroplating on AISI 4340 high strength steel. Surface and Coatings Technology,2001,138(2-3):113-124
    [7]Picas J A, Forn A, Matthau G. HVOF coatings as an alternative to hard chrome for pistons and valves.Wear,2006,261(5-6):477-84
    [8]Mandlich N V.Practical problems in fight and hard chromium electrode position,Part I.Metal Finishing,1999,97(6):100-106
    [9]Voorwald H J C,Padilha R,Costa M Y P,et al. Effect of electroless nickel interlayer on the fatigue strength of chromium electroplated AISI 4340 steel. International Journal of Fatigue,2007,29(4):695-704
    [10]周克崧,邓春明,刘敏.超音速火焰喷涂WC涂层替代电镀硬铬:疲劳和摩擦磨损性能.中国工程科学,2001,11(10):48-54
    [11]周克崧.热喷涂技术替代电镀硬铬的研究进展.中国有色金属学报.2004,14(F01):182-191
    [12]Rastegar F. Richardson D E. Alternative to chrome:HVOF cermets coatings for high horse power diesel engines. Surface and Coatings Technology,1997,90(1-2):156-163
    [13]Ibrahim A. Berndt C C. Fatigue and deformation of HVOF sprayed WC-Co coatings and hard chrome plating. Materials Science and Engineering A,2007,456(1-2):114-119
    [14]Bolelli G. Cannillo V, Lusvarghi L. Mechanical and tribological properties of electrolytic hard chrome and HVOF-sprayed coatings. Surface and Coatings Technology,2006,200(9):2995-3009
    [15]吴子健,吴朝军,曾克里.热喷涂技术与应用.北京:机械工程出版社,2005:1-3
    [16]刘松.爆炸喷涂技术及应用.焊接,1997,7:2-6.
    [17]Parker D W, Kunter G L.HVOF Advanced material materials processes,1991,4:68-74
    [18]Magnania M,Suegama P H,Espallargas N. Influence of HVOF parameters on the corrosion and wear resistance of WC-Co coatings sprayed on AA7050 T7.Surface and Coatings Technology,2008,202(19):4746-4757
    [19]Zhu Y C,Ding C X,Yukimura K,et al.Deposition and characterization of nanostructured WC-Co coating. Ceramics International,2001,27:669-674
    [20]饶琼,周香林,张济山.超音速火焰喷涂技术及其应用.热加工工艺,2004,10:49-52
    [21]Schneider K E, Belashchenko V, Dratwinski M,et al.Thermal Spraying for Power Generation Components. KGaA, Weinheim:WILEY-VCH Verlag GmbH & Co.,2006:45-51
    [22]http://www.autooo.net/tech_data/jx_39718.html http://www.sulzermetco. com/ en/desktopdefault. aspx/tabid-4021/7681_read-17366/
    [23]尚丽娟,康煜平.试论粉末火焰喷焊和激光熔覆技术.热加工工艺,2002,4:47-49
    [24]鲍明远,孟凡吉.氧乙炔火焰粉末喷涂和喷焊技术.北京:机械工业出版社,2003:23
    [25]成田淳.JP-HVOF喷枪喷涂工艺参数优化.热喷涂技术经验交流研讨会论文集.南昌,2009,10-16
    [26]Tomlinson W J,Linzell C R. Anodic polarization and corrosion of cemented carbides with cobalt and nickel binders,Journal of Materials Science,1988,23 (3):914-918
    [27]Shetty D K, Wright I G, Mincer P N, et al. Clauer.Indentation fracture of WC-Co cermets. Journal of Materials Science,1985,20(5):1873-1882,
    [28]Exner H E. Physical and chemical nature of cemented carbides. International Materials Reviews,1979,24(4):149-173
    [29]Voyer J,Marple B R. Sliding wear behavior of high velocity oxy-fuel and high power plasma spray processed tungsten carbide-based cermet coatings.Wear,1999,225-229:135-145
    [30]He J H,Schoenung J M. Nanostructured coatings.Materials Science and Engineering A,2002,336:274-319
    [31]李金桂,肖定全.现代表面工程设计手册.北京:国防工业出版社,2000,961-962。
    [32]Tewksbury G A.The abrasive wear of plasma sprayed nanoscale tungsten carbide-cobalt (WC-Co),[University of Lawrence PhD Dissertation].Appleton:University of Lawrence 1995,31-34
    [33]Yao Z,Stiglich J,Sudarshan T S. WC-Co enjoys proud history and bright future[J].Metal Powder Report,1998,53(2):32-36
    [34]Jacobs L,Hyland M M,Bonte M D. Study of the influence of microstructural properties on the sliding-wear behavior of HVOF and HVAF sprayed WC-cermet coatings Journal of Thermal Spray Technology,1999,8(1):125-132
    [35]张敬国.WC-17%Co热喷涂粉末及其耐磨涂层制备的研究:[中南大学硕士学位论文].长沙:中南大学材料学院,2005,1-3
    [36]Lima R S,Karthikeyan J,Kay C M,et al. Microstructural characteristics of cold-sprayed nanostructured WC-Co coatings. Thin Solid Films,2002,416(1-2):129-135
    [37]Marjos D D,Nasr M G.Adrienne S L,et al. Kinetic modeling of phase selection during non-equilibrium solidification of a tungsten-carbon system. Acta Materialia,2002,50(6):1421-1432
    [38]Roebuck B,Almond E A,et al. Deformation and fracture processes and the physical metallurgy of WC-Co hardmetals,International Materials Reviews,1988,33(2):90-110
    [39]《化工百科全书》编辑委员会.冶金和金属材料.北京:化学工业出版社,2001:822-834
    [40]Upadhyaya G S.Materials science of cemented carbides-an overview. Material and Design,2001,22(6):483-489
    [41]Tomita T,Takatani Y,Kobayashi Y,et al. Durability of WC/Co sprayed coatings in molten pure zinc. ISIJ international.1993,33(9):982-988
    [42]Tani,K,Tomita,T,Kobayashi Y,et al. Durability of sprayed WC/Co coatings in aluminum-added zinc bath. ISIJ Int.1994,34(10):822-828
    [43]Marjos D D,Nasr M G,Adrienne S L,et al. Kinetic modeling of phase selection during non-equilibrium solidification of a tungsten-carbon system. Acta Materialia,2002,50(6):1421-1432
    [44]Roebuck B, Almond E A. Deformation and fracture processes and the physical metallurgy of WC-Co hardmetals. International Materials Reviews,1988,33(2):90-110
    [45]http://www.supermmc.com/UploadFiles/2008101711379411.pdf
    [46]朱润生.自熔合金粉末的研究.粉末冶金工业,2002,12(6):7-16.
    [47]李丽荣.水轮机耐汽蚀喷焊用合金粉末的研制.《青海大学学报》自然科学版,2000,18(2):36-37
    [48]Miguel J M, Guilemany J M, Vizcaino S. Tribological study of NiCrBSi coating obtained by different processes, Tribology International.2003,36 (3):181-187
    [49]Tobar M J,Alvarez C,Amado J M,et al. Morphology and characterization of laser clad composite NiCrBSi-WC coatings on stainless steel,Surface and Coatings Technology,2006,200 (22-23):63-13
    [50]Navas C,Colaco R,Damborenea J,et al. Abrasive wear behaviour of laserclad and flame sprayed-melted NiCrBSi coatings,Surface and coatings technology,2006,200 (24)6854-6862
    [51]储训.水泵抗泥沙磨损抗汽蚀合金粉木喷焊的材料及工艺.水泵技术,1999.5:16-22
    [52]Wood R J K. Tribology of thermal sprayed WC-Co coatings. International journal of refractory metals and hard materials,28 (2010):82-94
    [53]李忠全.振实法测量粉末的粘着力和流动性.粉末冶金工业,2002,12(2):35-37
    [54]Chivavibul P,Watanabe M,Kuroda S,et al. Effects of carbide size and Co content on the microstructure and mechanical properties of HVOF-sprayed WC-Co coatings. Surface and Coatings Technology,2007,32(3-5):509-521
    [55]Baik K H. Kim J H, Seong B G. Improvements in hardness and wear resistance of thermally sprayed WC-Co nanocomposite coatings. Materials Science and Engineering A,2007,449-451 (25):846-849
    [56]Karimi A.Verdon C,Martin J L,et al. Slurry erosion behaviour of thermally sprayed WC-M coatings.Wear,186-187 (2)480-486
    [57]Karimi A, Verdon C, Barbezat G. Microstructure and hydroabrasive wear behaviour of high velocity oxy-fuel thermally sprayed WC-Co(Cr) coatings. Surface and Coatings Technology,1993,57(1):81-89
    [58]李长久,大森明,原田良夫.碳化钨颗粒尺寸对超音速火焰喷涂WC-Co涂层形成的影响.表面工程,1997,2:22-27.
    [59]Usmani,SaMPath S,David L,et al. Efect of carbide grain size on the sliding and abrasive wear behavior of thermally sprayed WC-Co coatings.Tribology Transactions,1997,40(3):470-478
    [60]Jia K.Fischer T E. Abrasion resistance of nanostructured and conventional cemented carbides.Wear,1996,200(1-2):206-214
    [61]Zhu Y C,Yukimura K Ding C X. Tribological properties of nanostructured and conventional WC-Co coatings deposited by plasma spraying.Thin Solid Films,1996,388,(1-2):277-282
    [62]Stewart D A,Shipway P H,McCartney D G. Abrasive wear behaviour of conventional and nanocomposite HVOF-sprayed WC-Co coatings.Wear,1999, 225-229(2):789-798
    [63]Berget J,Rogne T,Bardal E. Erosion-corrosion properties of different WC-Co-Cr coatings deposited by the HVOF process-influence of metallic matrix composition and spray powder size distribution. Surface and Coatings Technology,2007,201(18):7619-7625
    [64]Legoux J G,Arsenault B,Hawthorne H,Immarigenon J P. Erosion Behavior of WC-10Co-4Cr HVOF coatings.Thermal Spray 2003 Advancing the Science& Applying the Technology,(Ed.)C. Moreau and B.Marple,Published by ASM International,Materials Park,Ohio,USA.2003
    [65]王群,丁彰雄,陈振华等.枪管长度和喷涂距离对超音速火焰喷涂制备纳米WC-12Co涂层组织和硬度的影响.机械工程材料,2008,32(9):9-12
    [66]Zhao L D,Maurer M,Fischer F,et al. Study of HVOF spraying of WC-CoCr using on-line particle monitoring. Surface and Coatings Technology,2004,185 (2-3):160-165
    [67]Qiao Y F, Fischer T E. Andrew Dent.The effects of fuel chemistry and feedstock powder structure on themechanical and tribological properties of HVOF thermal-sprayed WC-Cocoatings with very fine structures. Surface and Coatings Technology,2003,172 (1) 24-41
    [68]Fang W,Cho T Y,Yoon J H,et al. Processing optimization,surface properties and wear behavior of HVOF spraying WC-CrC-Ni coating. Journal of materials processing technology,2009,209(7):3561-3567.
    [69]Marple B R,Voyer J,Bisson J F,et,al.Thermal spraying of nanostruclured cermet coating[J].Journal of materials processing,2001,117(3):418-423
    [70]Guilemany J M,Paco J M,Nutting J,et al.Characterization of the W2C phase formed during the high Velocity oxygen fuel spraying of a WC+12pctCo.Metallurgical and Materials Transactions A,1999,30(8):1913-1921
    [71]Liao H,Normand B,Coddet C. Infiuence of coating microstructureon the abrasive wear resistance of WC/Co cermet coatings. Suriface and Coatings Technology,2000,124(2-3):235-242
    [72]Vinayo M E,Kassabji F,Guyonnet J,et al. Plasma sprayed WC-Co coatings: Influence of spray conditions (atmospheric and low pressure plasma spraying) on the crystal structure, porosity, and hardness. Journal of Vacuum Science & Technology A,1985,3 (6):83-89
    [73]Verdon C, Karimi A, Martin J L. A study of high velocity oxy-fuel thermally sprayed tungsten carbide based coatings. Part 1:Microstructures Materials Science and Engineering A,1988,246(1-2):11-24
    [74]Kear B H, Skandan G, Sadangi R K. Factors controlling decarburization in HVOF spaayed nano-WC/Co hard coating. Scripta mater,2001,44(8):1703-1707
    [75]Fincke J R,Swank W D,Haggard D C. Proceed 7th National Thermal Spray Conference,1994,Boston,MA,ASM International,1994,325-330
    [76]杨雪,叶福兴,崔崇,等.HVOF喷涂亚微米级WC-12Co涂层的物相变化与耐磨损性能.热喷涂技术,2009,1(2):53-57
    [77]Gahlin R, Jacobson S. The particle size effect in abrasion studied by controlled abrasive surfaces.Wear,224(1):118-125
    [78]K. Kato. Wear mode transitions. Scripta Metallurgica,1990,24:815-820
    [79]Gahr K H Z. Microstructure and Wear of Materials.Amsterdam,Elsevier Science Publishers,1987,340-345
    [80]Rabinowicz E,Dunn L A,Russell P G. A study of abrasive wear under three-body conditions. Wear,1961,4(5):345-355
    [81]Rabinowiez E, Dunn L A, Russell P G, The abrasive wear rssistance of some bearing steels. Lubrication Engineering,1961,17:587-593
    [82]Rabinowiez E, Dunn L A, Russell P G. A study of abrasive wear under three-body conditions. Wear,4(5):345-355
    [83]Archard J F. Contact and rubbing of flat surfaces. Journal of Applied Physics,1953:24(8):981-988
    [84]邓春明,周克崧,刘敏,等.Cr对超音速火焰喷涂WC-Co涂层抗中性盐雾腐蚀性能的影响.材料开发与应用,2007.22(3):33-36
    [85]Stack M M, Badia T M. Some comments on mapping the combined effects of slurry concentration, iMPact velocity and electrochemical potential on the erosion-corrosion of WC/Co-Cr coatings, Wear,2008,264(9-10):826-837
    [86]Fedrizzi L,Valentinelli L,Rossi S.et al. Tribocorrosion behaviour of HVOF cermet coatings. Corrosion Science,2007,49(7):2781-2799
    [87]Stack M M, AbdEI Badia T M. On the construction of erosion-corrosion maps for WC/Co-Cr-based coatings in aqueous conditions. Wear,2006,261(11-12):1181-1190
    [88]Neville A,Reza F,Chiovelli S,et al. Erosion-corrosion behaviour of WC-based MMCs in liquid-solid slurries. Wear,2005,259(1-6):181-195
    [89]Monticelli C, Frignani A, Zucchi F. Investigation on the corrosion process of carbon steel coated by HVOF WC/Co cermets in neutral solution. Corrosion Science,2004,46(5):1225-1237
    [90]Koon P A, Tana A L K, Tanb T P.et al. Corrosion resistance of tungsten carbide based cermet oatings deposited by high velocity oxy-fuel spray process. Thin Solid Films,2008,516(16):5710-5715
    [91]王振强,杨勇,王铀,等.三种热喷涂WC-CoCr涂层的组织及腐蚀行为.热处理技术与装备,2009,30(6):23-28
    [92]Monticelli C, Frignani A,Zucchi F. Investigation on the corrosion process of carbon steel coated by HVOF WC/Co cermets in neutral solution. Corrosion Science,2004,46(5):1225-1237
    [93]Souza V A D, Neville A. Mechanisms and kinetics of WC-Co-Cr high velocity oxy-fuel thermal spray coating degradation in corrosive environments. Journal of Thermal Spray Technology,2006,15(1):106-116
    [94]Nerz J, Kushner B, Rotolico A. Microstructural Evaluation of Tungsten Carbide-Cobalt Coatings. Journal Thermal Spray Technology.1992, 1(2):147-152.
    [95]L C J, Ohmori L A,Harada Y. Formation of an amorphous phase in thermally sprayed WC-Co.1996.5(1):69-73
    [96]Stewart D A, Shipway P H, McCartney D G. Influence of heat treatment on the abrasive wear behaviourof HVOF sprayed WC-Co coatings. Surface and Coatings Technology,1998,105 (1-2):13-24
    [97]Heydarzadeh M S, Ghadamia F. CoMParative tribological study of air plasma sprayed WC-12% Co coating versus conventional hard chromium electrodeposit. Tribology International,2010,43(5-6):882-886
    [98]Khameneh S A, Heydarzadeh M S, Hokamotoa K, et al. Effect of heat treatment on wear behavior of HVOF thermally sprayed WC-Co coatings. Wear,2006,260(11-12):1203-1208
    [99]Lim L C,Lim S C,Lai M O,et al. Annealing of plasma-sprayed WC-Co coating,Surface and Coatings Technology,1996,79 (1-3):151-161
    [100]Ahmed R, Stewart S, Stoica V, et al. Influence of Post-treatment on the Tribo-mechanical properties of Cermet Coatings. International Thermal Spray Conference.Advances in Technology and Application,2004,91
    [101]Parker D W, Kutner G L. HVOF moves into the industrial main stream. Avanced Materials & Processes,1994,146 (1):31-35
    [102]Clarke R, G.barbezat S, Keller A R. A review of HVOF system process considerations for optimized coatings in turbo-machinery. International thermal spray conference,1995,1173-1178
    [103]Mann B S, Arya V. Abrasive and erosive wear characteristics of plasma nitriding and HVOF coatings:their application in hydro turbines.Wear,2001,249 (5-6):354-360
    [104]Wielagea B, Wank A,Pokhmurska H,et al. Development and trends in HVOF spraying technology.Surface and Coatings Technology.2006,201 (5) 2032-2037
    [105]Karoonboonyanan S, Salokhe VM, Niranatlumpong P. Wear resistance of thermally sprayed rotary tiller blades. Wear,2007,263 (1-6):604-608
    [106]孟晓霞.表面工程应用实例[例12]超音速火焰喷涂用于冷轧张力辊的复合制造与再制造.中国表面工程,2009,22(5):2
    [107]Wheeler D W,Wood R J K. Erosion of hard surface coatings for use in offshore gate valves.Wear,2005,258(1-4):526-536
    [108]Wooda R J K,Sun D,Thakare M R,et al. Interpretation of electrochemical measurements made during micro-scale abrasion-corrosion Tribology International,43(7)2010:1218-1227
    [109]丁成钢,王晖,刘强,等.镍基合金粉末氧乙炔火焰喷焊层的组织研究.大连铁道学院学报,2005,26(3):64-66
    [110]袁晓敏,斯松华,何宜柱.氧乙炔火焰和等离子弧喷焊合金涂层的组织和耐腐蚀磨损性能.中国腐蚀与防护学报,2003,23(5):307-311
    [111]王引真,曹文军,李小龙.镍、铁基喷焊层组织与性能研究材料保护,2004,(37)10:21-22.
    [112]苟国庆,沈义发陈辉,等.电弧喷涂FT45涂层与Ni60喷焊涂层组织性能研究,电焊机,2004,34(5):53-55
    [113]赵卫民,郭绍庆.镍基喷焊材料的耐蚀性研究.材料保护.1998,31(4)3-4.
    [114]宋欢,隋全明.铸造WC硬质合金粉末预成形块火焰喷焊工艺及耐磨性的研究,粉末冶金技术.1995,13(4):259-264
    [115]王素芬.火焰喷焊件喷焊层耐磨性的研究.西北纺织工学院学报.1997,11(3):282-285
    [116]王长生,朱炜.几种火焰喷焊自熔性合金层的耐磨性.材料开发与应用,1997,12(4):6-12
    [117]鲍君峰,于月光,刘海飞,等.火焰喷焊Ni基WC复合涂层的性能研究矿冶,2006,15(4):27-29
    [118]赵建国,颜海涛,赵晓顺.根茬还田刀具火焰喷焊耐磨性的研究.农机化研究,2006,3:143-145
    [119]陈志刚,汤小丽,苏静.超细WC体积分数对喷焊层耐磨性的影响.《江苏大学学报》自然科学版,.2006,27(1):44-46
    [120]丁彰雄,马经球.热喷焊层耐磨粒磨损性能的研究.武汉水运工程学院学报,1993,17(2):240-245.
    [121]秦德福,李晖文.采气闸阀密封面喷焊工艺及性能.石油机械1998,26(7):10-12
    [122]王吉会,陈学定.干磨损和腐蚀磨损行为进行了研究.焊接,1994,9:1-9
    [123]Miguel J M, Guilemany J M, Vizcaino S. Tribological study of NiCrBSi coating obtained by different processes. Tribology International,2003,36 (3) 181-187
    [124]詹长书.热喷焊技术工艺设计及其应用.森林工程,2003,19(3):39-40
    [125]方伟,尹方玉,韩家跃.循环流化床锅炉膜式水冷壁管屏喷焊防磨.工业锅炉.2005,4:42-44
    [126]任德亮,康福仪.渣浆阀耐磨表面火焰喷焊工艺研究.中国表面工程,200417(5):45-47
    [127]Jiang X L,Jordan E H,Shaw L L,et al.Plasma Spray Forming of Nanostructured Composite Coatings[J]Journal of materials science & technology, 2002.18(3):287-288
    [128]Jiang X L,Jordan E H,Shaw L L,et al.Deformation Behavior of Nanostructured Ceramic Coatings Deposited by Thermal Plasma Spray[J]Journal of materials science & technology,2004.20(4):479-480
    [129]Skandan G, Yao R, Sadang R, et al.Multimodal coatings:a new concept in thermal spraying,Jounal of Thermal Spray Technology.2000,9 (3):329-331
    [130]Skandan G, Yao R, Kear B H, et al.Multimodal powder:a new class of feedstock materials for thermal spraying of hard coatings,Scripta Mater.2001,44 (8-9):1699-1702.
    [131]Wang Q,Chen Z H,Ding Z X. Performance of abrasive wear of WC-12Co coatings sprayed by HVOF. Tribology International,2009.42(7):1046-1051
    [132]Itsukaichi T, Osawa S, Ahmed R.Influence of Powder Size and Strength on HVOF Spraying-Mapping the Onset of Spitting.Thermal Spray 2003:Advancing the Science & Applying the Technology, (Ed.) C. Moreau and B. Marple. Published by ASM International. Materials Park, Ohio, USA,2003:819-824
    [133]侯根良,王汉功,袁晓静.超音速火焰喷涂流场有限元分析.焊接学报,200526(3):77-80
    [134]Bartuli C,Valente T,Cipri F,et a 1.Parametric study of an HVOF process for the deposition of nanostructured WC-Co coatings.Journal of Thermal Spray Technology,2003,14(2):187-195
    [135]Houdkovas, Kasparova M, Zahalka F. The Influence of Spraying Angle on Properties of HVOF Sprayed Hardmetal Coatings.Journal of Thermal Spray Technology,19(5):893-901
    [136]陈魁.实验设计与分析.北京:清华大学出版社,1996:169-174
    [137]赵艳萍.中性氧乙炔监测方法的试验研究.《江苏理工大学学报》自然科学版1996,17(6):56-63
    [138]黄彬贵,代儒煌.铸铁件缺陷的氧-乙炔火焰喷焊修补.机械工人:热加工1989,5:32-34
    [139]Evans A G,Wilshaw T R. Quasi-static solid particle damage in brittle solids—Ⅰ. observations analysis and implications,Acta Metallurgica,1976,24 (10) 939-956
    [140]Fang L,Liu W,Du D,et al. Predicting three-body abrasive wear using monte carlo methods.Wear,2004,256(7-8):685-694
    [141]李爱农.疏浚工况泥沙磨损机理及其耐磨新材料研究:[武汉理工大学博士学位论文].武汉:武汉理工大学材料学院,2003,65-69
    [142]徐克威,汪树军.不同方法制备的铂碳复合电极极化曲线测试分析.西安公路交通大学学报,2000,20(4):126-127
    [143]Gil L,Prato M A,Staia M H. Effect of post-heat treatment on the corrosion resistance of NiWCrBSi HVOF coatings in chloride solution. Journal of Thermal Spray Technology,11(1):95-99
    [144]Stewart D A,Shipway P H,McCartney D G.Microstructural evolution in thermally sprayed WC-Co coatings:comparison between nanocomposite and conventional staring powders.Acta Materialia,2002,48(7):1593-1604
    [145]Villars P,Prince A,Okamoto H,Handbook of Ternary Alloy Phase Diagrams 5,ASM international,Aetals Park,OH,1995,5:6590-6602
    [146]Tu J P,Liu M S,Mao Z Y. Erosion resistance of Ni-WC self-fluxing alloy coating at high temperature.Wear,1997,209(1-2):43-48
    [147]Villiers L H L,Richter P W.Benson J M,et al. Powder/Processing/structure relationships in WC-Co thermal spray coatings:A review of the published literature.J.thermal Spary Technology,1998,7(3):357-373
    [148]Li CJ,Ohmori A,Harada Y. Formation of an amorphous phasein thermally sprayed WC-Co. J.thermal Spary Technology 1996,5(1):69-73
    [149]Qiao Y F, Liu Y R, Fischer T E. Sliding and abrasive wear resistance of thermal-sprayed WC-CO coatings. Journal of Thermal Spray Technology,2001, 10(1):118-125
    [150]Dent A H, Depalo S, SaMPath S. Examination of the wear properties of HVOF sprayed nanocomposite and conventional WC-Co cermets with different binder phase contents. J.thermal Spary Technology,2002,11(4):551-558
    [151]Stewart D A,Shipway P H,Mecartney D G. Abrasive wear behaviour of convertional and nanostructrure WC-Co coating.Wear.2005,225-229(2):333-338
    [152]Karimi A,Verdon C,Barbezat G. Micmstructure and Hydroabrasive Wear Behaviour of High Velocity Oxy-Fuel Thermally Sprayed WC/Co(Cr) Coatings,Surface and Coatings Technology,1993,57(1):81-89
    [153]Subrahmanyam J, Srivastava M P, Sivakumar R. Characterization of plasma sprayed WC-Co coatings. Materials Science and Engineering A,1986,84:209-214
    [154]Li C J,Ohmori A,Harada Y. Formation of an amorphous phase in thermally sprayed WC-Co. Jounal of Thermal Spray Technology,1996,5(1):69-73
    [155]Skogsmo, Norden J H. The formation of eta-phase in cemented carbides during chemical vapour deposition. International Journal of refractory metals and hard materials,1992,11(1):49-61
    [156]Canlish L E,Kear B H,Kim B K,et al. Metastable nanocrystalline carbides in chemically synthesized W-Co-C ternary alloys, Materials Research Society Symposium,1989.132:67
    [157]Villiers H L D,Richter P W,Benson J M,et al. Parameter study of HP/HVOF deposited WC-Co Coatings. Jounal of thermal spray technology,1992,7 (1):97-107
    [158]Hellsing M, Enjered A, Norden H, et al. Science of hard materials. Plenum press,New York,1983,93
    [159]Sohi M H, Khameneh S A, Hokamoto K.A DTA Study on HVOF Thermally Sprayed WC-M Coatings.Journal Materials Science Forum,2007,566(1):155-160
    [160]Bhaumika S K. Upadhyaya G S, Vaidyaa M L. Alloy design of WC-10Co hard metals with modifications in carbide and binder phases International Journal of Refractory Metals and Hard Materials.1992,11(1):9-22
    [161]Ramnath V, Jayaraman N. Characterisation and wear performance of plasmasprayed WC-Co coatings. Materials Science and Technology.1989,5(4):382-388
    [162]Camila,Torres S,Schaeffer L. Effect of high energy milling on the microstruture and properties of WC-Ni composite.Materials Research,2010,13(3):16-19
    [163]Fischer T E, Anderson M P,Jahanmir S. Influence of fracture toughness on the wear resistance of yttria-doped zirconium oxide. Journal of the American Ceramic Society,1989,72 (2):252-257
    [164]Dubrovinskaia N A,Dubrovinsky L S,Saxena S K,et al. Thermal expansion and compressibility of Co6W6C Journal of Alloys and Compounds. 1999,285(1-2):242-245
    [165]Boland R F. High velocity oxygen fuel thermal spray deposition of nanostructured tungsten carbide -cobalt composites:[University of Connecticut PhD Dissertation]:University of Connecticut,2001,40-41
    [166]Matthews S, James B. Review of thermal spray coating applications in the steel industry:part 2—zinc pot hardware in the continuous galvanizing line. Journal of Thermal Spray Technology,2010,19(6):1277-1286
    [167]Seong B G,Hwang S Y,Kim M C,et al. Reaction of WC-Co coating with molten zinc in a zinc pot of a continuous galvanizing line.Surface and Coatings Technology,2001,138(1-2):101-110
    [168]Heimgartner P, Kretsner I,Polak R,et al. The 5th European Conference on Advanced Materials.Processes and Applications,Surface Engineering and Functional Materials Masricht,Netherlands,1997,3:109-113
    [169]Rodriguez J,Martin A,Fernandez R,et al. An Experimentla study of the ewar performace of NiCrBSi thermal spray coatings. Wear,2003,255(7-12):950-955
    [170]Basse L,Koyanagi J E. Abrasion of WC-Co Alloys by quartz. Journal of Lubrication Technology. Transactions of ASME 101 1979:pp.208-212
    [171]Kim H,Hwang S,Lee C,et al. Assesment of wear performance of flame sprayed and fused Ni-based coaings. Surface and Coating Technology 2003,172(2-3):262-269
    [172]Bell G R. Furnace Fused Spray Metal Coatings.Proceedings of the Eighth International Thermal Sparying Conference,Miami,Florida,USA.1976,396-406]
    [173]Fernandez J E,Fernandez M R,Diaz R V,et al. Abrasive wear analysis using factorial experiment design.Wear,2003,255(1-6):38-43
    [174]Zhu Y C,Yukinurea K,Ding C,et al. Tribological properties of nanostructured and conventional WC-Co coaitngs deposited by plasma spraying.Thin Solid Films,2001,388(1-2):277-282
    [175]Lay S, Chermant J L. and Vicens J. Plasticity of WC materials by TEM investigations. Materials Science Research 1984,57(18):87-96
    [176]Human A M, Exner H E. Electrochemical behaviour of tungsten-carbide hardmetals,Materials Science and Engineering A,1996,209(1-2):180-191
    [177]Human A M,Roebuck B,Exner H E. Electrochemical polarizationand corrosion behaviour of cobalt and Co (W,C) alloys in 1 n sulphuric acid,Materials Science and Engineering A,1998,241,(1-2):202-210
    [178]Monticelli C,Frignani A,Zucchi F. Investigation on the corrosionprocess of carbon steel coated by HVOF WC/Co cermets in neutralsolution. Corrosion Science,2004,46(5):1225-1237
    [179]Trueman A, Schweinsberg D P, Hope G A. A study of the effect of cobalt additions on the corrosion of tungsten carbide/carbon steel metal matrix composites, Corrosion Science,1999,41(7):1377-1389
    [180]Wentzel E J,Allen C,The erosion-corrosion resistance of tungsten-carbide hard metals,International Journal of Refractory Metals and Hard Materials,1997, 15(1-3):81-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700