用户名: 密码: 验证码:
振动筛结构随机动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
振动筛在制造、安装、运行等环节中,不可避免地存在着大量随机因素,传统分析是将所有动力学相关参数视为确定性的量,对于使用过程中出现的某些结构破坏问题,传统分析模型难以给出合理的解释。因此采用随机动力学模型揭示实际存在的随机因素对振动筛动力学特性及其响应产生的影响规律,具有重要的理论意义和实用价值。本文将随机动力学理论与有限元方法结合,建立了振动筛随机动力学模型进行随机动力学分析,考虑了激励随机参数和结构随机参数,对结构动力学特性和响应变异规律及随机响应变异变化率进行了研究,并针对某型振动筛进行了具体分析,主要内容如下:
     1、对某振动筛用橡胶弹簧进行力学性能实验,通过实验发现橡胶弹簧刚度可以划分为近似线性刚度区和非线性刚度区,对于橡胶弹簧近似线性刚度区,提出了均值刚度的概念及计算方法。应用应变能理论,建立适合所研究橡胶弹簧的基于Mooney-Rivlin五参数应变能函数的非线性本构方程及其非线性有限元分析模型,并验证其精度。同时,采用均值刚度建立橡胶弹簧线性分析模型,其精度与非线性计算基本相同,在振动筛工作范围内可以作为非线性模型合理的替代。
     2、对振动筛整体结构进行动态测试,得到振动筛模态频率及振动筛平稳工作时的振幅,结果表明结构各阶模态频率均未与工作频率重合,平稳工作时不会出现共振现象。
     3、将随机动力学理论与有限元方法结合到一起,考虑激励参数与结构参数随机性,建立振动筛随机动力学模型,给出模型建立方法及分析流程图。针对振动筛随机动力学模型中的关键问题,提出了梁—壳单元模型,通过自定义梁截面单元、自由度耦合及建立约束方程、建立刚性区等方法解决有限元建模中关键问题。应用梁—壳单元模型对振动筛整体结构及主要结构部件进行模态分析和动力学响应分析,通过与实验结果及传统实体单元模型模拟结果对比,验证了梁—壳单元模型的精度及分析效率。
     4、定义模态频率、振幅及动应力的相对均差系数和变异系数,定量描述振动筛随机动力学变异规律。分别以结构模态频率、振幅及动应力的相对均差系数函数和变异系数函数为目标函数,随机结构参数及随机激励参数的变异系数为自变量,定义相对均差系数变化率及变异系数变化率两个无量纲量,定量描述振动筛模态频率、振幅及动应力变异灵敏程度。
     5、应用建立的随机动力学模型对振动筛模态频率变异性进行研究,考虑结构参数单独随机及同时随机时,分析在一阶矩、二阶矩意义下模态频率变异性随参数变异系数变化规律。对于本文研究的振动筛,得到了影响低阶频率变异性及高阶频率变异性的主要参数分别为橡胶弹簧弹性模量变异系数、钢材密度变异系数;当结构参数同时存在随机性时,振动筛模态频率密集度降低。通过对频率比分析,给出参数变异系数的合理范围;同时对模态频率变异性变化率分析,确定各阶频率对参数变异系数的灵敏程度,得到模态频率变异变化率排序。
     6、考虑结构参数随机时,对振动筛随机响应的变异性进行研究,得到振动筛各主要结构部件振幅及动应力随机响应结果在不同结构参数随机条件下的变异规律。结构参数单独随机时,从保证筛分效率及振动筛平稳运行的角度,给出橡胶弹簧弹性模量及钢材密度参数变异系数合理范围;结构参数同时随机时,当参数变异系数达到临界值,振动筛部分结构动应力均值超过许用应力,结构可能发生破坏,研究结果从随机的角度,为振动筛运行中出现的结构破坏给出了确定性模型无法解释的原因。对随机响应变异变化率分析得到响应变异变化率排序,其中振幅及动应力的变异变化率对钢材密度变异系数最敏感。
     7、考虑激励参数随机时,对振动筛振幅及动应力变异性进行研究,激励随机参数包括质量矩、激振力方向角、激振力频率。结果表明:振动筛响应变异系数随激励参数变异系数增加而增大;质量矩变异系数和激振力频率变异系数对振幅及动应力相对均差系数几乎没有影响,激振力方向角变异系数是影响振动筛响应均值的主要参数,随着激振力方向角变异系数增加,结构不同结构部件振幅均值差增大。
     通过响应变异性对激励参数变异系数变化率分析得到激励参数的灵敏度排序,不同结构响应变异系数对不同参数变异系数的灵敏度不同,且参数变异系数增加时,参数灵敏度排序顺序发生变化,根据振动筛响应变异变化率分析结果,应将不同参数变异系数条件下灵敏度高的参数重点考虑。
Random factors inevitably exist in manufacturing, installation, operation and other sectorsof vibrating screen. In the traditional model, all the relevant parameters of dynamic analysis aredeterministic. The structural damage problems arising in vibrating screen working process aredifficult to explain reasonably by using traditional model. The effect law of dynamiccharacteristics and dynamic response caused by random factors can be revealed by stochasticdynamics model; therefore, the stochastic dynamics analysis for vibrating screen has importanttheoretical significance and practical value. Based on experimental analysis of vibrating screenmechanical properties, combining stochastic dynamics theory with finite element method, thestochastic dynamics model of vibrating screen was built. Considering exciting force randomparameter and structural random parameter, the variation law of dynamic characteristics anddynamic response were studied; the variation change rate was also researched. The maincontents are as follows:
     1. By experimental analysis of vibrating screen’s rubber spring mechanical properties, thestiffness of rubber spring can be divided into approximate linear region and nonlinear region. Forapproximate linear region, the concept of mean stiffness and its calculation method wasproposed. Using strain energy theory, the nonlinear constitutive equation and nonlinear finiteelement model of rubber spring were built based on five-parameter Mooney-Rivlin strain energyfunction, and the precision is verified. Meanwhile, the linear finite element model was builtaccording to mean stiffness, the simulation precision accords with the result of nonlinear analysismodel, so the linear model can be used as an alternative to nonlinear analysis in the approximatelinear region.
     2. The dynamic test of vibrating screen structure was carried out, the modal frequency andamplitude in steady working process were got. The results show each modal frequencies werenot coincides with working frequency, resonance phenomenon does not occur.
     3. Combining stochastic dynamics theory with finite element method, the stochasticdynamics model of vibrating screen was built considering exciting force random parameter andstructural random parameter, the modeling methods and analysis flow chart is given. In order tosolve the key problem in stochastic dynamics modeling, the beam-shell element model was putforward, Using custom section beam element, the actual beam structure was simulated by variable cross section beam; the bolts connection and welded connection were simplified rationalby freedom degrees coupled and constraint equations technology; the exciting force was appliedto structure rational by creating rigid zone. The modal analysis and dynamic response analysis ofvibrating screen structure and major structural parts were made. Comparing with experimentalresults and the traditional solid element model simulation results, the analysis results accuracy ofbeam-shell model is verified.
     4. The relative mean value deviation factor and variation factor of modal frequency,amplitude and dynamic stress were defined to analyze dynamic variation rules of vibratingscreen quantitatively. In order to quantitatively describe the variation sensitive degree of modalfrequency, amplitude and dynamic stress, separately using relative mean value deviation factorand variation factor of modal frequency, amplitude and dynamic stress as objective function,using variation factor of exciting force random parameter and structural random parameter asindependent variable, the relative mean value deviation factor change rate and variation factorchange rate are offered, which are dimensionless quantity.
     5. Using stochastic dynamics model, the variation law of modal frequency changing withvariation factor were analyzed when considering structural parameter separate random andcoinstantaneous random. For the vibrating screen studied in this paper, the variation factor ofrubber spring modulus is the main parameter which effecting low-order frequencies variability;the variation factor of steel density is the main parameter which effecting high-order frequenciesvariability. When structural parameters exist variation synchronously, modal frequencyconcentration reduced. Through analysis of frequency ratio, the reasonable range of parametervariation factor was gained. The variation change rate of modal frequency was researched, thevariation sensitive degree of each order frequencies were determined, and variation sensitivedegree sequencing was got.
     6. The variation law of amplitude and dynamic stress changing with variation factor wereanalyzed when structural parameters exist random. The results show when structural parameterseparate random, in order to ensure screening efficiency and vibrating screen operate smoothly,the reasonable range of rubber spring modulus variation factor and steel density variation factorwere gained. When structural parameters exist variation synchronously, as variation factorreaches critical value, the dynamic stress of partial structure exceed allowable stress, thestructure may be destroyed. From the random point, the results give a reasonable explanation for structural damage in vibrating screen operating process, which the deterministic model can notexplain. The amplitude and dynamic stress variation sensitive degree sequencing was got, in allparameters, steel density variation factor is the most sensitive parameter.
     7. The variation law of amplitude and dynamic stress changing with variation factor wereanalyzed when exciting force parameters exist random. The exciting force parameters includemass moment, exciting force direction angle and exciting force frequency. The results show theresponse variation factor increased with parameters variation factor rising; the variation factor ofmass moment and exciting force frequency has little effect on relative mean value deviationfactor of amplitude and dynamic stress. The variation factor of exciting force direction angle isthe main parameter which affects response mean value. As the variation factor of exciting forcedirection angle increasing, the difference of amplitude mean value is increased.
     By variation changing rate analysis, as exciting force parameters exist random, the responsevariation sensitive degree sequencing was got. When variation factor increasing, the sequencingchange. So the parameter of high sensitive needs to draw attention according to analysis results.
引文
[1]黄盛初,刘文革,徐亮.中国煤炭行业海外发展战略研究[J].中国煤炭,2010,36(7):11-16.
    [2]徐亮.2010年、2015年中国煤炭需求预测研究[J].中国煤炭,2010,36(5):17-21,61.
    [3]陈清如.发展洁净煤技术推动节能减排[J].中国高校科技与产业化,2008(3):65-67.
    [4]赵跃民.煤炭资源综合利用手册[M].北京:科学出版社,2004
    [5]张康,耿飞.煤炭筛分设备的发展趋势[J].矿山机械,2010,38(24):11-13.
    [6]刘芒果,刘瑞国,刘春峰,等.浅谈煤用振动筛的现状和发展趋势[J].煤矿机械,2010,31(8):5-7.
    [7]赵环帅,王振年.国内外高频振动筛的现状与发展趋势[J].金属矿山,2009,11:105-107,161.
    [8]赵环帅,任丽春,许金磊,李娜.振动筛常见的故障和解决方法[J].煤矿机械,2008,29(7):193-195.
    [9]赵国瑞,薛光辉,苏明辉,吴淼,宋冲.香蕉型振动筛故障诊断实验平台的搭建[J].矿山机械,2008,36(5):98-100.
    [10]韩红玉.2ZKX1848型直线振动筛筛板失效分析及改进[J].科技情报开发与经济,2003,13(10):271-275.
    [11]彭志林.2575圆振动筛侧板开裂原因分析闭[J].湖南冶金,2004,32(12):34-36.
    [12]李绍明. ALLls型直线振动筛主梁断裂的修补实践闭[J].煤炭加工与综合利用,2002(5):24-25.
    [13]赵玉成,蔡国平,许庆余等. SXG1500×3700型振动筛故障诊断[J].矿山机械,1998(10):54-56.
    [14]伊建宏.直线振动筛横梁产生裂纹的原因分析[J].选煤技术,2004.12(6):7-9.
    [15]刘建文.直线振动筛筛框模态分析和故障诊断研究[J].矿山机械,2004(7):41-44.
    [16]薛光辉.大型振动筛大梁裂纹故障诊断方法研究[D].中国矿业大学(北京),2009.
    [17] R. Vaicailis. Free vibrations of beams with random characteristics[J]. Sound and Vibration,1974,5(1):13-21.
    [18] Chen Jianjun. Analysis of engineering structures response to random wind excitation[J].Computers&Structures,1994,51(6):687-693.
    [19] McCormick A C,Nandi A K. Cyclostationary in rotating machine vibrations[J]. MechanicalSystem and Signal Processing,1998,12(2):225-242.
    [20] Jha A,Nikolaidis E. Gangadharan S. Vibration of dynamic system under cyclostationaryexcitations[J]. AIAA Journal,2000,38(12):2284-2291.
    [21]林家浩,易平.线性随机结构的平稳随机响应[J].计算力学学报,2001,18(4):402-408.
    [22] G. I. Schuelle. Computational stochastic mechanics recent advances[J]. Computers&Structures,2001,79(4):2225-2234.
    [23]苏荣华,彭晨宇.金属激光弯曲成形角度的随机变异性分析[J].应用基础与工程科学学报,2009(17):136-143.
    [24] Davenport A G. Buffeting of a suspension bridge by storm wind[J]. Journal of StructuralDivision,1962,88(3):233-268.
    [25] L in J H,Zhang W S,Li J J. Structural response to arbitrarily coherent stationary randomexcitation[J]. Computers&Structures,1994,50(1):629-633.
    [26]孙东科,林家浩.复杂结构的风激随机振动分析[J].机械工程学报,2001,37(3):55-58.
    [27]马星,邓洪洲,王肇民.桅杆结构随机风振的离散分析法[J].工程力学,2002,19(1):34-37.
    [28]高伟,陈建军,马娟,杜雷.平稳随机激励下线形随机精架结构动力响应分析[J].振动工程学报,2004,17(1):44-48.
    [29]王芳林,高伟,陈建军.风荷激励下天线结构的随机振动分析[J].工程力学,2006,23(2):168-172.
    [30]刘世勋,杨胜培.振动筛分机的研究动向[J].矿山机械,1997,(10):22-26.
    [31]谭兆衡.国内筛分设备的现状和展望[J].矿山机械,2004,1:34-37.
    [32]王峰山.液压单轴振动筛的理论分析与试验研究[D],太原:太原理工大学,2005.
    [33]王峰.筛分机械的发展与展望[J].矿山机械,2004(1):37-39.
    [34] E. V. Grigor'ev,G. M. Platonov,N. I. Golubenko and E. V. Lovchinovskii. Improving the driveof the self-balancing self-centering vibrating screen[J]. Metallurgist,1965,9(5):251-252.
    [35] V. M. Zinin and N. I. Noskov. Improved performance of self-balancing168-GR screens anddzmo shakers[J]. Metallurgist,1969,13(7),403-405.
    [36]韩二中. FGS-2-30共振筛框架横梁的强度分析[J].矿山机械,1975,(3):27-33.
    [37]黄培文.双质量热矿振动筛运动学的研究[J].重型机械,1979,1:17-26.
    [38]苏娜.大型热振筛主横梁和侧板开裂问题的研究[D].鞍山:鞍山科技大学,2003.
    [39]韩二中.2ZKB2163直线振动筛筛框的强度分析[J].矿山机械,1983,(8):37-39.
    [40]纪盛青.激振器偏移式自同步振动筛固有频率、振型及响应的分析[J].矿山机械,1985,(7):15-20.
    [41]郭星辉、韩二中.振动筛筛框等效静强度有限元分析专用程序[J].矿山机械,1987,3:19-23.
    [42]姚家华,杨民献.大型振动筛横梁的强度和动应力集中问题的研究[J].矿山机械,1989,2:29-32.
    [43] Voinov.O.V,Kaidanov.E.P. Ways of improving vibrational sieves[J]. Chemical and PetroleumEngineering,1990,25(9):492-494.
    [44] Steyn,Jacques. Fatigue failure of deck support beams on a vibrating screen[J]. InternationalJournal of Pressure Vessels and Piping,1995,61(2):315-327.
    [45]周广林,张维屏.大型振动筛的强度分析[J].矿山机械,1990,9:29-31.
    [46]张相春. ZS1756A型双轴振动筛的改进[J].煤矿机械,1992(2):47-50.
    [47]龙建勋,薛红武,邵定山. ZK型直线振动筛结构分析[J].煤矿机械,1993,5:2-5.
    [48] Steyn,Jacques. Fatigue failure of deck support beams on a vibrating screen[J]. InternationalJournal of pressure Vessels and Piping,1995,61(2):315-327.
    [49] Anon. Banana-screen design mixes features of other screen types [J]. Pit&Quarry,Jul,1992,85(l):24-25.
    [50] Alamzad,H. Prevent premature screen breakage in circular vibratory separators [J]. ChemicalEngineering Progress,May,2001,97(5):78-79.
    [51] Alamzad,H. Vibratory screens:Spotting and solving premature serene breakage[J]. Powderand Bulk Engineering,March,2004,18(3):19-23.
    [52]曹树谦,张琪昌,陈予恕,于东波.26m2大型直线振动筛动应力计算分析[J].天津大学学报,1995,28(5):677-681.
    [53]刘杰,谢广平,纪盛青,佟杰新,谢广玉.大型热矿振动筛动态特性的有限元分析[J].东北大学学报,1997,18(3):316-320.
    [54]马学东,王锐昌.直线振动筛筛帮动力学模型的建立及分析[J].煤矿机械,2000,10:2-4.
    [55]刘晓艳,于晓光.大型直线振动筛的动力学分析[J],鞍山科技大学学报,2003,26(2):119-122.
    [56]李瑞春,郭奉军.振动筛支承横梁破断分析及结构改造[J].煤矿机械,2004,3:103-104.
    [57]吴丽娟,李惠彬.直线振动筛振动特性分析[J].机械工程师,2004,8:45-47.
    [58]李文英.大型振动筛动力学分析及动态设计[D],太原理工大学,2004.
    [59]朱福先,殷祥超,徐小丽,张永权.单、双通道振动筛筛体的静强度特性分析[J].矿山机械,2005,33(7):61-62.
    [60]范刚龙.振动筛可靠性设计模型及研究[J].机械设计与制造,2005,5:165-166.
    [61]王翠清,冉隆河.影响直线振动筛筛分效果的几个重要参数[J].选煤技术,2006,2:13-150
    [62]王春花,燕碧娟,李文英.大型直线振动筛模型试验台设计及动力学仿真[J].机械工程与自动化,2006,2:140-142.
    [63]尹忠俊,刘建平,赵专东.交变载荷作用下大型振动筛的动应力分析[J].天津大学学报,2007,40(11):1363-1366.
    [64]刘晋峰,来彬.直线振动筛下横梁的动态特性分析[J].机械管理开发,2007,1:71-72.
    [65]贺孝梅,刘初升,张成勇.超静定网梁激振结构大型振动筛动态特性[J].煤炭学报,2008,33(9):1040-1044.
    [66]王靖,熊晓燕.振动筛下横梁结构的有限元分析[J].机械工程与自动化,2008,1:86-87.
    [67]方治华,赵爽.基于ANSYS的振动筛筛箱强度的有限元分析及改进设计[J].煤矿机械,2008,29(12):143-144.
    [68]黄文,宫美英,陆宏,乔长锁.大型冷矿直线振动筛的结构动力学分析与设计改进[J].矿山机械,2009,37(9):104-107.
    [69]张康,赵俊利,雷智强,苗建松,孟伟.基于ADAMS的SDL1645-1圆周振动筛运动特性仿真与研究[J].煤矿机械,2009,30(11):41-43.
    [70]刘选民.振动筛结构动力修改的研究[J].煤矿机械,2009,30(12):56-57.
    [71]张立,仲梁维.直线振动筛的动力学和疲劳分析[J].上海理工大学学报,2009,31(3):299-302.
    [72]霍鹏飞.直线振动筛的疲劳寿命分析[D].太原:太原理工大学,2010.
    [73] Su R H,Ding W W,Peng C Y,2010. Finite element analysis of dynamic performance of QZK2041curved surface screen[J].2010International Conference on Engineering Computation.Beijing,London Science Publishing Limited:7-10.
    [74]姜珂,陈洁.振动筛横梁断裂原因的探讨及处理方法[J].矿山机械,2010,15(38):115-117.
    [75]刘初升,冀连权,魏群.基于功率平衡的振动筛横梁动态分析[J].中国矿业大学学报,2010,39(3):330-334.
    [76] Su Ronghua,Peng Chenyu. Dynamic simulation on rubber spring supporting equipment ofvibrating screen[J]. Journal of Coal Science&Engineering (China),2011,Vol.17,No.2:187-191.
    [77] Su Ronghua,Zhu Liuqing,Peng Chenyu. CAE Applied to Dynamic Optimal Design forLarge-scale Vibrating Screen[C]. CDEE2010:316-320.
    [78] Su Ronghua,Ding Wenwen,Peng Chenyu. Finite Element Analysis of Dynamic Performanceof QZK2041Curved Surface Screen[C]. ICEC2010:7-10.
    [79]郝志明.随机结构有限元法及可靠性研究[D].中国工程物理研究院,2001.
    [80]靳慧.工程机械金属结构系统疲劳可靠性分析研究[D].西南交通大学,2003.
    [81]苏荣华.随机参数结构的模态分析及其应用的研究[D].辽宁工程技术大学,2005.
    [82]李杰.随机结构系统-分析与建模[M].北京:科学出版社,1996:67-68.
    [83]田四朋.固体火箭发动机药柱三维粘弹性随机有限元分析及概率贮存寿命预估[D].国防科学技术大学,2003.
    [84] Manteufel R D. Estimating the error in LHS Predictions[C]. AIAA/ASME/ASCE/AHS/ASCStructures,Structural Dynamics&Materials Conference,Austin,Texas,2005.
    [85]林家浩,夏杰,张亚辉,易平.非平稳随机摄动分析中的久期项效应[J].振动工程学报,2003,16(1):124-128.
    [86]郝奇,何樵登,王德利.用改进的摄动理论研究各向异性弱粘弹性介质中的非均匀平面波[J].吉林大学学报(地球科学版),2010,40(1):195-202.
    [87]蔡萍.一个改进的同伦摄动法的修正[J].重庆文理学院学报(自然科学版),2010,29(6):21-23.
    [88] Bueher C G,Bourgund U. A fast and efficient response surface approach for structuralreliability problems[J]. Structural Safety,1990,7(1):57-66.
    [89]杜劲松,康海贵.结构可靠度分析的改进BP神经网络响应面法[J].应用力学学报,2005,22(1):127-131.
    [90] Faravelli L. A response surface approach for reliability analysis[J]. Journal of EngineeringMechanics,1989,115(12):2763-2781.
    [91] Yamazaki F,Shinozuka M,Desgupta G. Neumann expansion for stochastic finite elementanalysis[J]. Journal of Engineering Mechanics,1988,114(8):1335-1353.
    [92] Ghanem R G,SPanos P D. Polynomial chaos in stochastic finite elements[J]. Journal ofApplied Mechanics,1990,57(1):197-202.
    [93] Ghanem R G,SPanos P D. Spectral stochastic finite element formulation for reliabilityanalysis [J]. Journal of Engineering Mechanics,1991,117(10):2351-2372.
    [94] Jensen H,Iwan W D. Response of system with uncertain parameters to stochastic excitation[J].Journal of Engineering Mechanics,1992,118(11):1012-1025.
    [95] Iwan W D,Jensen H. On the dynamic response of continuous systems including modeluncertainty[J]. Journal of Applied Mechanics,1993,60(2):484-490.
    [96] Ren Y J,Elishakoff I,Shinozuka M. Finite element method for stochastic beams based onvariational principles[J]. Journal of Applied Mechanics,1997,64(3):664-669.
    [97] Elishakoff I,Impollonia N,Ren Y J. New exact solutions for randomly loaded beams withstochastic flexibility[J]. International Journal of Solids and Structures,1999,36(16):2325-2340.
    [98]李杰,陈建兵.随机结构反应的概率密度演化分析[J].同济大学学报,2003,31(12):1387-1391.
    [99] Shinozuka M,Lenoe E. A probabilistic model for spatial distribution of material properties[J].Engineering Fracture Mechanics,1976,8(1):217-227.
    [100] Anders M,Hori M. Stochastic finite element method for elasto-plastic body[J]. InternationalJournal for Numerical Methods in Engineering,1999,46(11):1897-1916.
    [101]陈虬,刘先斌.随机有限元法及其工程应用[M].成都:西南交通大学出版社,1993.
    [102] Shinozuka M,Wen Y K. Monte-Carlo solution of nonlinear vibrations[J]. AIAA Journal,1972,10(1):37-40.
    [103] Olsson A,Sandberg G,Dahlblom O. On Latin hypercube sampling of structural reliabilityanalysis[J]. Structural Safety,2003,25(1):47-68.
    [104] Kleiber M,Hien T D. The stochastic finite element method:basic perturbation technique andcomputer implementation[M]. New York:John Wiley&Sons,1992.
    [105] Ghanem R G,Spanos P D. Stochastic finite elements: a spectral approach[M]. New York:Springer,1990.
    [106] Sun T C.A finite element method for random differential equations with random coefficients[J]. SIAM Journal on Numerical Analysis,1979,16(6):1019-1035.
    [07] Ostoja-Starjewski M,Woods A. Spectral finite elements for vibration rods and beam withrandom field properties[J]. Journal of Sound and Vibration,2003,268(4):779-797.
    [108] Jensen H,Iwan W D. Response of systems with uncertain parameters to stochastic excitation[J]. Journal of Engineering Mechanics,1992,118(11):1012-1025.
    [109] Ngah M F,Young A. Application of the spectral stochastic finite element method forperformance prediction of composite structures[J]. Composite Structures,2007,78(3):447-456.
    [110]李杰,魏星.随机结构动力分析的递归聚缩算法[J].固体力学学报,1996,17(3):263-267.
    [111]朱位秋.随机振动[M].北京:科学出版社,1998.
    [112] Iwan W D,Huang C H. On the dynamic response of non-linear systems with parameteruncertainties[J]. International Journal of Non-Linear Mechanics,1996,31(5):631-645.
    [113] Ghanem R G,Spanos P D. Spectral stochastic finite element formulation for reliabilityanalysis[J]. Journal of Engineering Mechanics,1991,117(10):2351-2372.
    [114] Vanmarke E, Shinozuka M, Nakagiri S, et al. Stochastic fields and stochastic finiteelements[J]. Structural Safety,1986,3(3):143-166.
    [115]贺孝梅.超静定网梁结构大型振动筛动态设计研究[D].北京:中国矿业大学,2009.
    [116]严峰,刘焕胜.筛分机械[M].北京:煤炭工业出版社,1995.
    [117]潘孝勇.橡胶隔振器动态特性计算与建模方法的研究[D].浙江:浙江工业大学,2009.
    [118] Tschoegl N W. Constitutive equations for elastomers[J]. Journal of Applied PolymerScience,1971,1:1959-1970.
    [119] Yeoh O H. Some forms of the strain energy for rubber[J]. Rubber Chemistry and technology,1993,66(5):754-771.
    [120] Ogden R W. Nearly isotropic elastic deformations:application to rubberlike solids[J]. Journalof the Mechanics and Physics of Solids,1978,26(1):37-57.
    [121] Rivlin R S. The elasticity of rubber[J]. Rubber Chemistry and Technology,1992,65(3):51-67.
    [122] Gent A N. A new constitutive relation for rubber[J]. Rubber Chemistry And Technology,1996,69(1):59-61.
    [123] Rivlin R S. Large elastic deformation of isotropic materials:I.Fundamental concepts,II.Some uniqueness theories for pure homogeneous deformations [J]. Philos Trans Roy Soc LondSer A,1948,240:459-508.
    [124] Mooney M. Theory of large elastic deformation[J]. Journal of Applied Science,1940,11:582-592.
    [125]任旭春,姚振汉.一种新的橡胶-帘线复合材料的模型及其参数识别方案[J].工程力学,2006,23(12):180-187.
    [126]龚科家,危银涛,叶进雄.填充橡胶超弹性本构参数试验与应用[J].工程力学,2009,26(6):193-198.
    [127]陈莲周海亭.计算橡胶隔振器静态特性的数值分析方法[J].振动与冲击,2005,Vol.24(3):120-124.
    [128]王晓侠,刘德立,周海亭.橡胶隔振器参数计算与分析[J].噪声与振动控制.2008,4:9-12.
    [129]梁天也,史文库,马闯.汽车动力总成液压悬置橡胶主簧静特性有限元分析[J].振动与冲击,2007,26(9):155-157,165.
    [130]赵光明,宋顺成,孟祥瑞.基于Yeoh本构关系橡胶超弹性材料的无网格法分析[J].应用基础与工程科学学报.2009,17(1):121-127.
    [131] Lee W S,Youn S K,Kim B K. Finite element analysis and design optimization of rubbercomponents for vibration isolation[J]. Archives of Mechanics,2003,55(6):449-479.
    [132] Kim B K,Youn S K,Lee W S.A constitutive model and FEA of rubber under small oscillatoryloads superimposed on large static deformation[J]. Archive of Applied Mechanics,2004,73:781-798.
    [133]曹树谦,张文德,萧龙翔.振动结构模态分析-理论,实验与应用[M].天津大学出版社,2001.
    [134]易平,林家浩,赵岩.线性随机结构的非平稳随机响应变异性分析[J].固体力学学报,2002,23(1):93-97.
    [135]袁谱,王端宜.沥青路面力学响应变异性的蒙特卡罗模拟分析[J].华南理工大学学报(自然科学版),2008,36(2):55-57,63.
    [136]黄广龙,龚晓南,肖溟.土性参数的随机场模型及桩体沉降变异特性分析[J].岩土力学,2000,21(4):311-315.
    [137]赵岩,林家浩,曹建华.转轴系统平稳随机地震响应的变异性分析[J].工程力学,2002,19(2):2-31.
    [138]朱福先.大型振动筛结构强度研究[D].徐州:中国矿业大学,2006.
    [139]王凤阳,赵岩,林家浩.参数不确定结构平稳随机响应虚拟激励摄动方法[J].大连理工大学学报,2011,51(3):320-325.
    [140]林家浩,张亚辉.随机振动的虚拟激励法[M].北京:科学出版社,2004.
    [141]王凤阳.基于虚拟激励的随机振动灵敏度分析及其应用[D].大连:大连理工大学,2010.
    [142]宫美英.振动筛系统与结构的动力学研究[D].秦皇岛:燕山大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700