用户名: 密码: 验证码:
前置烧焦式催化裂化装置的过程建模、模拟及工艺优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对前置烧焦式催化裂化装置对原料适应性强、焦炭在没有或少量CO助燃剂作用下完全燃烧和再生剂含碳量低的特点,考虑到提升管、沉降器、一段烧焦罐和二段密相床再生器互相耦连以及一段烧焦罐气固流动复杂性,本文建立其严格稳态机理模型,并开发相应过程模拟程序。
     提升管模型的建立基于Gupta等的一维稳态模型,采用实组分与虚拟组分反应动力学,并与物料衡算方程、能量衡算方程与流化状态计算模型相耦合;流化状态计算基于固体颗粒团聚模型;鉴于反应网络中存在大量反应,模型方程建立采用体积单元法。沉降器模型包括自由域模型和汽提段模型;自由域中不存在化学反应,仅考虑出口旋风分离器压降效应;可汽提焦炭量的计算基于多级汽提模型,并与物料衡算方程和能量衡算方程耦合,构成汽提段模型。前置烧焦罐的流化状态计算基于固体颗粒团聚模型,耦合焦炭燃烧动力学模型、物料衡算方程和能量衡算方程,考虑出口快速分离装置压降效应。二段密相床再生器模型包括密相区模型和稀相区模型;密相区流化状态计算采用气固全混流模型,床层空隙率采用经验关联式计算,耦合焦炭燃烧动力学模型、物料衡算方程和能量衡算方程;稀相区采用纯气相平推流反应器模型,并考虑了轴向气相静压损失、气相与器壁摩擦压力损失和出口旋风分离器压降损失。
     基于Aspen Custom ModelerTM软件平台,开发了前置烧焦式催化裂化装置的过程模拟程序。为突破该软件难于求解拥有庞大变量总数及复杂常微分方程组数学模型的限制,对提升管模型、烧焦罐模型和二段密相床再生器稀相区模型的求解采用软件平台基础上Fortran语言补充编程的方法。
     本文考察了原料油流率和原料油温度等七个关键工艺参数对全装置稳态运行影响,以期为装置现场操作、工程设计及工艺优化提供有益借鉴。本文对提升管注入终止剂技术、再生器催化剂取热器技术和富氧再生技术在装置上应用进行模拟分析。提升管注入终止剂可控制高温条件油气与催化剂接触时间,装置产品分布能够得到调节。再生器增设取热器,调节取热器负荷,可控制提升管原料油进口处气固平衡温度和装置剂油比。富氧再生技术应用强化了再生器烧焦能力,改善了装置平衡剂活性及选择性。三种技术优劣互补、互相配合所形成的新型组合工艺,提高了装置操作灵活性,可达到装置剂油比可控、油气裂化反应温度可控、高温条件油气与催化剂接触时间可控及强化再生器再生效果的目的。
The fluidized catalytic cracking unit (FCCU) with high efficiency combustor wasdeveloped to process various types of feedstocks. Coke on spent catalyst could betotally converted to CO2with few or no CO promoter in regenerator, while the cokecontent of regenerated catalyst was still kept to be a very low level. Considering thecoupling effects of riser reactor, disengagement vessel,1ststage high efficiencycombustor, and2ndstage dense bed regenerator and the complexity of flow pattern in1ststage combustor, this work developed the rigorous fundamental steady state modeland the corresponding process simulation platform for this type of FCCU.
     The riser model was based on the one dimensional steady state model proposedby Gupta et al, applying the oil cracking kinetice method of true and pseudocomponents, which was coupled with mass balance equations, energy balanceequations, and gas/solid flow pattern description model. The solid cluster model wasbased on to develop the gas/solid flow pattern model. Considering the huge number ofcracking reactions existing within the oil cracking reaction network, the volumeelement method was used to develop the key model equations. The disengagementvessel model included the free board model and the stripper model. The free boardmodel assumed no chemical reactions occurred there, which could account for thepressure drop effects of multistage cyclones within the equipment. The stripping cokeon spent catalyst was featured by the published multistage stripping model, which wasthen coupled with the mass balance equations and the energy balance equations. Thegas/solid flow pattern within the combustor was calculated via the solid cluster model,which was then coupled with coke combustion kinetics model, mass balanceequations, and energy balance equations, forming the steady state model for thecombustor. And the model could account for the effects of pressure drop of thecyclones located at the outlet of combustor. The2ndstage dense bed regeneratormodel included the dense region model and the free board model. The gas/solidcontinuous stirred tank model was based on to feagure the flow pattern within thedense bed region. The bed voidage was calculated via the published industrialcorrelations. These was then followed by coupling with the coke combustion kineticsmodel, mass balance equations, and energy balance equations. The free board modelassumed no solid particle existing within the reactor, so PFR based reactor model wasused to simulate the free board region. The developed model could account for the different pressure loss including the static pressure lose, pressure loss due to frictionbetween gas phase and wall, and pressure loss within the outlet multistage cyclones.
     The process simulation platform for the combustor-style FCCU was developedusing the Aspen Custom ModelerTMsoftware. In order to overcome the shortcomingsof this software which could not handle models with huge number of variables or withcomplex ODEs, this work applied the method of Fortran programming based on thesoftware platform to solve the models of riser reactor, combustor, and the free boardregion of2ndstage dense bed regenerator.
     This work observed the effects of seven key process operating variables such asfeed flow rate and feed temperature on the run state of the whole FCCU, hoping togive instructive guidelines for the field operation, engineering design, and processoptimization of this type of FCCU. The technologies of quench injection in riserreactor, catalyst heat remover, and combustion air oxygen enrichment were analysedfor their application potential on the FCCU. Applicatioin of quench injection on theriser could control the residence time of hot oil gas and catalyst within the reactor, sothe products distribution could be tuned up. The addition of catalyst heat removerimproved the operator’s ability to adjust the unit heat balance, so that the gas/solidtemperature at the feed inlet of riser reactor and the ratio of regenerated catalyst flowrate to mixed feed flow rate could be controlled. The technology of oxygenenrichment in combustion air intensified the ability of catalyst regeneration ofcombustor-style regenerator, improved the initial activity and selectivity of unitbalance catalyst. The three technologies could complement with each other, formingthe combined process intensification technology. The simulation results showed thatthe application of this technology elevated the field operation level, considering itsablity to comtrol the ratio of regenerated catalyst flow rate to feed flow rate, theenvironmental temperature of oil cracking reactions, the residence time of hot oil gasand catalyst in riser reactor, and the coke content of regenerated catalyst.
引文
[1]陈俊武,催化裂化工艺与工程,北京:中国石化出版社,2005.
    [2]罗雄麟,前置烧焦罐式高效再生器催化裂化装置动态模拟与操作分析,[博士学位论文],北京:中国石油大学,1997.
    [3] Blanding F. H., Reaction rates in catalytic cracking of petroleum, Industrial andEngineering Chemistry,1953,45(6):1186-1197.
    [4] Pierce W., Souther R., Kaufman T., et al., Innovation in flexicracking,Hydrocarbon Process,1972,51(5):92-97.
    [5] Wollaston E., Haflin W., Ford W., et al., FCC model valuable operating tool,Oil&Gas Journal,1975,73(38):87-94.
    [6] Mc Leod R., Kliesch H., Use of a process model for FCCU monitoring:Petro-Canada Products, Inc., Don Mills,1986.
    [7]曹汉昌,流化催化裂化转化率和焦炭产率的预测,石油炼制,1984,15(7):21-23.
    [8]张立新,催化裂化反应器和再生器设计中若干问题的探讨,石油学报,1981,2(1):111-121.
    [9]张结喜,齐艳华,邱建章,催化裂化关联模型的研究,计算机与应用化学,2007,24(11):1519-1522.
    [10] Wei J., Structure of complex chemical reaction systems, Industrial&Engineering Chemistry Fundamentals,1965,4(2):161-167.
    [11] Voltz S. E., Nace D. M., Weekman Jr V. W., Application of a kinetic model forcatalytic cracking. some correlations of rate constants, Industrial&EngineeringChemistry Process Design and Development,1971,10(4):538-541.
    [12] Yen L., Wrench R., Ong A., Reaction kinetic correlation equation predicts fluidcatalytic cracking coke yields, Oil&Gas Journal,1988,86(2):67-69.
    [13] Corella J., Frances E. Analysis of the riser reactor of a fluid catalytic crackingunit. Model based on kinetics of cracking and deactivation from laboratory tests,1991,165-182.
    [14] Takatsuka T., Sato S., Morimoto Y., et al., A reaction model for fluidized bedcatalytic cracking of residual oil, Industrial&Engineering Chemistry,1987,27(1):107-116.
    [15] Weekman V. W., Lumps, models, and kinetics in practice. New York:American Institute of Chemical Engineers,1979.
    [16]翁惠新,王顺生,邹滢,等,催化裂化反应集总动力学模型的研究,化学反应工程与工艺,1987,3(4):9-17.
    [17]牟能静,苏宏业,栗伟,工业渣油催化裂化过程六集总组合反应器模型,高校化学工程学报,2005,19(5):630-635.
    [18]翁惠新,欧阳福生,马军,重油催化裂化反应集总动力学模型(1)模型的建立,化工学报,1995,46(6):662-668.
    [19]邓先梁,沙颖逊,王龙延,等,渣油催化裂化反应动力学模型的研究,石油炼制与化工,1994,26(8):35-39.
    [20]王建平,许先焜,翁惠新,加氢渣油催化裂化14集总动力学模型的建立,化工学报,2007,58(1):86-94.
    [21]刘熠武,陈小博,杨朝合,等,FCC汽油催化裂解生产低碳烯烃的动力学模型研究,炼油技术与工程,2007,37(3):5-9.
    [22]吴飞跃,翁惠新,罗世贤,等,FDFCC工艺中汽油提升管催化裂化反应动力学模型研究,石油炼制与化工,2007,38(10):59-63.
    [23] Dewachtere N. V., Santaella F., Froment G. F., Application of a single eventkinetic model in the simulation of an industrial riser reactor for the catalyticcracking of vacuum gas oil, Chemical Engineering Science,1999,54(15-16):3653-3660.
    [24] Neurock M., Libanati C., Nigam A., et al., Monte carlo simulation of complexreaction systems: molecular structure and reactivity in modelling heavy oils,Chemical Engineering Science,1990,45(8):2083-2088.
    [25] Quann R. J., Jaffe S. B., Structurr oriented lumping: describing the chemistry ofcomplex hydrocarbon mixtures, Industrial&Engineering Chemistry Research,1992,31(11):2483-2497.
    [26]欧阳福生,王磊,王胜,催化裂解过程分子尺度反应动力学模型研究,高等化学工程学报,2008,22(6):927-934.
    [27] Maxted E., The poisoning of metallic catalysts, Advances in Catalysis,1951,3:129-178.
    [28] Satterfield C. N., Colton C. K., Pitcher Jr W. H., Restricted diffusion in liquidswithin fine pores, AIChE Journal,1973,19(3):628-635.
    [29] Froment G. F., Bischoff K. B., Chemical reactor analysis and design, New York:Wiley,1990.
    [30] Froment G. F., A Quantitative approach of catalyst deactivation by cokeformation, Studies in Surface Science and Catalysis,1980,6:1-19.
    [31] Lin C. C., Park S. W., Hatcher Jr W. J., Zeolite catalyst deactivation by coking,Industrial&Engineering Chemistry Process Design and Development,1983,22(4):609-614.
    [32] Voorhies Jr A., Carbon formation in catalytic cracking, Industrial&Engineering Chemistry,1945,37(4):318-322.
    [33] Froment G., Bischoff K., Non-steady state behaviour of fixed bed catalyticreactors due to catalyst fouling, Chemical Engineering Science,1961,16(3-4):189-201.
    [34] Froment G., Bischoff K., Kinetic data and product distributions from fixed bedcatalytic reactors subject to catalyst fouling, Chemical Engineering Science,1962,17(2):105-114.
    [35] Bischoff K., General solution of equations representing effects of catalystdeactivation in fixed bed reactors, Industrial&Engineering ChemistryFundamentals,1969,8(4):665-668.
    [36] Weekman V. W., Nace D. M., Kinetics of catalytic cracking selectivity in fixed,moving, and fluid bed reactors, AIChE Journal,1970,16(3):397-404.
    [37] Nam I. S., Kittrell J., Use of catalyst coke content in deactivation modeling,Industrial&Engineering Chemistry Process Design and Development,1984,23(2):237-242.
    [38]徐懋,贾宽和,杨光华,等,污染金属及水热处理对裂化催化剂CRC-1再生动力学的影响,石油炼制与化工,1987,18(10):51-58.
    [39] Ford W. D., Reineman R. C., Vasalos I. A., et al., Operating cat crackers formaximum profit, Chemical Engineering Progress,1977,73(4):92-96.
    [40] Noda H., Kanehara S., Tone S., et al., Optimal operation of a catalytic tubularreactor with fouling catalyst by coke deposition, Chemical Engineering Science,1975,30(8):887-892.
    [41] Wen C., Dutta S. Rates of coal pyrolysis and gasification reactions. Coalconversion technology, Boston; Addison Wesley Publishing Inc.,1979.
    [42] Dart J., Savage R., Kirkbride C., Regeneration characteristics of clay crackingcatalyst, Chemical Engineering Progress,1949,45:102-110.
    [43] Pansing W. F., Regenaration of fluidized cracking catalysts, AIChE Journal,1956,2(1):71-74.
    [44] Hano T., Nakashio F., Kusunoki K., The burning rate of coke deposited onzeolite catalyst, Journal of Chemical Engineering of Japan,1975,8(2):127-130.
    [45] Morley K., De Lasa H., On the determination of kinetic parameters for theregeneration of cracking catalyst, The Canadian Journal of ChemicalEngineering,1987,65(5):773-777.
    [46] Johnson M. F. L., Mayland H., Carbon burning rates of cracking catalyst in thefluidized state, Industrial&Engineering Chemistry,1955,47(1):127-132.
    [47] Hashimoto K., Takatani K., Iwasa H., et al., A multiple reaction model forburning regeneration of coked catalysts, The Chemical Engineering Journal,1983,27(3):177-186.
    [48] Wang G., Lin S., Mo W., et al., Kinetics of combustion of carbon and hydrogenin carbonaceous deposits on zeolite type cracking catalysts, Industrial&Engineering Chemistry Process Design and Development,1986,25(3):626-630.
    [49]徐春明,罗雄麟,林世雄,等,几种新型裂化催化剂再生动力学的研究,炼油设计,1996,26(6):54-57.
    [50] Gupta R. S., Modeling and simulation of fluidized catalytic cracking unit,
    [Doctor Dissertation], Thapar: Thapar Institute of Engineering and Technology,2008.
    [51] Das A. K., Baudrez E., Marin G. B., et al., Three dimensional simulation of afluid catalytic cracking riser reactor, Industrial&Engineering ChemistryResearch,2003,42(12):2602-2617.
    [52] Capes C., Nakamura K., Vertical pneumatic conveying: an experimental studywith particles in the intermediate and turbulent flow regimes, The CanadianJournal of Chemical Engineering,1973,51(1):31-38.
    [53] Bader R., Findlay J., Knowlton T., Gas/solid flow patterns in a30.5cmdiameter circulating fluidized bed, New York: Pergamon Press,1988.
    [54] Tsuo Y. P., Gidaspow D., Computation of flow patterns in circulating fluidizedbeds, AIChE Journal,1990,36(6):885-896.
    [55] Zhou J., Grace J., Qin S., et al., Voidage profiles in a circulating fluidized bedof square cross section, Chemical Engineering Science,1994,49(19):3217-3226.
    [56] Samuelsberg A., Hjertager B. H., Computational modeling of gas/particle flowin a riser, AIChE Journal,1996,42(6):1536-1546.
    [57] Weinstein H., Shao M., Schnitzlein M., et al., Radial variation in void fractionin a fast fluidized bed, Fluidization V,1986:329-336.
    [58] Hartge E., Li Y., Werther J., Analysis of the local structure of the two phaseflow in a fast fluidized bed, Circulating Fluidized Bed Technology, New York:Pergamon,1985.
    [59] Miller A., Gidaspow D., Dense, vertical gas solid flow in a pipe, AIChE Journal,1992,38(11):1801-1815.
    [60] Ocone R., Goodwin J., Delebarre A., Flow structures of Geldart A solids incirculating fluidized beds, Chemical Engineering Research and Design,2000,78(6):860-865.
    [61] Senior R. C., Brereton C., Modelling of circulating fluidized bed solids flowand distribution, Chemical Engineering Science,1992,47(2):281-296.
    [62] Xu B., Yu A., Numerical simulation of the gas solid flow in a fluidized bed bycombining discrete particle method with computational fluid dynamics,Chemical Engineering Science,1997,52(16):2785-2809.
    [63] Sun B., Gidaspow D., Computation of circulating fluidized bed riser flow forthe fluidization VIII benchmark test, Industrial&Engineering ChemistryResearch,1999,38(3):787-792.
    [64] Van Der Meer E., Thorpe R., Davidson J., Dimensionless groups for practicablesimilarity of circulating fluidised beds, Chemical Engineering Science,1999,54(22):5369-5376.
    [65] Van Der Meer E., Thorpe R., Davidson J., Flow patterns in the square crosssection riser of a circulating fluidised bed and the effect of riser exit design,Chemical Engineering Science,2000,55(19):4079-4099.
    [66] Sundaresan S., Modeling the hydrodynamics of multiphase flow reactors:current status and challenges, AIChE Journal,2000,46(6):1102-1105.
    [67] Bernard J., Santos C. H., Margrita R., Use of radioactive tracers for studies onfluidized cracking catalytic plants, Isotopes in Environmental and HealthStudies,1989,25(4):161-165.
    [68] Viitanen P. I., Tracer studies on a riser reactor of a fluidized catalyst crackingplant, Industrial&Engineering Chemistry Research,1993,32(4):577-583.
    [69] Kimm N., Berruti F., Pugsley T., Modeling the hydrodynamics of downflowgas solids reactors, Chemical Engineering Science,1996,51(11):2661-2666.
    [70] Fligner M., Schipper P., Sapre A., et al., Two phase cluster model in riserreactors: Impact of radial density distribution on yields, Chemical EngineeringScience,1994,49(24):5813-5818.
    [71] Theologos K., Markatos N., Advanced modeling of fluid catalytic cracking risertype reactors, AIChE Journal,1993,39(6):1007-1017.
    [72] Theologos K., Nikou I., Lygeros A., et al., Simulation and design of fluidcatalytic cracking riser type reactors, AIChE Journal,1997,43(2):486-494.
    [73] Gidaspow D., Huilin L., Equation of state and radial distribution functions ofFCC particles in a CFB, AIChE Journal,1998,44(2):279-293.
    [74] Gao J., Xu C., Lin S., et al., Advanced model for turbulent gas/solid flow andreaction in FCC riser reactors, AIChE Journal,1999,45(5):1095-1113.
    [75] Gao J., Xu C., Lin S., et al., Simulations of gas liquid solid3phase flow andreaction in FCC riser reactors, AIChE Journal,2001,47(3):677-692.
    [76] Berry T. A., Mckeen T. R., Pugsley T. S., et al., Two dimensional reactionengineering model of the riser section of a fluid catalytic cracking unit,Industrial&Engineering Chemistry Research,2004,43(18):5571-5581.
    [77] Gianetto A., Farag H. I., Blasetti A. P., et al., Fluid catalytic cracking catalystfor reformulated gasolines. Kinetic modeling, Industrial&EngineeringChemistry Research,1994,33(12):3053-3062.
    [78] Orcutt J., Davidson J., Pigford R. Reaction time distributions in fluidizedcatalytic reactors, Chemical Engineering Progress Symposium Series, NewYork,1962,1-15.
    [79] Kunii D., Levenspiel O., Bubbling bed model. model for flow of gas through afluidized bed, Industrial&Engineering Chemistry Fundamentals,1968,7(3):446-452.
    [80] Errazu A. F., Delasa H. I., Sarti F., Fluidized bed catalytic cracking regeneratormodel-grid effects, Canadian Journal of Chemical Engineering,1979,57(2):191-197.
    [81] Delasa H. I., Grace J. R., Influence of the freeboard region in a fluidized bedcatalytic cracking regenerator, AIChE Journal,1979,25(6):984-991.
    [82] Delasa H. I., Errazu A., Barreiro E., et al., Analysis of fluidized bed catalyticcracking regenerator models in an industrial scale unit, Canadian Journal ofChemical Engineering,1981,59(4):549-553.
    [83] Guigon P., Large J. F., Bergougnou M. A., Application of the Kunii-Levenspielmodel to a multistage baffled catalytic cracking regenerator, ChemicalEngineering Journal and the Biochemical Engineering Journal,1984,28(3):131-138.
    [84] Krishna A. S., Parkin E. S., Modeling the regenerator in commercial fluidcatalytic cracking units, Chemical Engineering Progress,1985,81(4):57-62.
    [85] Lee L. S., Yu S. W., Cheng C. T., et al., Fluidized bed catalyst crackingregenerator modeling and analysis, Chemical Engineering Journal and theBiochemical Engineering Journal,1989,40(2):71-82.
    [86] Faltsisaravelou O., Vasalos I. A., Fbsim-a model for fluidized bedsimulation.1. dynamic modeling of an adiabatic reacting system of small gasfluidized particles, Computers&Chemical Engineering,1991,15(9):639-646.
    [87] Faltsisaravelou O., Vasalos I. A., Dimogiorgas G., Fbsim-a model forfluidized bed simulation.2. simulation of an industrial fluidized catalyticcracking regenerator, Computers&Chemical Engineering,1991,15(9):647-656.
    [88] Jiang P., Bi H., Jean R. H., et al., Baffle effects on performance of catalyticcirculating fluidized bed reactor, AIChE Journal,1991,37(9):1392-1400.
    [89] Ouyang S., Lin J., Potter O., Ozone decomposition in a0.254m diametercirculating fluidized bed reactor, Powder Technology,1993,74(1):73-78.
    [90] Marmo L., Rovero G., Manna L. Modeling on circulating fluidized bed reactors.44th Canadian Chemical Engineering Conference. Calgary.1994.
    [91] Basu P., Talukdar J., Wu S. Experimental validation of a one and halfdimensional modle of char combustion in a circulating fluidized bed. AnnualAIChE Meeting. St. Louis.1993.
    [92] Kagawa H., Mineo H., Yamazaki R., et al. A gas-solid contacting model for fastfluidized bed. Circulating Fluidized Bed Technology Ⅲ. Oxford; PergamonPress,1990.
    [93] Schoenfelder H., Werther J., Hinderer J., et al., A multi stage model for thecirculating fluidized bed reactor, AIChE Symposium Series,1994,90(301):92-104.
    [94]罗雄麟,张建芳,催化裂化高效再生器多级混合模型及其应用,石油炼制,1992,24(8):34-39.
    [95]罗雄麟,魏飞,胡崇敏,等,前置式烧焦罐高效再生器数学模拟与操作分析,石油炼制,1992,24(9):1-8.
    [96]魏飞,林世雄,杨光华,等,流化催化裂化高效再生器的分析与模拟:Ⅱ.模型的建立与模拟,石油学报(石油加工),1994,10(3):25-35.
    [97] Fernandes J. L., Pinheiro C. I. C., Oliveira N. M. C., et al., Model developmentand validation of an industrial UOP fluid catalytic cracking unit with a highefficiency regenerator, Industrial&Engineering Chemistry Research,2008,47(3):850-866.
    [98] Lee E., Groves Jr F. R., Mathematical model of the fluidized bed catalyticcracking plant, Transations Society of Computer Simulation,1985,2(3):219-236.
    [99] Mcgreavy C., Isles S. P. C., Modeling of a fluid catalytic cracker, TransationsInstrument Measurement Comtrol,1986,8(3):130-136.
    [100] Elnashaie S. S. E. H., Elhennawi I. M., Multiplicity of the steady state influidized bed reactors.4. fluid catalytic cracking (FCC), Chemical EngineeringScience,1979,34(9):1113-1121.
    [101] Elnashaie S. S. E. H., Elshishini S. S., Digital simulation of industrial fluidcatalytic cracking units.4. dynamic behavior, Chemical Engineering Science,1993,48(3):567-583.
    [102] Elnashaie S. S. E. H., Abasaeed A. E., Elshishini S. S., Digital simulation ofindustrial fluid catalytic cracking units.5. static and dynamic bifurcation,Chemical Engineering Science,1995,50(10):1635-1644.
    [103] Elnashaie S. S. E. H., Elshishini S. S., Comparison between differentmathematical models for the simulation of industrial fluid catalytic cracking(FCC) Units, Mathematical and Computer Modelling,1993,18(6):91-110.
    [104] Iscol L. The dynamics and stability of a fluid catalytic cracker, AutomaticControl Conference, Atlanta,1970.
    [105] Kurihara H., Optimal control of fluid catalytic cracking processes,[DoctorDissertation], Cambridge: M. I. T.,1967.
    [106] Lee W., Kugelman A. M., Number of steady state operating points and localstability of open loop fluid catalytic cracker, Industrial&EngineeringChemistry Process Design and Development,1973,12(2):197-204.
    [107] Edwards W. M., Kim H. N., Multiple steady states in FCC unit operations,Chemical Engineering Science,1988,43(8):1825-1830.
    [108] Elshishini S. S., Elnashaie S. S. E. H., Digital simulation of industrial fluidcatalytic cracking units-bifurcation and its implications, Chemical EngineeringScience,1990,45(2):553-559.
    [109] Luyben W. L., Lamb D. E. Feed forward control of a fluidized catalyticreactor-regenerator system, Chemical Engineering Progress Symposium Series,1963,165-171.
    [110] Douglas J. M., Process Dynamics and Control, London: Prentice Hall,1972.
    [111] Gould L. A., Evans L., Kurihara H., Optimal control of fluid catalytic crackingprocesses, Automatica,1970,6(5):695-703.
    [112] Elnashaie S. S. E. H., Mohamed N. F., Kamal M., Simulation and staticbifurcation behavior of industrial FCC units, Chemical EngineeringCommunications,2004,191(6):813-831.
    [113] Bozicevic J., Lukec D., Dynamic mathematical model of the fluid catalyticcracking process, Transactions of the Institute of Measurement and Control,1987,9(1):8-12.
    [114] Lopezisunza F., Dynamic Modeling of an industrial fluid catalytic cracking unit,Computers&Chemical Engineering,1992,16:139-148.
    [115] Arandes J. M., Delasa H. I., Simulation and multiplicity of steady states influidized FCCUs, Chemical Engineering Science,1992,47(9-11):2535-2540.
    [116] Mcfarlane R. C., Reineman R. C., Bartee J. F., et al., Dynamic simulator for amodel IV fluid catalytic cracking unit, Computers&Chemical Engineering,1993,17(3):275-300.
    [117] Zheng Y. Y., Dynamic modeling and simulation of a catalytic cracking unit,Computers&Chemical Engineering,1994,18(1):39-44.
    [118] Arbel A., Rinard I. H., Shinnar R., Dynamics and control of fluidized catalyticcrackers.4. the impact of design on partial control, Industrial&EngineeringChemistry Research,1997,36(3):747-759.
    [119] Arbel A., Rinard I. H., Shinnar R., Dynamics and control of fluidized catalyticcrackers.3. designing the control system: choice of manipulated and measuredvariables for partial control, Industrial&Engineering Chemistry Research,1996,35(7):2215-2233.
    [120] Arbel A., Rinard I. H., Shinnar R., Dynamics and control of fluidized catalyticcrackers.2. multiple steady states and instabilities, Industrial&EngineeringChemistry Research,1995,34(9):3014-3026.
    [121] Arbel A., Huang Z. P., Rinard I. H., et al., Dynamic and control of fluidizedcatalytic crackers.1. modeling of the current generation of FCCs, Industrial&Engineering Chemistry Research,1995,34(4):1228-1243.
    [122] Ali H., Rohani S., Dynamic modeling and simulation of a riser type fluidcatalytic cracking unit, Chemical Engineering&Technology,1997,20(2):118-130.
    [123] Ali H., Rohani S., Effect of cracking reactions kinetics on the model predictionsof an industrial fluid catalytic cracking unit, Chemical EngineeringCommunications,1996,146:163-184.
    [124] Ali H., Rohani S., Corriou J. P., Modelling and control of a riser type fluidcatalytic cracking (FCC) unit, Chemical Engineering Research&Design,1997,75(4):401-412.
    [125] Han I. S., Chung C. B., Dynamic modeling and simulation of a fluidizedcatalytic cracking process. part I: process modeling, Chemical EngineeringScience,2001,56(5):1951-1971.
    [126] Han I. S., Chung C. B., Riggs J. B., Modeling of a fluidized catalytic crackingprocess, Computers&Chemical Engineerin,2000,24(2):1681-1687.
    [127] Han I. S., Chung C. B., Dynamic modeling and simulation of a fluidizedcatalytic cracking process. part II: property estimation and simulation, ChemicalEngineering Science,2001,56(5):1973-1990.
    [128] Han I. S., Riggs J. B., Chung C. B., Multivariable control of a fluidizedcatalytic cracking process under full and partial combustion modes, Journal ofChemical Engineering of Japan,2002,35(9):830-839.
    [129] Han I. S., Riggs J. B., Chung C. B., Modeling and optimization of a fluidizedcatalytic cracking process under full and partial combustion modes, ChemicalEngineering and Processing,2004,43(8):1063-1084.
    [130] Secchi A. R., Santos M. G., Neumann G. A., et al., A dynamic model for a FCCUOP stacked converter unit, Computers&Chemical Engineering,2001,25(4-6):851-858.
    [131] Gupta A., Rao D. S., Model for the performance of a fluid catalytic cracking(FCC) riser reactor: effect of feed atomization, Chemical Engineering Science,2001,56(15):4489-4503.
    [132] Gupta A., Rao D. S., Effect of feed atomization on FCC performance:simulation of entire unit, Chemical Engineering Science,2003,58(20):4567-4579.
    [133] Bollas G. M., Vasalos I. A., Lappas A. A., et al., Modeling small diameter FCCriser reactors. A hydrodynamic and kinetic approach, Industrial&EngineeringChemistry Research,2002,41(22):5410-5419.
    [134] Bollas G. M., Vasalos I. A., Lappas A. A., et al., Integrated FCC riser-regenerator dynamics studied in a fluid catalytic cracking pilot plant, ChemicalEngineering Science,2007,62(7):1887-1904.
    [135] Linda R. W., Modeling and optimization of a two stage regenerator fluidcatalytic cracking unit,[Doctor Dissertation], Houston: Rice University,1998.
    [136] Fernandes J. L., Verstraete J. J., Pinheiro C. I. C., et al., Dynamic modelling ofan industrial R2R FCC unit, Chemical Engineering Science,2007,62(4):1184-1198.
    [137] Fernandes J. L., Pinheiro C. I. C., Oliveira N. M. C., et al., Steady statemultiplicity in an UOP FCC unit with high efficiency regenerator, ChemicalEngineering Science,2007,62(22):6308-6322.
    [138] Gupta R. K., Kumar V., Srivastava V. K., A new generic approach for themodeling of fluid catalytic cracking (FCC) riser reactor, Chemical EngineeringScience,2007,62(17):4510-4528.
    [139] Berruti F., Kalogerakis N., Modeling the internal flow structure of circulatingfluidized beds, Canadian Journal of Chemical Engineering,1989,67(6):1010-1014.
    [140] Pitault I., Nevicato D., Forissier M., et al., Kinetic model based on a moleculardescription for catalytic cracking of vacuum gas oil, Chemical EngineeringScience,1994,49(24A):4249-4262.
    [141] Aspentech Inc. Aspen plus users manual&guide-physical property methods.Cambridge: Aspentech Inc.,2001.
    [142] Arastoopour H., Gidaspow D., Vertical pneumatic conveying using4hydrodynamic models, Industrial&Engineering Chemistry Fundamentals,1979,18(2):123-130.
    [143] Pugsley T. S., Berruti F., A predictive hydrodynamic model for circulatingfluidized bed risers, Powder Technology,1996,89(1):57-69.
    [144] Zwinkels M., Nougier L., FCC regenerator simulation model, Report ofInstitute French Petroleum,1997.
    [145] Arthur J., Reactions between carbon and oxygen, Transactions of the FaradaySociety,1951,47:164-178.
    [146] Daly C., Tidjani N., Martin G., et al., Determination of kinetic parameters in theregeneration of FCC catalysts, Reports of Institute French Petroleum,2001.
    [147] King D. F. Estimation of dense bed voidage in fast and slow fluidized beds ofFCC catalyst. International conference on fluidization,1989:136-141.
    [148] Wojciechowski B. W., Corma A., Catalytic cracking: catalysts, chemistry, andkinetics, Chemcial industries25, New York: Marcel Dekker,1986.
    [149] Aspentech Inc. Aspen custom modeler users manual&guide. Cambridge;Aspentech Inc.,2001.
    [150] Visual Numerics Inc. IMSL fortran numerical library user's guide. Houstonh;Visual Numerics Inc.,2003.
    [151]石油大学(华东)化学化工学院,中国石化齐鲁石化分公司.齐鲁石化公司胜利炼油厂联合装置车间催化裂化装置标定报告.淄博,2002.
    [152] Horio M., Kuroki H., Three dimensional flow visualization of dilutely dispersedsolids in bubbling and circulating fluidized beds, Chemical Engineering Science,1994,49(15):2413-2421.
    [153] Gao J. S., Xu C. N., Lin S. X., Advanced reaction terminating technique forFCC riser reactor, Petroleum Science and Technology,2006,24(3-4):367-378.
    [154]张培平,景春明,魏俊文,浅议反应终止剂技术的应用,浙江化工,2004,35(2):18-19.
    [155]张志芳,韩剑敏,提升管注终止剂技术的应用于探讨,炼油设计,1994,24(1):6-16.
    [156]董伟,徐春明,高金森,等,催化裂化提升管反应器终止剂技术的工业化试验,石油大学学报(自然科学版),2000,24(6):4-6.
    [157]仲伟萍,李洪,叶立波,终止剂技术在RFCCU上的应用,黑龙江石油化工,2001,12(1):8-11.
    [158]杨宝康,吴秀章,采用富氧再生工艺提高催化裂化再生器烧焦能力,石油炼制与化工,2000,31(8):8-11.
    [159]王明哲,华炜,富氧再生技术在催化裂化装置上的应用,化工进展,2007,26(2):262-266.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700