用户名: 密码: 验证码:
脂肪族聚酯及其两亲性嵌段共聚物合成、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学合成类可降解脂肪族聚酯及其两亲性嵌段共聚物由于具有低毒性、良好的生物相容性和细胞渗透性、可生物降解性以及降解产物无毒等优点,目前已广泛应用于药物控制释放体系以及组织工程等领域。目前用于合成脂肪族聚酯的催化体系往往存在催化活性低、毒性较大、聚合速率慢、单体转化率较低、得到的聚合物分子量低等各种问题。因此寻找高效、廉价易得、能够使得聚合工艺简单,方便可控、无毒的催化体系已成为一个非常重要的课题。
     近年来,生物可降解脂肪族聚酯及其两亲性嵌段共聚物可通过各种技术,比如溶剂蒸发法制备各种形态的纳米级或微米级药物控释载体,该类药物载体具有很多优势,一方面可以延长药物在体内的循环时间,使药物在足够长的时间内保持其药效,另一方面载药颗粒在体内的这种长效循环,有助于提高药物与病变部位之间的相互作用,从而实现载体的靶向性。同时,作为药物载体,其形态对体内药物控释起着极其重要的作用,越来越多的研究表明,药物在体内不同病变组织及部位的释放行为不仅依赖于载体的尺寸、稳定性,而且还依赖于它们的形态。基于上述分析,本论文主要从以下几个方面展开研究:
     (1)生物可降解星形聚己内酯及聚丙交酯-聚己内酯嵌段共聚物的合成
     采用廉价易得的钛酸四丁酯和钛酸异丙酯分别作为引发剂,引发己内酯开环聚合。研究发现,在低温(10-40℃)和常压条件下,两种引发剂都能快速引发己内酯开环聚合,得到四臂星形聚己内酯。动力学研究表明,钛酸四丁酯和钛酸异丙酯都具有很高的活性,能高效,快速地引发己内酯开环聚合,聚合反应具有“活性”可控的特点。同时该种星形的聚己内酯可作为大分子引发剂,再次引发己内酯和丙交酯单体进行扩链和嵌段共聚反应。钛酸酯引发己内酯开环聚合符合“配位-插入”的机理。通过比较两种催化剂聚合速率常数,表明在相同聚合反应时间下,钛酸异丙酯引发的己内酯开环聚合反应速率要快于钛酸四丁酯。
     同时,进一步研究表明,在聚合反应及后处理过程中,连接在聚合物链上的钛氧键具有相对较高的稳定性,在聚合反应结束后,所得聚合物粗产物在去离子水或醇沉淀剂中时仍然保持其星形结构,在酸性沉淀剂中钛氧键容易断裂,星形聚合物发生水解,得到线性聚己内酯。通过凝胶渗透色谱(GPC)、核磁共振光谱(NMR)、差示热量扫描仪(DSC)、ZeTa粒度分析仪对星形聚己内酯和聚丙交酯-聚己内酯进行了表征。
     (2)星形聚己内酯-聚环氧丙烷嵌段共聚物的合成
     以钛酸异丙酯作为引发剂,首先在室温引发环氧丙烷开环聚合,再以得到的星形聚环氧丙烷作为大分子引发剂,在40℃下,引发己内酯开环聚合得到星形聚己内酯-聚环氧丙烷嵌段共聚物。实验结果表明,使用钛酸异丙酯作为引发剂引发环氧丙烷室温开环聚合得到的星形聚环氧丙烷分子量很低且稳定性较差,只能得到一些低聚物。星形聚环氧丙烷可作为大分子引发剂引发己内酯开环聚合,动力学研究表明,星形聚环氧丙烷仍具有较高的活性,可实现星形嵌段共聚物聚己内酯-聚环氧丙烷的可控合成。
     (3)聚己内酯-聚乙二醇醚(PCL-PEO-PCL)两亲性三嵌段共聚物合成及自组装研究
     以双端带羟基的聚乙二醇作为引发剂,在异辛酸亚锡催化下成功合成了一系列不同组分的两亲性PCL-PEO-PCL三嵌段共聚物。采用改进的O/W溶剂抽提法,研究了两亲性嵌段共聚物在THF/H2O和THF/含有一定浓度碱金属离子的水溶液中的自组装行为,深入研究了在溶液中和固态凝聚相两种状态下嵌段共聚物自组装所得胶束聚集体形态的变化。发现在溶液中两亲性嵌段共聚物PCL-PEO-PCL都能自组装成尺寸均一的球形纳米颗粒。然而,在水相溶剂蒸发过程,随着碱金属离子浓度的增大,球形纳米颗粒聚集为多层次有序结构的胶束聚集体,其形态包括“剑麻”状胶束聚集体,“星形”胶束聚集体。有序结构的胶束聚集体形态依赖于不同碱金属离子的加入,而其尺寸则与碱金属离子的浓度有关。
     深入研究发现,有序结构的胶束聚集体的形成主要是在水相溶剂蒸发的过程中,由于嵌段共聚物中亲水PEO链与碱金属离子的强烈的配位导致体系自由能的降低,使得溶液中大量的球形纳米颗粒不断移动并发生碰撞,这些发生碰撞的球形纳米颗粒很可能融合在一起,最终导致多层有序结构胶束聚集体的形成。
     (4)聚丙交酯乙交酯-聚乙二醇醚(PLGA-PEO-PLGA)载药多孔微球的制备及其体外超声药物释放行为
     以双端带羟基的聚乙二醇作为引发剂,在异辛酸亚锡催化下成功合成了一系列不同组分的两亲性PLGA-PEO-PLGA三嵌段共聚物。采用改进的W/OW型双乳液-溶剂蒸发法,在无任何制孔剂存在的条件下,成功制备了伊文思蓝负载的PLGA-PEO-PLGA嵌段共聚物多孔微球。考察了在自发和超声作用下多孔微球的药物释放行为,发现在超声作用下,多孔微球药物释放要明显快于在自发条件下的药物释放,而嵌段共聚物组分对微球形貌、尺寸、表面孔径、药物包封效率有着显著的影响,同时,药物暴释现象可以有效的加以控制。PLGA-PEO-PLGA嵌段共聚物多孔微球可作为新型的声控“被动靶向”的靶向药物制剂,它既能在超声辐照下下显影,又能在超声作用下释放药物。最后对多孔微球形成机理进行了讨论。
Chemical synthetic degradable aliphatic polyesters and their amphiphilic copolymers have attracted much attention in drug controlled release systems and tissue engineering due to their excellent biodegradable, biocompatible, permeable and low toxicity properties. However, in current strategy for the synthesis of aliphatic polyesters there are various problems, which primarily involve low catalytic activity, higher toxicity, the sluggish polymerization reaction rate, lower monomer conversion and lower polymer molecule weight etc. Therefore, to investigate a more efficient, inexpensive, simpler polymerization process, more controllable and non-toxic catalytic systems have developed an important subject.
     In recent years, biodegradable aliphatic polyesters and their amphiphilic copolymers have been used to prepare nano or macroscopic scale drug delivery carrier with various morphologies by various technologies, such as solvent evaporation method. These drug delivery carrier prossess many ascendancies, on the one hand, it can prolong the drug circulation times in vivo, and make its effectiveness in an enough times, on the other hand, the long-acting circulation of drug-loaded particles is favored to improve the interaction between drug and diseased region. Meanwhile, there is an increasing evidence to suggest that the drug release behaviors of drug-loaded particles in different diseased region or tissues dependent not only on their size and stability but also on their morphology. Based on these, the thesis including several aspects:
     (1) Syntheis of biodegradable star-shaped poly(ε-caprolactone) and poly (lactide-b-caprolactone) block copolymer.
     In present study, four-arm star-shaped aliphatic polyesters poly(ε-caprolactone)(PCL) was synthesized via using tetrabutyl titanate (TBT) and isopropyl titanate (iPT) as initiator to mediate controlled ring-opening polymerization (ROP) of ε-caprolactone (CL) at ambient temperature of10-40℃under the normal atmosphere. The kinetic indicated that tetrabutyl titanate(TBT) and isopropyl titanate (iPT) controlled ring-opening polymerization (ROP) of ε-CL exhibited living and controlling features. Moreover, the star-shaped Ti(O-PCL)4can act as a macroinitiator for successive propagation and block copolymerization with CL and LA, respectively. The mechanism of titanium ester controlled ring-opening polymerization (ROP) of ε-CL is accorded with the "coordination-insertion". The polymerization kinetics comparison of CL initiated by tetrabutyl titanate and isopropyl titanate manifested that the isopropyl titanate-catalyzed ROP of CL is faster than the tetrabutyl titanate initiated ROP at40℃.
     Meanwhile, we found that Ti-alkoxide bonds included in the polymer chains was relative stabilized when the crude polymer precipitated in de-ionized water or alcohol, and it hydrolyzed to linear PCL when precipitated in acidic alcoholic solution. The star-shaped Ti(O-PCL)4and Ti(O-PLA-PCL)4block copolymers were characterized by1H NMR, gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and ZeTa particle-size analyzer.
     (2) Synthesis of star-shaped poly (caprolactone-b-propylene oxide) block copolymer.
     Firstly, four-arm star-shaped poly(propylene oxide) macroinitiator was synthesized via using isopropyl titanate (iPT) as initiator to mediate controlled ring-opening polymerization (ROP) of propylene oxide (PO) at room temperature under the normal atmosphere. Then, the star-shaped poly(propylene oxide) act as a macroinitiator for successive block copolymerization with CL at40℃. The results indicated that only oligomer could be obtained after polymerization of PO iniated by iPT, and the obtained star-shaped poly(propylene oxide) prossess much lower molecule weight and stability. The kinetic indicated that four-arm star-shaped poly(propylene oxide) macroinitiator still sustained much higher activity, which can achive the controlling synthesis of poly (caprolactone-b-propylene oxide) block copolymer.
     (3) Synthesis and characterization of poly(ε-caprolactone)-b-poly(ethylene oxide)-b-poly(ε-caprolactone) amphiphilic triblock copolymer and their self-assembly behavior.
     A serials of poly(s-caprolactone)-b-poly(ethylene oxide)-b-poly(s-caprolactone)(PCL-PEO-PCL) triblock copolymers were synthesized by a ring-opening polymerization of ε-caprolactone in the presence of hydroxyl-terminated poly(ethylene oxide) with stannous octoate catalyst, where PEO served as initiator. The self-assembly behavior of amphiphilic block copolymers in THF/H2O and THF/a certain concentration of alkali metal ions aqueous solution are carried out by a O/W modified solvent extraction method. The morphologies transform of PCL-PEO-PCL triblock copolymers self-assembly from aqueous media to condensed aggregates is extensively investigated. It was found that the monoporous spherical micelles formed both in di-ionized water and alkali metal ions aqueous solution. However, with the increase of alkali metal ions concentration, the spherical micelles assembled into different hierarchical mesostructures during the water evaporation from the block copolymer. The morphologies of aggregates included "sisal-like" and "satr-shaped" mesostructures. The morphologies of mesostructures aggregates strongly depended on the addition of different alkali metal ions, but the size of aggregates have to do with the alkali metal ions concentrations.
     The mechanism for the self-assembly of PCL-PEO-PCL amphiphilic triblock copolymer are attributed to the continuous increase of alkali metal salt concentration and thus the stronger coordination between alkali metal ions and PEO ligands in the block copolymer during water evaporation process. The strong binding of PEO with alkali metal ion leads to the decrease of free energy in the system. In this case, with the support of the driving force from the strong coordination between PEO and alkali metal ions, a large number of spherical micelles move and merge, and some of the micelles possibly fuse together, resulting the formation of aggregates mesostructures.
     (4) Preparation of porous drug-loaded poly(lactide-co-glycolide-b-ethylene glycol-b-lactide-co-glycolide)(PLGA-PEO-PLGA) microspheres and their drug release behavior under ultrasound in vitro.
     A series of amphiphilic tri-block copolymer PLGA-PEO-PLGA were synthesized by a ring-opening polymerization of LA and GA in the presence of hydroxyl-terminated poly(ethylene oxide) with stannous octoate catalyst, where PEO served as initiator. The drug-loaded porous microspheres was successfully prepared by a modified double emulsion (W/O/W)-solvent evaporation technique without any porogen present. The spontaneous and ultrasound promoted drug releases were studied. Compared with spontaneous drug release behavior, the capacity of ultrasonic drug release was significantly faster from PLGA-PEO-PLGA porous microspheres. It was found that the compositions of PLGA-PEO-PLGA have great influence on the morphologies of microspheres, size, surface apertures and drug entrapment efficiency. Moreover, the initially bursts could be controlled by adjusting the surface apertures of microspheres. The PLGA-PEO-PLGA could be used as a novel acoustic control "passive target" pharmaceutical agent, which can not only contrast-enhanced under ultrasound, but also promote the drug release. Finally, the formation mechanism of PLGA-PEO-PLGA porous microspheres was discussed.
引文
[1]张文莉.生物材料及其应用.医疗工程设计杂志,2003,24(3):7-10
    [2]林霞.浅谈生物医用高分子材料.中国新医学论坛,2007,7(8):55
    [3]袁华,任杰,马光华.生物可降解高分子材料的研究与发展.建筑材料学报,2002,5(3):263-268
    [4]Swift G. Biodegradability of polymers in the environment:complexities and significance of definitions and measurements. FEMS Microbiology Letters.1992, 103(2-4):339-345
    [5]Fkuda K. An overview of the activities of biodegradable plastic[M]. Society Biodegrable polymers and plastics,1992,169-173
    [6]Sodergard A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci,2002,27(6):1123-1163
    [7]朱树新.开环聚合[M].北京:化学工业出版社,1987,1
    [8]周其凤,胡汉杰.高分子化学[M].北京:化学工业出版社,2001,305
    [9]Brown H C, Gerstein M. Acid-Base Studies in Gaseous Systems. Ⅶ. Dissociation of the Addition Compounds of Trimethylboron and Cyclic Imines; Ⅰ-Strain. J. Am. Chem. Soc.,1950,72(7):2926-2933
    [10]朱树新.开环聚合[M].北京:化学工业出版社.1987,179-185
    [11]Asahi. Chem. Ind. Co. Ltd., Japan Pat.1968,5910
    [12]张建明,吴林波.非金属催化剂催化合成脂肪族聚酯的研究进展.科技通报,2007,23(5):741-746
    [13]Zhang Q J, Wang B, Hong K L, et al. Ring-opening polymerization of ε-caprolactone in the presence of dicarboxylic acids. Macromol. Chem. Phys. 1994,195(7):2401-2407
    [14]Liu J, Liu L. Ring-Opening Polymerization of s-Caprolactone Initiated by Natural Amino Acids. Macromolecules 2004,37(8):2674-2676
    [15]Kricheldorf H R, Dunsing R. Polylactones,8. Mechanism of the cationic polymerization of L,L-dilactide. Makromol. Chem.,1986,187(7):1611-1625
    [16]Bourissou D, Martin-Vaca B, Dumitrescu A, et al. Controlled cationic polymerization of lactide. Macromolecules,2005,38(24):9993-9998
    [17]Basko M, Kubisa P. Cationic Polymerization of L,L-Lactide. J. Polym. Sci. Part A:Polym. Chem,2010,48(12):2650-2658
    [18]Sheng H T, Zhou H, Guo H D, et al. Synthesis and molecular structure of the cationic samarium phenoxide complex [(ArO)2Sm(DME)2][BPh4]·THF and its catalytic activity for the polymerization of ε-caprolactone. J. Organomet. Chem., 2007,692(5):1118-1124
    [19]Cherdron H, Ohse H, Korte F. The polymerization of lactones.Ⅰ. Homopolymeriz-ation of 4-,6-, and 7-membered lactones with cationic initiators. Makromol. Chem.,1962,56(1):179-186
    [20]Nomura N, Taira A, Tomioka T, et al. A catalytic approach for cationic lining polymerization:Sc(OTf)3-catalyzed ring-opening polymerization of lactones. Macromolecules,2000,33(5):1497-1499
    [21]Kricheldorf H R, Boettcher C. Polylactones 26. Lithium alkoxide-initiated polymerizations of L-lactide. Makromol. Chem.1993,194(6):1665-1669
    [22]Jonte J M, Dunsing R, Kricheldorf H R. Polylactones.4. Cationic Polymerization of Lactones by Means of Alkylfonates. J. Macromol. Sci:Part A-Chem,1986, A23(4):495-500
    [23]Hofman A, Szymanski R, Slornkowski S, et al. Structure of active species in the cationic polymerization of beta-propiolactone and epsilon-caprolactone, Makromol. Chem.,1984,185(4):655-667
    [24]Bhaw-Luximon A, Jhurry D, Spassky N, et al. Anionic polymerization of D,L-laetide initiated by lithium diisopropylamide. Polymer,2001,42(24): 9651-9656
    [25]Jabbari E, He X, Valarmathi M T, et al. Material properties and bone marrow stromal cells response to in situ crosslinkable RGD-functionlized lactide-co-glycolide scaffolds. J. Biomed. Mater. Res. A.2009,89(1):124-137
    [26]Jedlinski Z, Walach W, Kurcok P, et al. Polymerization of lactones,12. Polymerization of L-dilactide and L,D-dilactide in the presence of potassium methoxide. Makromol. Chem.,1991,192(9):2051-2057
    [27]Ponsart S, Coudane J, Vert M. A novel route to poly(epsilon-caprolactone) based copolymers via anionic derivatization. Biomacromolecules,2000,1(2):275-281
    [28]Hans M, Gasteier P, Keul H, et al. Ring-opening polymerization of epsilon-caprolactone by means of mono-and multifunctional initiators: Comparison of chemical and enzymatic catalysis. Macromolecules,2006,39(9): 3184-3193
    [29]Kricheldorf H R, Kreiser-Saunders I. Polylactones,19. Anionic polymerization of L-lactide in solution. Makromol. Chem.,1990,191(5):1057-1066
    [30]Wang G W, Huang J L. Synthesis and characterization of well-defined ABC 3-Miktoarm star-shaped terpolymers based on poly(styrene), poly(ethylene oxide), and poly(epsilon-caprolactone) by combination of the "Living" anionic polymerization with the ring-opening polymerization. J. Polym. Sci. Part A: Polym. Chem,2008,46(3):1136-1150
    [31]Sheng H T, Xu F, Yao Y M, et al. Novel mixed-metal alkoxide clusters of lanthanide and sodium:Synthesis and extremely active catalysts for the polymerization of epsilon-caprolactone and trimethylene carbonate. Inorg. Chem. 2007,46(19):7722-7724
    [32]Sheng H T, Zhou L Y, Zhang Y, et al. Anionic lanthanide phenoxide complexes as novel single-component initiators for the polymerization of epsilon-caprolactone and trimethylene carbonate. J. Polym. Sci. Part A:Polym. Chem,2007,45(7): 1210-1218
    [33]Gupta A P, Kumar V. New emerging trends in synthetic biodegradable polymers-Polylactide:A critique. European Polymer Journal.2007,43(10):4053-4074
    [34]Hsueh M L, Huang B H, Wu J, et al. Synthesis, Characterization, and Catalytic Studies of Lithium Complexes:Efficient Initiators for Ring-Opening Polymerization of L-Lactide. Macromolecules 2005,38(23):9482-9487
    [35]Takeuchi D, Nakamura T, Aida T. Bulky Titanium Bis(phenolate) Complexes as Novel Initiators for "Living" Anionic Polymerization of s-Caprolactone. Macromolecules 2000,33(3):725-729
    [36]Duda A, Penczek S. Thermodynamics of L-lactide polymerization. Equilibrium monomer concentration. Macromolecules 1990,23(6):1636-1639
    [37]Kowalski A, Duda A, Penczek S. Mechanism of Cyclic Ester Polymerization Initiated with Tin(Ⅱ) Octoate.2. Macromolecules Fitted with Tin(Ⅱ) Alkoxide Species Observed Directly in MALDI-TOF Spectra Macromolecules 2000,33(3): 689-695
    [38]Huang C H, Wang F C, Ko B T, et al. Ring-Opening Polymerization of ε-Caprolactone and L-Lactide Using Aluminum Thiolates as Initiator. Macromolecules 2001,34(3):356-361
    [39]Nomura N, Aoyama T, Ishii R, et al. Salicylaldimine-Aluminum Complexes for the Facile and Efficient Ring-Opening Polymerization of ε-Caprolactone. Macromolecules 2005,38(13):5363-5366
    [40]Guillaume S M, Schappacher M, Soum A. Polymerization of s-Caprolactone Initiated by Nd(BH4)3(THF)3:Synthesis of Hydroxytelechelic Poly(ε-caprolac-tone). Macromolecules 2003,36(1):54-60
    [41]Nishiura M, Hou Z, Koizumi T, et al. Ring-Opening Polymerization and Copolymerization of Lactones by Samarium(Ⅱ) Aryloxide Complexes. Macromolecules 1999,32(25):8245-8251
    [42]Chisholm M H, Eilerts N W, Huffman J C, et al. Molecular Design of Single-Site Metal Alkoxide Catalyst Precursors for Ring-Opening Polymerization Reactions Leading to Polyoxygenates.1. Polylactide Formation by Achiral and Chiral Magnesium and Zinc Alkoxides, (η3-L)MOR, Where L=Trispyrazolyl-and Trisindazolylborate Ligands. J. Am. Chem. Soc.2000,122(48):11845-11854
    [43]Kricheldorf H R, Bornhorst K, Hachmann-Thiessen H. Bismuth(Ⅲ) n-Hexanoate and Tin(Ⅱ) 2-Ethylhexanoate Initiated Copolymerizations of ε-Caprolactone and L-Lactide. Macromolecules 2005,38(12):5017-5024
    [44]Kostakis K, Mourmouris S, Karanikolopoulos G, et al. Ring-opening polymerization of lactones using zirconocene catalytic systems:Block copolymerization with methyl methacrylate. J. Polym. Sci. Part A:Polym. Chem. 2007,45(16):3524-3537
    [45]Zhong Z, Dijkstra P J, Birg C, et al. A Novel and Versatile Calcium-Based Initiator System for the Ring-Opening Polymerization of Cyclic Esters. Macromolecules 2001,34(12):3863-3868
    [46]Mata-Mata J L, Gutierrez J A, Paz-Sandoval M A, et al. Ring-Opening Polymerization of ε-Caprolactone Initiated with Different Ruthenium Derivatives:Kinetics and Mechanism Studies J. Polym. Sci. Part A:Polym Chem 2006,44(24):6926-6942
    [47]Dobrzynski P, Kasperczyk J, Bero M. Application of Calcium Acetylacetonate to the Polymerization of Glycolide and Copolymerization of Glycolide with ε-Caprolactone and L-Lactide. Macromolecules 1999,32(14):4735-4737
    [48]Kadokawa J, Iwasaki Y, Tagaya H. Ring-opening polymerization of lactones catalyzed by ion-exchanged clay montmorillonite. Green. Chem.2002,4(1): 14-16
    [49]魏志勇.生物可降解脂肪族聚酯的制备、表征与性能研究[D].大连:大连理工大学,2008:7
    [50]Dubois P, Jacobs C, Jerome R, et al. Macromolecular Engineering of Polylactones and Polylactides.4. Mechanism and Kinetics of Lactide Homopoly-merization by Aluminum Isopropoxide. Macromolecules,1991,24(9): 2266-2270
    [51]Kasperczyk J, Hu Y F, Jaworskam J, et al. Comparative Study of the Hydrolytic Degradation of Glycolide/L-Lactide/s-Caprolactone Terpolymers Initiated by Zirconium(Ⅳ) Acetylacetonate or Stannous Octoate. J. Appl. Polym. Sci.2008, 107(5):3258-3266
    [52]Jeon O, Lee S H, Kim S H, et al. Synthesis and characterization of poly(L-Lactide)-Poly(ε-Caprolactone) Multiblock copolymers. Macromolecules.2003, 36(15):5585-5592
    [53]Dong C M, Qiu K Y, Gu Z W, et al. Synthesis of star-shaped Poly(ε-Caprolactone)-b-poly(D,L-lactic acid-alt-glycolic acid) with Multifunctional Initiator and Stannous Octoated Catalyst. Macromolecules.2001,34(14): 4691-4696
    [54]刘立建,廖立琼,宋英,等.己内酯和丙交酯的微波辅助开环聚合反应.高分子通报,2003,(5):1-6
    [55]Finne A, Albensson A C. Controlled Synthesis of Star-Shaped L-Lactide Polymers Using New Spirocyclic Tin Initiators. Biomacromolecules,2002,3(4): 684-690
    [56]Kricheldorf H R, Lee S R, Bush S. Polylactones 36. Macrocyclic Polymerization of Lactides with Cyclic Bu?Sn Initiators Derived from 1,2-Ethanediol,2-Mercap-toethanol, and 1,2-Dimercaptoethane. Macromolecules,1996,29(5):1375-1381
    [57]Kowalski A, Duda A, Penczek S. Kinetics and Mechanism of Cyclic Esters Polymerization Initiated with Tin(Ⅱ) Octoate.3. Polymerization of L,L-Dilactide. Macromolecules 2000,33(20):7359-7370
    [58]Stassin F, Halleux O, Jerome R. Ring-Opening Polymerization of ε-Caprolactone in Supercritical Carbon Dioxide. Macromolecules 2001,34(4):775-781
    [59]Dubois P, Jacobs C, Jerome R, et al. Macromolecular Engineer of Polylactones and Polylactides.4. Mechanism and kinetics of lactide homopolymerization by aluminum isopropoxide. Macromolecules,1991,24(9):2266-2270
    [60]Cao W X, Lin G F, Feng X D. Studies on the ring opening polymerization of Caprolactone. Polym. Bull.1988,20(2):117-121
    [61]Tang Z H, Chen X S, Pang X, et al. Stereoselective polymerization of rac-lactide using amonoethylaluminum Schiff base complex. Biomacromolecules,2004, 5(3):965-970
    [62]杨永坤,汤朝晖,庞烜,等.非手性席夫碱-异丙氧基铝引发外消旋丙交酯的立构选择性聚合.高等学校化学学报.2006.27(2):352-355
    [63]Nomura N, Akita A, Ishii R, et al. Random Copolymerization of ε-Caprolactone with Lactide Using a Homosalen-Al Complex. J. Am. Chem. Soc.2010,132(6): 1750-1751
    [64]於秋霞,朱光明,梁国正,等.聚ε-己内酯的合成、性能及应用进展.高分子材料科学与工程.2004,20(5):37-40
    [65]Save M, Soum A. Controlled ring-opening polymerization of lactones and lactide initiated by lanthanum isopropoxide,2a mechanistic studies. Macromol. Chem. Phys.2002,203(18):2591-2603
    [66]Zhang Z, Xu X, Li W, et al. Synthesis of rare-earth metal amides beating an imidazolidine-bridged bis(phenolato)ligand and their application in the polymerization of L-lactide. Inorg. Chem.2009,48(13):5715-5724
    [67]Deng X, Yuan M, Li X, et al. Polymerization of lactides and lactones Ⅶ. Ring-opening polymerization of lactide by rare earth phenyl compounds. Eur. Polym. J.2000,36(6):1151-1156
    [68]Sheng H T, Zhou H, Guo H D, et al. Synthesis and molecular structure of the cationic samarium phenoxide complex [(ArO)2Sm(DME)2][BPh4]-THF and its catalytic activity for the polymerization of epsilon-caprolactone. J. Organomet. Chem.2007,692(5):1118-1124
    [69]Stanlake L J E, David-Beard J, Schafer L L. Rare-earth amidate complexes. Easily accessed initiators for ε-caprolactone ring-opening polymerization. Inorg. Chem.2008,47(18):8062-8068
    [70]胡芸,谢凯,陈一民,等.ε-己内酯聚合反应的研究.高分子材料科学与工程.2002,18(6):48-54
    [71]Cayuela J, Bounor-Legare V, Cassagnau P, et al. Ring-Opening Polymerization of ε-Caprolactone Initiated with Titanium n-Propoxide or Titanium Phenoxide. Macromolecules 2006,39(4):1338-1346
    [72]Gimenez J, Cassagnau P, Fulchiron R, et al. Structure and dynamics of melt poly(s-caprolactone) from inverse rheological calculation. Macromol. Chem. Phys.2000,201(5):479-490
    [73]Chen H Y, Liu M Y, Sutar A K, et al. Synthesis and Structural Studies of Heterobimetallic Alkoxide Complexes Supported by Bis(phenolate) Ligands: Efficient Catalysts for Ring-Opening Polymerization of L-Lactide. Inorg. Chem. 2010,49(2):665-674
    [74]Russell S K, Gamble C L, Gibbins K J, et al. Stereoselective Controlled Polymerization of D, L-Lactide with [Ti(trisphenolate)O-i-Pr]2 initiators. Macromolecules.2005,38(24):10336-10340
    [75]Okuda J, Rushkin I L. Mono(cyclopentadienyl)titanium Complexes as Initiators for the Living Ring opening Polymerization of ε-Caprolactone. Macromolecules 1993,26(20):5530-5532
    [76]Meelua W, Molloy R, Meepowpan P, et al. Isoconversional kinetic analysis of ring-opening polymerization of ε-caprolactone:Steric influence of titanium(Ⅳ) alkoxides as initiators. J. Polym. Res.2012,19(2):1-11
    [77]于翠萍,李希,沈之荃.丙交酯开环均聚合.化学进展,2007,19(1):136-144
    [78]张建设,于九皋,吴颖,等.酶催化生物可降解聚酯的合成与研究进展.化学通报,2008,71(3):172-178
    [79]杨小强.基于生物可降解材料的功能性聚合物纳米医药载体的研究[D].广州:中山大学,2008:1
    [80]Bartus R T, Tracy M A, Emerich D F, et al. Sustained Delivery of Proteins for Novel Therapeutic Products. Science,1998,281(5380):1161-1162
    [81]俞耀庭.生物医用材料[M].天津:天津大学出版社,2001,187
    [82]Zhang H W, Bei J Z, Wang S G. Multi-morphological biodegradable PLGE nanoparticles and their drug release behavior. Biomaterials.2009,30(1): 100-107
    [83]栾瀚森,王浩,侯惠民.生物降解微球的制备工艺及释药特性研究进展.中国医药工业杂志.2004,35(8):496-501
    [84]马光辉,苏志国.高分子微球材料[M].北京:化学工业出版社,2005,109
    [85]Bittner B, Morlock M, Koll H, et al. Recombinant human erythropoietin(rhEPO) loaded poly(lactide-co-glycolide) microspheres:influence of the encapsulation technique and polymer purity on microsphere characteristics. Eur. J. Pharm. Biopharm.1998,45(3):295-305
    [86]Bohra A, Kristensen J, Stride E, et al. Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying. Int. J. Pharm. 2011,412(1-2):59-67
    [87]邢福保,成国祥,杨炳兴,等.微囊微球的物理化学制备技术及其应用研究进展.胶体与聚合.2003,21(2):39-42
    [88]Arshady R. Microspheres and microcapsules:A survy of manufacturing techniques, Part1:Suspension cross-linking. Polymer Engineering and Science, 1989,29(24):1746-1758
    [89]殷德政,熊卓,张人佶,等.相分离法制备PLGA微米-纳米多孔结构研究.材料导报.2006,20(F11):393-396
    [90]Eisenbrey J R, Mualem Burstein O, Kambhampati R, et al. Development and optimization of a doxorubicin loaded poly(lactic acid) contrast agent for ultrasound directed drug delivery. Journal of Controlled Release.2010,143(1): 38-44
    [91]Liu M, Chen L, Zhao Y, et al. Preparation, characterization and properties of liposome-loaded polycaprolactone microspheres as a drug delivery system. Colloids and Surfaces A:Physicochem. Eng. Aspects.2012,395(1):131-136
    [92]Ye W P, Du F S, Jin W H, et al. In vitro degradation of poly(caprolactone), poly(lactide) and their block copolymers:influence of composition, temperature and morphology. React. Funct. Polym.1997,32(2):161-168
    [93]Huang M H, Li S, Vert M. Synthesis and degradation of PLA-PCL-PLA triblock copolymer prepared by successive polymerization of ε-caprolactone and DL-lactide. Polymer 2004,45(26):8675-8681
    [94]Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Advanced. Drug. Delivery. Reviews.2001,47(1):113-131
    [95]Sun T M, Du J Z, Yan L F, et al. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials 2008,29(32):4348-4355
    [96]Venkataraman S, Hedrick J L, Ong Z Y, et al. The effects of polymeric nanostructure shape on drug delivery. Advanced Drug Delivery Reviews.2011, 63(14-15):1228-1246
    [97]Cai S, Vijayan K, Cheng D, et al. Micelles of Different Morphologies-Advantages of Worm-like Filomicelles of PEO-PCL in Paclitaxel Delivery. Pharm. Res.2007,24(11):2099-2109
    [98]Gao W, Chan J M, Farokhzad O C. pH-Responsive Nanoparticles for Drug Delivery. Mol. Pharmaceutics,2010,7(6):1913-1920
    [99]Prakash S. Malhotra M, Shao W, et al. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Advanced Drug Delivery Reviews.2011,63(14-15):1340-1351
    [100]Farokhzad O C, Jon S, Khademhosseini A, et al. Nanoparticle-Aptamer Bioconjugates:A New Approach for Targeting Prostate Cancer Cells. Cancer. Research.2004,64(21):7668-7672
    [101]Gu F, Zhang L, Teply B A, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. PNAS.2008,105(7): 2586-2591
    [102]Nasongkla N, Bey E, Ren J, et al. Multifunctional Polymeric Micelles as Cancer-Targeted, MRI-Ultrasensitive Drug Delivery Systems. Nano Lett,2006, 6(11):2427-2430
    [103]Kulkarni R K, Moore E G, Hegyelli A F, et al. Biodegradable poly(lactic acid) polymers. J. Biomed. Mater. Res.1971,5(3):169-181
    [104]Prokop A, Jubel A, Helling H J, et al. Soft tissue reactions of different biodegradable polylactide implantsl. Biomterials,2004,25(2):259-267
    [105]Hattori K, Tomita N, Yoshikawa T, et al. Prospects for bone fixation-development of new cerclage fixation techniques. Materials science and Engineering C.2001,17(1-2):27-32
    [106]Nijenhuis J, Grijpma D W, Pennings A J. Crosslinked poly(L-lactide) and poly(s-caprolactone). Polymer,1996,37(13):2783-2791
    [107]Gui J, Wang L, Jiang Y, et al. Singl-Tunnel Suture Fixation of Posterior cruciate Ligament Avulsion Fracture. Arthroscopy. The Journal of Arthroscopic & Related Surgery,2009,25(1):78-85
    [108]Brown H C, Gerstein M. Acid-Base Studies in Gaseous Systems. Ⅶ. Dissociation of the Addition Compounds of Trimethylboron and Cyclic Imines; I-Strain. J. Am. Chem. Soc.,1950,72(7):2926-2933
    [109]Chen X, Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications. Chem. Rev.,2007,107(7):2891-2959
    [110]Hong X, Wang Z, Cai W, et al. Visible-Light-Activated Nanoparticle Photocatalyst of Iodine-Doped Titanium Dioxide. Chem. Mater.,2005,17(6): 1548-1552
    [111]Rozhkova E A, Ulasov I, Lai B, et al. A High-Performance Nanobio Photocatalyst for Targeted Brain Cancer Therapy. Nano Lett.,2009,9(9): 3337-3342
    [112]Li L, Liu C Y. Mesoporous Titania (A) Nanoparticles Prepared by a Solvothe-rmally Treated Organic Small Molecule System:Formation Mechanism and Behavior in Photocatalysis and Dye-Sensitized Solar Cells. J. Phys. Chem. C, 2010,114(3):1444-1450
    [113]Xu Y, He Y, Jia J, et al. Cu-TiO2/Ti Dual Rotating Disk Photocatalytic (PC) Reactor:Dual Electrode Degradation Facilitated by Spontaneous Electron Transfer. Environ. Sci. Technol.,2009,43(16):6289-6294
    [114]Han X, Kuang Q, Jin M, et al. Synthesis of Titania Nanosheets with a High Percentage of Exposed (001) Facets and Related Photocatalytic Properties. J. Am. Chem. Soc.,2009,131(9):3152-3153
    [115]Darensbourg D J, Karroonnirun O. Ring-Opening Polymerization of L-Lactide and ε-Caprolactone Utilizing Biocompatible Zinc Catalysts. Random Copolymerization of L-Lactide and ε-Caprolactone. Macromolecules 2010, 43(21):8880-8886
    [116]Takeuchi D, Aida T. Sequential Cationic and Anionic Polymerizations by Triflate Complexes of Bulky Titanium Bisphenolates:One-Pot Synthesis of Polyoxetane-Poly(ε-caprolactone) Block Copolymer. Macromolecules.2000, 33(13):4607-4609
    [117]潘祖仁.高分子化学[M].化学工业出版社.2002.35
    [118]Odian G. Principles of Polymerization [M].4th ed., New York:A John Wiley Sons, Inc., Publication.2004
    [119]Kricheldorf H R, Berl M, Scharnagl N. Poly(lactones).9. Polymerization mechanism of metal alkoxide initiated polymerizations of lactide and various lactones. Macromolecules 1988,21(2):286-293
    [120]Finne A, Albensson A C. Controlled Synthesis of Star-Shaped L-Lactide Polymers Using New Spirocyclic Tin Initiators. Biomacromolecules,2002,3(4): 684-690
    [121]Shen Y, Zhu K J, Shen Z, et al. Synthesis and characterization of highly random copolymer of e-caprolactone and lactide using rare earth catalyst. J. Polym. Sci. Part A:Polym. Chem.1996,34(9):1799-1805
    [122]Van Butsele K, Jerome R, Jerome C. Functional amphiphilic and biodegradable copolymers for intravenous vectorisation. Polymer 2007,48(26):7431-7443
    [123]Ghosh S. Recent research and development in synthetic polymer-based drug delivery systems. J. Chem. Res.2004,4(2004):241-246
    [124]Okada M. Chemical syntheses of biodegradable polymers.Prog. Polym. Sci. 2002,27(1):87-133
    [125]Chiellini E, Solaro R. Biodegradable Polymer Materials. Adv. Mater.1996,8(4): 305-313
    [126]Drumright R E, Gruber P R, Henton D E. Polylactic acid technology. Adv. Mater. 2000,12(23):1841-1846
    [127]Pappalardo D, Annunziata L, Pellecchia C, et al. Ring-Opening Polymerization of s-Caprolactone by Benzylalkoxybis (2,4,6-trii-sopropylphenyl)tin Compounds: Observation of the Insertion Product into the Sn-OMe Bond. Macromolecules 2007,40(6):1886-1890
    [128]Ryner M, Finne A, Albertsson A C, et al. L-Lactide Macromono-mer Synthesis Initiated by New Cyclic Tin Alkoxides Functionalized for Brushlike Structures Macromolecules 2001,34(21):7281-7287
    [129]潘祖仁.高分子化学[M].化学工业出版社.2002.146-147
    [130]张治国,尹红.环氧乙烷环氧丙烷开环聚合反应动力学研究.化学进展,2007,19(4):575-582
    [131]Xi Z W, Zhou N, Sun Y, et al. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide. Science,2001,292(5519):1139-1141
    [132]Zana R, Marques C, Johner A. Dynamics of micelles of the triblock copolymers poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) in aqueous solution. Advances in Colloid and Interface Science,2006,123-126(1):345-351
    [133]钱伯章.环氧丙烷的生产技术进展.化学推进剂与高分子材料.2004,2(6):51-53
    [134]章文.国内外聚醚多元醇市场现状和预测.化工科技市场,2003,26(12):5-7
    [135]Kim I, Byun S H, Ha C S. Ring-opening polymerizations of propylene oxide by double metal cyanide catalysts prepared with ZnX2 (X= F, Cl, Br, or I). Journal of Polymer Science, Part A:Polymer Chemistry,2005,43(19):4393-4404
    [136]李学福,朱东升,张越涛,等.Zn-Fe氰化物配合物的合成及其催化环氧丙烷开环聚合.吉林大学学报,2006,44(3):480-484
    [137]朱春华,张纪梅.Mg/A1复合氧化物的合成及其催化窄分布聚醚合成研究.天津工业大学学报,2005,24(1):20-24
    [138]Sefio M D, Tesser R, Santacesaria E. Comparison of Different Reactor Types Used in the Manufacture of Ethoxylated, Propoxylated Products. Ind. Eng. Chem. Res.2005,44(25):9482-9489
    [139]Sirovski F, Mulyashov S, Shvets V. Large-scale fatty amine ethoxylation reactor: A dynamic model. Chemical Engineering Joumal,2006,117(3):197-203
    [140]张治国,尹红.环氧乙烷和环氧丙烷开环聚合.化学进展.2007,19(1):145-152
    [141]周立宏,唐辉.环氧化物开环聚合催化体系的研究进展.精细与专用化学品.2004,12(13):3-6
    [142]胡富陶,房江华.Fe-A1配位催化环氧丙烷均聚.分子催化.2001,15(5):388-390
    [143]Bratme W, Okuda J. An Efficient Method for Controlled Propylene Oxide Polymerization:The Significance of Bimetallic Activation in Aluminum Lewis Acids. Angew. Chem. Int. Ed.,2003,42(1):64-68
    [144]Yamaguchi K, Ebitani K, Yoshida T, et al. Mg-Al Mixed Oxides as Highly Active Acid-Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides. J. Am. Chem. Soc.1999,121(18):4526-4527
    [145]张志国.环氧乙烷和环氧丙烷的开环聚合反应与产物性能研究.博士学位论文.浙江大学.2005,16-17
    [146]官治斌,江必旺,曹维孝.ε-己内酯与环氧丙烷共聚体的合成.高分子材料科学与工程.1995,11(3):19-22
    [147]Hwang Y, Jung J, Ree M. Terpolymerization of CO2 with Propylene Oxide and ε-Caprolactone Using Zinc Glutarate Catalyst. Macromolecules 2003,36(22): 8210-8212
    [148]Pierre L E S, Price C C. The Room Temperature Polymerization of Propylene Oxide. J. Am. Chem. Soc.,1956,78(14):3432-3436
    [149]Steiner E C, Pelletier R R, Trucks R O. A Study of the Polymerization of Propylene Oxide Catalyzed by Anhydrous Potassium Hydroxide. J. Am. Chem. Soc.1964,86(21):4678-4686
    [150]Hou S J, Yan K, Man K, et al. Nanosized micelles formed by the selfassembly of amphiphilic block copolymers with luminescent rhenium complexes. Langmuir 2003,19(6):2485-2490
    [151]Zhang L F, Eisenberg A. Multiple morphologies and characteristics of "crew-cut" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J. Am. Chem. Soc.1996,118(13):3168-3181
    [152]Luo L B, Eisenberg A. Thermodynamic size control of block copolymer vesicles in solution. Langmuir 2001,17(22):6804-6811
    [153]Bhargava P, Zheng J X, Li P, et al. Self-assembled polystyrene-block-poly(ethylene oxide) micelle morphologies in solution. Macromolecules 2006, 39(14):4880-4888
    [154]Zhang L, Eisenberg A. Multiple Morphologies of "Crew-Cut" Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science.1995,268(5218): 1728-1731
    [155]Zhang L, Yu K, Eisenberg A. Ion-Induced Morphological Changes in "Crew-Cut" Aggregates of Amphiphilic Block Copolymers. Science 1996,272(5269): 1777-1779
    [156]Li Z, Kesselman E, Talmon Y, et al. Multicompartment Micelles from ABC Miktoarm Stars in Water. Science 2004,306(5693):98-101
    [157]Yan X, Liu G, Li Z. Preparation and Phase Segregation of Block Copolymer Nanotube Multiblocks. J. Am. Chem. Soc.2004,126(32):10059-10066
    [158]Geng Y, Discher D E. Hydrolytic Degradation of Poly(ethylene oxide)-block-Polycaprolactone Worm Micelles. J. Am. Chem. Soc.2005,127(37): 12780-12781
    [159]Bhargava P, Tu Y, Zheng J X, et al. Temperature-Induced Reversible Morphological Changes of Polystyrene-block-Poly(ethylene Oxide) Micelles in Solution. J. Am. Chem. Soc.2007,129(5):1113-1121
    [160]Raez J, Manners I, Winnik M A. Nanotubes from the Self-Assembly of Asymmetric Crystalline-Coil Poly(ferrocenylsilane-siloxane) Block Copolymers. J. Am. Chem. Soc.2002,124(35):10381-10395
    [161]Tung P H, Kuo S W, Chen S C, et al. Micellar morphologies of self-associated diblock copolymers in acetone solution. Polymer 2007,48(11):3192-3200
    [162]Nie L, Liu S, Shen W, et al. One-pot synthesis of amphiphilic polymeric Janus particles and their self-assembly into supermicelles with a narrow size distribution. Angew. Chem. Int. Ed.2007,46(33):6321-6324
    [163]Yang Z, Yuan J, Cheng S. Self-assembling of bio compatible BAB amphip hilic triblock copolumers PLL(Z)-PEG-PLL(Z) in aqueous medium. European Polymer Journal.2005,41(2):267-274
    [164]Pochan D J, Chen Z, Cui H, et al. Toroidal Triblock Copolymer Assemblies: Advancing the complexity of bioinspired materials. Science 2004,306(5693): 94-97
    [165]Savic R, Luo L B, Eisenberg A, et al. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science 2003,30(5619):615-618
    [166]Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Adv. Drug. Delivery. Rev.2002,54(2):203-222
    [167]Garcia C B W, Zhang Y, Mahajan S, et al. Self-Assembly Approach toward Magnetic Silica-Type Nanoparticles of Different Shapes from Reverse Block Copolymer Mesophases. J. Am. Chem. Soc.2003,125(44):13310-13311
    [168]Jenekhe S A, Chen X L. Self-Assembly of Ordered Microporous Materials from Rod-Coil Block Copolymers. Science 1999,283(5400):372-375
    [169]Rolland J P, Maynor B W, Euliss L E, et al. Direct Fabrication and Harvesting of Monodisperse, Shape-Specific Nanobiomaterials. J. Am. Chem. Soc.2005, 127(28):10096-10100
    [170]Champion J A, Katare Y K, Mitragotri S. Particle shape:A new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release.2007, 121(1-2):3-9
    [171]Shen H, Zhang L, Eisenberg A. Multiple pH-Induced Morphological Changes in Aggregates of Polystyrene-block-poly(4-vinylpyridine) in DMF/H2O Mixtures. J. Am. Chem. Soc.1999,121(12):2728-2740
    [172]Zhang L, Eisenberg A. Morphogenic Effect of Added Ions on Crew-Cut Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers in Solutions. Macromolecules 1996,29(27):8805-8815
    [173]Shen H, Eisenberg A. Block Length Dependence of Morphological Phase Diagrams of the Ternary System of PS-b-PAA/Dioxane/H2O. Macromolecules 2000,33(7):2561-2572
    [174]Tu Y, Grahamb M J, Van Horn R M, et al. Controlled organization of self-assembled rod-coil block copolymer micelles. Polymer 2009,50(22):5170-5174
    [175]Yu Y, Zhang L, Eisenberg A. Morphogenic Effect of Solvent on Crew-Cut Aggregates of Apmphiphilic Diblock Copolymers. Macromolecules,1998,31(4): 1144-1154
    [176]Soo P L, Eisenberg A. Preparation of block copolymer vesicles in solution. J. Polym. Sci. Part B:Polym. Phys.2004,42(6):923-938
    [177]Zhang W, Shi L, An Y, et al. You have full text access to this content Block-Selective Solvent Influence on Morphology of the Micelles Self-Assembled by PS38-b-P(AA190-co-MA20). Macromol. Chem. Phys.2004, 205(15):2017-2025
    [178]Yu H, Wang L, Zhou J, et al. Study on the Synthesis of Poly(diglycidyl maleate-co-stearyl methacrylate) and Morphology Conversion of Their Self-Assembly Systems. J. Phys. Chem. B.2006,110(2):837-841
    [179]Liu X M, Yang Y Y, Leong K W. Thermally responsive polymeric micellar nanoparticles self-assembled from cholesteryl end-capped random poly(N-isop-ropylacrylamide-co-N,N-dimethylacrylamide):synthesis, temperature-sen sitivity, and morphologies. J. Colloid. Interface. Sci.2003,266(2):295-303
    [180]Steinbeck C A, Hedin N, Chmelka B F. Interactions of Charged Porphyrins with Nonionic Triblock Copolymer Hosts in Aqueous Solutions. Langmuir 2004, 20(24):10399-10412
    [181]Dou H, Jiang M, Peng H, et al. pH-dependent micellization and micelle to hollow sphere transition of hydroxyethyl cellulose-graft-poly (acrylic acid) in aqueous solution. Angew. Chem. Int. Ed.2003,42(13):1516-1519
    [182]Wang J, Kuang M, Duan H, et al. pH-dependent multiple morphologies of novel aggregates of carboxyl-terminated polymide in water. Eur. Phys. J. E 2004,15(2): 211-215
    [183]Luo L, Eisenberg A. One-Step Preparation of Block Copolymer Vesicles with Preferentially Segregated Acidic and Basic Corona Chains. Angew. Chem. Int. Ed.2002,41(6):1001-1004
    [184]Zupancich J A, Bates F S, Hillmyer M A. Aqueous Dispersions of Poly(ethylene oxide)-b-poly(γ-methyl-ε-caprolactone) Block Copolymers. Macromolecules 2006,39(13):4286-4288
    [185]Geng Y, Discher D E. Visualization of degradable worm micelle breakdown in relation to drug release. Polymer 2006,47(7):2519-2525
    [186]Booth C, Attwood D. Effects of block architecture and composition on the association properties of poly(oxyalkylene) copolymers in aqueous solution. Macromol. Rapid. Commun.2000,21(9):501-527
    [187]Zhu J, Liao Y, Jiang W. Ring-Shaped Morphology of "Crew-Cut" Aggregates from ABA Amphiphilic Triblock Copolymer in a Dilute Solution. Langmuir 2004, 20(9):3809-3812
    [188]Sellinger A, Weiss P M, Nguyen A, et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature 1998,394, 256-260
    [189]Yu K, Hurd A J, Eisenberg A, et al. Syntheses of Silica/Polystyrene-block-Poly(ethylene oxide) Films with Regular and Reverse Mesostructures of Large Characteristic Length Scales by Solvent Evaporation-Induced Self-Assembly. Langmuir 2001,17(26):7961-7965
    [190]Lu Y F, Fan H Y, Doke N,et al. Evaporation-Induced Self-Assembly of Hybrid Bridged Silsesquioxane Film and Particulate Mesophases with Integral Organic Functionality. J. Am. Chem. Soc.2000,122(22):5258-5261
    [191]Smarsly B, Xomeritakis G, Yu K, et al. Microstructural Characterization of Polystyrene-block-poly(ethylene oxide)-Templated Silica Films with Cubic-Ordered Spherical Mesopores. Langmuir 2003,19(17):7295-7301
    [192]Shen H, Zhang L, Eisenberg A. Multiple pH-Induced Morphological Changes in Aggregates of Polystyrene-block-poly(4-vinylpyridine) in DMF/H2O Mixtures. J. Am. Chem. Soc.1999,121(12):2728-2740
    [193]江明,A.爱森伯格,刘国军,等.大分子自组装[M].北京:科学出版社,2006,299-301
    [194]Shi L, Zhang W, Yin F, et al. Formation of flower-like aggregates from assembly of single polystyrene-b-poly(acrylic acid) micelles. New J. Chem.,2004,28(8): 1038-1042
    [195]Feng L, Zhang Y, Cao Y, et al. The effect of surface microstructures and surface compositions on the wettabilities of flower petals. Soft Matter,2011,7(6): 2977-2980
    [196]翟韬.双亲性嵌段共聚物合成、水溶液自组装研究及其矿化应用[D].浙江:浙江大学,2008:6
    [197]Fenton D E, Parker J M, Wright P V. Pressure dependence of β and γ dispersion for polyethylene by n.m.r. Polymer 1973,14(11):589-590
    [198]Siva Kumar J, Subrahmanyam A R, Jaipal Reddy M, et al. Preparation and study of properties of polymer electrolyte system (PEO+NaClO3) Materials Letters 2006,60(28):3346-3349
    [199]He C, Sun J, Deng C, et al. Study of the Synthesis, Crystallization, and Morphology of Poly(ethylene glycol)-Poly(ε-caprolactone) Diblock Copolymers. Biomacromolecules 2004,5(5):2042-2047
    [200]Kumar J S, Kumar K V, Subrahmanyam A R, et al. Conductivity study of polyethylene oxide (PEO) complexed with sodium bicarbonate. J. Mater. Sci. 2007,42(14):5752-5755
    [201]Zhulina E B, Adam M, Larue I, et al. Diblock Copolymer Micelles in a Dilute Solution. Macromolecules 2005,38(12):5330-5351
    [202]Burke S, Eisenberg A. Physico-Chemical Investigation of Multiple Asymmetric Amphiphilic Diblock Copolymer Morphologies in Solution. High Perform. Polym.2000,12(4):535-542
    [203]Fairley N, Hoang B, Allen C. Morphological Control of Poly(ethylene glycol)-block-poly(s-caprolactone) Copolymer Aggregates in Aqueous Solution. Biomacromolecules 2008,9(9):2283-2291
    [204]Zhang J, Wang L Q, Wang H, et al. Micellization Phenomena of Amphiphilic Block Copolymers Based on Methoxy Poly(ethylene glycol) and Either Crystalline or Amorphous Poly(caprolactone-b-lactide). Biomacromolecules 2006,7(9):2492-2500
    [205]王身国,智光,郭兴林,等.超声药物控释靶向药物制剂及其制备方法[P].中国专利.200910092254.X.2009-09-08
    [206]马光辉,苏志国.高分子微球材料[M].化学工业出版社.2005.231-233
    [207]杜永峰,于铭,闫烨.微泡超声造影剂材料研究进展.功能材料.2004,35,2473-2476
    [208]Goldberg B B. Liu J B, Forsberg F. Ultrasound contrast agents:A review. Ultrasound in Medicine & Biology.1994,20(4):319-333
    [209]Raisinghani A, DeMaria A N. Physical principles of mierobubble ultrasound contrast agents. Am J Cardiol,2002,90(10A):3J-7J
    [210]王志会,刘婧,钱林学,等.超声微泡造影剂靶向治疗现状及研究进展.中华临床医师杂志.2010,4(12):2359-2363
    [211]Lum A F H, Borden M A, Dayton P A, et al. Ultrasound radiation force enables targeted deposition of model drug carriem loaded on microbubbles. J. Control. Release.2006,111(1/2):128-134
    [212]Klibanov A L. Microbubble contrast agents:targeted ultrasound image and ultrasound-assisted drug-delivery applications. Invest Radiol.2006,41(3): 354-362
    [213]高瑜,万东华,林滔.提高W/O/W复合型乳剂稳定性的研究进展.中国医院药学杂志.2006,26(5):610-612
    [214]王传好,曹光群,孙谦.W/O/W多重乳状液的制备及应用概述.日用化学工业.1991,8(3):23-32
    [215]Jain R A. The manufacturing techniques of variou drug loaded biodegradable poly(lactide-co-glycolide)(PLGA) devices. Biomaterials.2000,21(23):2475-2490
    [216]Hu Y, Jiang X, Ding Y, et al. Preparation and drug release behaviors of nimodipine-loaded poly(caprolactone)-poly-(ethylene oxide)-polylactide amphiphilic copolymer nanoparticles. Biomaterials 2003,24(13):2395-2404
    [217]Baimark Y. Porous microspheres of methoxy poly(ethylene glycol)-b-poly(s-caprolactone-co-D,L-lactide) prepared by a melt dispersion method. Polymer 2009,50(20):4761-4767
    [218]Witschi C, Doelker E. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing. Journal of Controlled Release 1998,51(2-3):327-341
    [219]Andre-Abranta A, Taverdet J L, Jay J. Microencapsulation par evaporation de solvant. European Polymer Journal 2001,37(5):955-963
    [220]Yang C Y, Tsay S Y, Tsiang R C C. An enhanced process for encapsulating aspirin in ethylcellulose microcapsules by solvent evaporation in an O/W emulsion. J. Microencap.2000,17(3):269-277
    [221]Mao S. Xu J, Cai C, et al. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. International Journal of Pharmaceutics.2007,334(1-2):137-148
    [222]Painbeni T, Venier-Julienne M C, Benoit J P. Internal morphology of poly(D,L-lactide-co-glycolide) BCNU-loaded microspheres. Influence on drug stability. European Journal of Pharmaceutics and Biopharmaceutics,1998,45(1): 31-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700