用户名: 密码: 验证码:
离子液体协同TiO_2光催化剂制备方法及降解氰、苯酚的性能与机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何高效、环保的处理工业废水中的无机、有机污染物是当前世界范围内的一个重要的环境问题。而光催化技术作为最有发展前景的环境污染治理技术之一,越来越受到人们的重视。二氧化钛由于其自身优点,如无毒,光稳定,化学稳定,价廉,对反应底物的光催化降解彻底等,已经成为了目前最为常用的光催化剂。但是到目前为止,二氧化钛光催化技术仍然存在有两大问题有待解决,即较低的可见光利用率和较低的光量子产率。因此,如何通过改性有效地提高二氧化钛对可见光的利用,降低光生电子-空穴对的复合几率,提高量子效率,是当前二氧化钛光催化技术研究的重点。本文基于离子液体在微纳米材料制备方面的显著特性,采用离子液体作为二氧化钛制备的介质,对其进行改性,以期能够有效拓宽二氧化钛的激发光辐宽,改善其表面性质及结晶类型,提高可见光利用率和量子效率。
     目前的水体污染物中,主要来源于工业废水排放的氰化物和苯酚是公认的强毒性难降解物质,对环境危害较大。本文分别选择氰化物和苯酚作为光催化降解的模型污染物,从二氧化钛光催化剂的改性制备入手,创新的以1-丁基-3-甲基咪唑六氟磷酸盐([Bmim]PF6)离子液体作为反应介质,利用微波辅助手段,采用溶胶-凝胶法制备了改性二氧化钛光催化剂以及多种金属离子掺杂的改性二氧化钛光催化剂,并对改性二氧化钛光催化降解含氰废水和苯酚废水的反应进行了系统研究,同时研究了改性二氧化钛光催化剂的固定化。通过X射线衍射(XRD)、电镜扫描(SEM)、紫外-可见吸收光谱(UV-Vis)等分析手段对制备的各种催化剂进行了表征,以自行设计的光催化反应器进行光催化降解反应,首次详细探讨了影响改性二氧化钛光催化剂降解含氰废水和苯酚废水的多种因素和可能的内在原因,为优化改性二氧化钛光催化剂和深入研究光催化机理提供了有意义的信息,为改性二氧化钛光催化的进一步应用打下了一定的基础,具体研究内容和结果如下:
     1)以[Bmim]PF6离子液体作为反应介质,利用微波辅助手段,采用溶胶-凝胶法制备了改性二氧化钛光催化剂,得到的二氧化钛催化剂颗粒形状均匀、分散性较好、品貌良好,晶型结构主要以锐钛矿型存在,光吸收范围拓展至450nm左右。研究了微波辅助溶胶-凝胶法合成二氧化钛光催化剂的方法,并且考察了离子液体[Bmim]PF6的添加量对催化剂合成的影响,制备条件的最佳配比是[Bmim] PF6与钛酸丁酯((TTIP)的物质的量比为0.4:1。
     2)利用自制的改性二氧化钛光催化剂对模拟含氰废水进行光催化降解研究,考察了一些操作参数对光催化降解苯酚的影响,如pH值、催化剂浓度、氰根离子浓度、催化剂晶型和光源条件等。通过实验验证了,经过10小时在8w的紫外灯光照射下进行光催化反应,在制备的改性二氧化钛催化剂的用量为300mg/L时,晶型配比金红石型和锐钛矿型二氧化钛以1:1的比例进行配制,在体系pH值为4,初始浓度为60mg/L,在较大的光照面积(800cm2)条件下,得到的光催化效率较高,对含氰废水的降解率可达100%。
     3)利用自制的改性二氧化钛光催化剂对模拟苯酚废水进行光催化降解研究,考察了一些操作参数对光催化降解苯酚的影响,如pH值、催化剂浓度、苯酚浓度、催化剂晶型和光源条件等。通过实验验证了,经过20小时在8w的紫外灯光照射下进行光催化反应,制备的改性二氧化钛催化剂的用量为300mg/L时,晶型配比金红石型和锐钛矿型二氧化钛以1:2的比例进行配制,在体系pH值为4,初始浓度为50mg/L,在较大的光照面积(800cm2)下,得到的光催化活性较高,对苯酚废水的降解率可达100%。
     4)首次采用溶胶凝胶法与微波法协同制备了以离子液体[Bmim]PF6为介质,利用Cu2+、Ni2+、Pb2+、Zn2+、Fe3+五种金属离子分别掺杂制备了二氧化钛光催化剂,发现金属离子的掺杂使得二氧化钛的光谱吸收发生了较为明显的红移,光响应波长范围拓宽至可见光范围。并利用上述五种催化剂在自制的光催化反应器中分别对模拟含氰废水和苯酚废水进行了光催化降解实验,考察了影响光催化活性的各种因素。
     5)通过实验发现,Cu2+离子的掺杂可以有效提高二氧化钛光催化剂对含氰废水的降解效率,且在Cu2+离子掺杂浓度为0.5%(物质的量分数)时,得到的降解效率最高。在室内自然光的照射条件下,经过10小时的催化反应,对含氰废水的降解率达到了80.6%。Fe3+离子的掺杂可以有效提高二氧化钛光催化剂对苯酚废水的降解效率,且在Fe3+离子掺杂浓度为0.5%(物质的量分数)时,得到的降解效率最高。在室内自然光的照射条件下,经过20小时的催化反应,对苯酚废水的降解率达到了81.3%。
     6)首次以天然沸石、改性蛇纹石、砂质粘土为载体,利用溶胶凝胶法制备了TiO2/沸石光催化剂,TiO2/改性蛇纹石光催化剂、TiO2/砂质粘土光催化剂。并利用XRD和SEM对制备好的复合材料进行了表征。通过光催化降解实验发现,天然沸石和改性蛇纹石均可显著提高光催化活性,可作为良好的二氧化钛载体材料,而砂质粘土则不适宜采用。
     7)对以离子液体[Bmim]PF6作为介质、金属离掺杂在二氧化钛改性制备过程中的机理作用进行了研究,对改性二氧化钛光催化降解氰化物和苯酚的机理以及反应动力学进行初步的探讨和分析。
     以上结果使设计和构建可见光下的高活性的二氧化钛催化剂成为可能,为寻求可实用化的降解水体污染的光催化剂提供了一定的理论基础及技术参考。
Industrial wastewater containing inorganic and organic pollutants has always been a main environmental concern throughout the world.The TiO2photocatalyst has been the focus of water purification processing studies because of its non-poisonous feature high activity,security,stability,low cost and other advantages.Electron-hole pairs will be generated upon excitation by light with energy equal to or greater than the bandgap of TiO2.Since the strong oxidative power of the photogenerated holes made it possible to oxidize most of the organic pollutants and to transform some of the toxic inorganic pollutants into harmless forms as well,photocatalysis of TiO2is significant for environmental remediation.Based on the distinct characteristics of ionic liquid in preparation of micro/nano materials,the ionic liquid was used as the medium in preparation of TiO2for modification.It is hoped that the inspire light width could be widened,the surface properties and crystallization type could be improved and the visible utilization and quantum efficiency could be enhanced.
     The CN-and phenol were the main environmental pollutants from industrial waste water which recognized as the strong toxic and hard-degradation substances.This research aimed at removal of CN-and phenol respectively from water using photocatalysis and modified-Ti02and metal ions doped modified-TiO2,that were prepared by a sol-gel method which use [Bmim]PF6as reaction medium and microwave-assisted means.The oxidation and reduction capability of the TiO2powder have been studied comprehensively from some important factors of the photocatalytic CN-and phenol decomposition in the reaction and the immobilization of TiO2was also studied. With the help of X-ray diffraction(XRD),SEM,UV-Vis,after a series of photocatalytic experiments of degradation of CN" and phenol with using the new photoreactor which was built by ourselves,we studied many facators affecting the photocatalytic activity of TiO2powders.More information was provided to optimize TiO2powder photocatalyst and its may be helpful for further study of photocatalytic mechanisms.Some results are as follows.
     1) The modified-TiO2was prepared by a sol-gel method which use [Bmim]PF6as reaction medium and microwave-assisted means and had an equality shape and high dispersion.The TiO2powder was made up mauly by anatase type and its absorption range of light was expanded to450nm.The sol-gel method with microwave-assisted means was studied and the adding amount of [Bmim]PF6was also investigated.The best ratio is n[Bmim] PF6:nTTIP=0.4:1.
     2) The oxidation and reduction capability of the modified-TiO2had been studied comprehensively from some important factors of the photocatalytic CN-decompose in the reaction The effects of various operational parameters such as pH, catalyst concentration, CN-concentration, the quality proportion of anatase type and rutile type and illumination condition on the photocatalytic degradation of CN-were investigated. After10hours8w UV irradiation, the results showed that the pH of the aqueous solution was4,the initial concentration of CN-was60mg/L;,the quality proportion of anatase type and rutile type was1:1,ratio of the solution was300mgTiO2/L,800cm(?)illumination area, under such conditions,the degradation rate could be enhanced to about100%when the modified-Ti02was used.
     3) The oxidation and reduction capability of the modified-TiO2had been studied comprehensively from some important factors of the photocatalytic phenol decompose in the reaction. The effects of various operational parameters such as pH, catalyst concentration, phenol concentration, the quality proportion of anatase type and rutile type and illumination condition on the photocatalytic degradation of pheno were investigated. After20hours8w UV irradiation, the results showed that the pH of the aqueous solution was4,the initial concentration of phenol was50mg/L;the quality proportion of anatase type and rutile type was1:2,ratio of the solution was300mgTiO2/L,800cm2illumination area, under such conditions,the degradation rate could be enhanced to about100%when the modified-TiO2was used.
     4) The metal ions doped modified-TiO2was prepared by a sol-gel method which use [Bmim]PF6as reaction medium and microwave-assisted means and doped by Cu2+,Ni2+,Pb2+,Zn2+,Fe3+. In the studies of light absorption performance, the photon exeited wavelength of metal ions doped modified-TiO2powder were broaden to visible light.The oxidation and reduction capability of the metal ions doped modified-TiO2had been studied comprehensively from some important factors of the photocatalytic CN-and phenol decompose in the reaction.
     5) Through the experiments it could be discovered that doped with Cu2+could enhance the degradation rate of CN".TiO2photocatalysts co-doped with Cu2+can gain the best degradation efficiency when the doping quality is0.5%.After10hours indoor nature light photocatalytic reaction,the degradation rate of CN-could achieve to about80%.Through the experiments it could be discovered that doped with Fe3+could enhance the degradation rate of phenol.TiO2photocatalysts co-doped with Fe3+can gain the best degradation efficiency when the doping quality is0.5%.After20hours indoor nature light photocatalytic reaction,the degradation rate of phenol could achieve to about81.3%.
     6) The TiO2coated on natural zeolite,dauk and modified serpentine were prepared by sol-gel method.The TiO2/natural zeolite composite,TiO2dauk composite and TiO2/modified serpentine composite were charaeterized by XRD,and SEM.The laboratorial results showed that the natural zeolite and modified serpentine could consequently enhances the photocatalytic activity of TiO2while dauk could not.
     7) The reaction mechanisms of TiO2preparation process which using [Bmim]PF6as reaction medium and doping with metal ions were studied.The mechanisms and reaction kinetics of photocatalytic degradation of CN-and phenol were preliminary discussed and analyzed.
     The results above maybe helpful to design and construct photocatalyst which using to decompose CN-and phenol with high activity and provide certain theoretical foundation and technical reference for practical degradation of water pollution.
引文
[1]李圭白.水的社会循环和水资源可持续利用[J].给水排水,1998,24(9):1.
    [2]于忠民.当代水污染防治的特点及发展[J].给水排水,1997,13(3):26-27.
    [3]孟楠,王珂.环境保护的国际考察—兼论我国环境保护问题[J].复旦学报(社会科学版),1998,4:46-49.
    [4]张晶心.城市污水再生与农业再用[J].重庆环境科学,1994,16(2):35-37.
    [5]马晓鸥,刘艳飞.废纸再生造纸废水的特性和处理工艺[J].工业水处理,1999,19(4):8-10.
    [6]于永丽,苏永渤.化学法处理制浆造纸废水的研究[J].工业水处理,2000,20(1):39-40.
    [7]吴颖娟,谢文彪,陈永亨.旁滤—气浮法处理造纸废水的封闭循环[J].工业水处理,1998,18(6):19-21.
    [8]陈元彩,肖锦,詹怀宇.絮凝和生化一体化反应器处理纸浆漂白废水[J].环境科学,2000,2(2):94-97.
    [9]陈俊水.纳米二氧化钛光催化及其在污水处理与分析检测中的应用研究[D].上海:华东师范大学,2004.
    [10]Akira Fujishima,Tata N. Rao,Donald A. Tryk. Titanium dioxide photocatalysis[J].Journal of photochemistry and photobiology,2001,1:1-21.
    [12]Diana Mardare .Optical constants of heat-treated TiO2 thin films[J]. Materials Science and Engineering,2002,95:83-87.
    [13]Kari Pirkanniemi,Mika Sillanpaa. Heterogeneous water phase catalysis as an environmental application[J]:areview,Chemosphere,2002,48:147-1060.
    [14]R.J.Farrauto, R.M. Heck. Environmental catalysis into the 21st century[J].Catalysis today, 2000,55:179-187.
    [15]A.Alexiadis,G.Baldi,I. Mazzarino, Modelling of a photocatalytic reactor with a fixed bed of supported catalyst[J]. Catalysis today,2001,66:467-474.
    [16]Jean-Marie Herrmann,Chantal Guillard,Jean Disdier,Corinne Lehaut b,Sixto Malato,etc.New industrial titania photocatalysts for thr solar detoxification of water containing various pollutants[J].Applied catalysis B:Environmental,2002,35:281-294.
    [17]K.Madahusudan Reddy,Sunkara V. Manorama, A. Ramachandra Reddy.Bandgap studies on anatases titanium dioxide nanoparticles[J].Materials Chemistry and Physics,2002,78:239-245.
    [18]孙振范,郭匕燕,陈淑贞.二氧化钛纳米薄膜材料及应用[M].广州:中山大学出版社,2009:1-2.
    [19]Anders Hagfeldtt and Michael Gratzel,Light-Induced Redox Reactions in Nanocrystalline Systems[J]. Chem,Rev.,1995,95:49-68.
    [20]Michael R. Hoffmann, Scot T. Martin, Wonyong Choi,etc.Environmental Applications of Semicon-ductor Photocatalysis [J].Chem. Rev.,1995,95:69-96.
    [21]O.M. Alfano,D, Bahnemannb,A.E.Cassano, etc.Photocatalysis in water environmental using artificial and solar light[J].Catalysis today,2000,58; 199-230.
    [22]Jorg Ferber and Joachim Luther.Modeling of photo voltage and photocurrent in dye-sensitized titanium dioxide solar cells [J]. Phys.Chem.,2001,105:4895-4903.
    [23]D.A. Tryk, A. Fujishima, K.Honda.Recent topics in photoelectrochemsitry:achivements and future prospects.[J]Electrochemia Acta,2000,45:2363-2376.
    [24]Kohjiro Hara, Hideki Sugihara, etc.Dye-sensitized Nanocrystalline TiO2 Solar Cells Based on Ruthenium (Ⅱ) Phenathroline Complex Photosensetizers[J].Langmiur 2001,17:5992-5999.
    [25]M. Gomez, J. Rodriguez, S.-E. Lindquist, C.G. Granqvist.Photoelectrochemical studies pf dye-sensitized polycrystalline titanium oxide thin film prepared by sputtering[J].Thin Solid Films,1999,342:148-152.
    [26]Davis J H, Fox P A.Chem. Commun.,2003,3:1209-1212.
    [27]李汝雄.离子液体的合成及应用.北京:化学化工出版社,2004;2-5.
    [28]Peter I. Sorantin and Karlheinz Schwarz,Chemical Bonding in Rutile-Type Compunds[J]. Inorg. Chem.,1992,31:567-576.
    [29]R.Asahi and Y. Taga,W. Mannstadt,A. J. Freeman,Electronic and optical properties of anatase TiO2[J]. PHYSICAL REVIEW B 2000,61(11):7459-7465.
    [30]Daude, N.,Gout, C., Jouanin,C. Electronic band structure of titanium dioxide[J].Phys.Rev.B 1977, 15:3229.
    [31]M.Calatayud, P.Mori-Sa'nchez,A.Beltran, A.Martin Penda's,etc.Quantum-mechanical analysis of the equation of state of anatase TiO2,.PHYS1CAL REVIEW B 2000,64(13):184113.
    [32]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:11-21.
    [33]S. A. Bilmes,and P. Mandelbaum. Surface amd electronic structure of titanium dioxide photocatalysts [J].Phys.Chem.B,2000,104:9851-9858.
    [34]Fa-Min Liu,Tian-Min Wang.Surface and optical properties of nanocrystalline anatase titania films grown by radio frequency reactive magnetron sputtering.[J].Applied Surface Science, 2002,195:284-290.
    [35]Bingsuo Zou,Liangzhi Xiao, and Tiejin Li.Absorption red shift in TiO2 ultrafine particles with surfacial dipole layer.[J]. Appl.Phys.Lett.,1991,59(15):1826-1828.
    [36]Hirendra Nath Ghosh and Soumyakant AdhikaRI,Trap State Emission from TiO2 Nanoparticles in Microemulsion Solutions[J].Langmiur,2001,17:4129-4130.
    [37]Yunxia Jin, Guanghai Li, Yong Zhang, Ynnxia Zhang and Lide Zhang.Photoluminescence of anatase thin films achieved by addition of ZnFe2O4[J].Phys:Condensed Matter,2001,13,L913-L918.
    [38]Masakazu Anpo,Takahito Shima,Sukeya Kodalrla,and Yutaka Kuhokawa.Photocatalytic Hydrogenation of CH,CCH with H20 on Small-Particle TiO2:Size Quantization Effects and Reaction Intermediates[J].Phys.Chem.,1987,91:4305-4310.
    [39]Zhibo Zhang, Chen-Chi Wang, Rarna Zakaria, and Jackie Y.Role of Particle Size in Nanociystalline TiO2-Based Photocatalysts[J].Phys.Chem.B,1998,102:10871-10878.
    [40]Teruhisa Ohno, Daisuke HaGa, KaN Fujihara, Kaoru Kaizaki, and Michio Matsumura.Unique Effects of Iron(Ⅲ)Inns on Photocatalytic and Photoelectrochemical Properties of Titanium Dioxide. [J].Phys. Chem.B,1997,101:6415-6419
    [41]M. R. Dhananjeyan, V. Kandavelu, R. Renganathan.A study on the photocatalytic reactions of TiO2 with certain pyrimidine bases:effects of dopants (Fe3+) and calcinations[J]Journal of Molecular Catalysis.A:Chemical,2000,151:217-223.
    [42]Koodali T. Ranjit and Itamar Willner.lron (Ⅲ) Phthalocyanine-Modified Titanium Dioxide:A Novel Photocatalyst for the Enhanced Photoclegradatiorx of Organic Pollutants[J]. Phys. Chem. B.199,10:9397-9403.
    [43]V. Iliev.Phthalocyanine-modified titania,catalyst for photooxidation of with visible light.[J]. Journal of Photochemistry and PhotobiOlogy A:Chemistry,2002,151:195-199.
    [44]V. Iliev,A. Mihaylova,L Bilyarska. Photooxidation of phenols in aqueous solution catalyzed by mononuclear and polynuclear metal phthalacyanine complexes[J].Journal of Molecular Catalysis A:Chemical,2002,184:121-130.
    [45]Giuseppe Mele,Giuseppe Ciccarella, Giuseppe Vasapollo, Elisa Garcia-Lbpez, Leonardo Palrnisano,Mario Schiavello,Photocatalytic degradation of 4-nitrophenol in aqueous suspension,by using polycrystalline TiO2 samples impregnated with,Cu(Ⅱ) phthalacyanine[J].Applied Catalysis:Environmental,2002,38:309-319.
    [46]K. Wilke,H. D. Breuer. The influence of transition metal doping on the physicall and photocatalytic properties of titania[J]. Journal of Photochemistry and Photobiology A:Chemistry,1999,121:49-53.
    [47]Yanqin Wang,Humin Cheng, Li Zhang,Yanzhong Hao,rizriing Ma,Bin Xu,Weihua Li.The preparation,characterization,photoelectroehemical and photocatalytic properties of lanthanide metal-ion-doped TiO2 Nanoparticles[J].Journal of Moleculacr Catalysis A:Chemical,2000, 151:205-216.
    [48]Veronica Vamathevan,Rase Axna, Donia Beydoun,Gary Lowb,Stephen McEvoy.Phatocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particle[J].Journal of Photochemistry and Photobialogy A:Chemistry,2002,148:233-245.
    [49]Hu Chun, Wang Yizhong, Tang Hanxiao.Preparation and characterization of surface bond-conjugated TiO2/SiO2 and photocatalysis for azo dyes[J].Applied Catalysis B:Environmental,2001,30:277-285.
    [50]Hu Chun, Wang Yizhong, Tang Hanxiao.Influence of adsorption on the photodegradation of various dyes using surface band-conjugated TiO2/SiO2 photocatalyst.[J]. Applied Catalysis B: Environmental,2001,35:95-105.
    [51]Hiroaki Tada,Akihiko Hattori,Yashifurrxi Tokihisa,Kiyohisa Imai,Naboru ohge.APatterned-Ti02/Sn02 Bilayer Type Photocatalyst[J]. Phys. Chem. B,2000,104:4585-4587.
    [52]ALESSANDRA BIANCO PREVOT,CLAUDIO BAIOCCHI, MARIA CARLA BRUSSINO, EDMONDO PRAMAURO,PIERO SAVARINO,VINCENZO AUGUGLIARO,GIUSEPPE MARL AND LEONARDO PALMISANO.Photocatalykic Degradation of Acid Blue 80 in Aqueous Solutions Containing TiO2 Suspensions[J].Environ. Sci, Technol.,2001,35:971-976.
    [53]SATOSHI HORIKfISHI AND HISAQ HIDAKA.Environmental Remediation by an Integrated Microwave/UV-Illumination Method.1. Microwave-Assisted Degradation of Rhodamine-B Dye in Aqueous TiO2 Dispersions[J].Environ Sci. Technol.2002,36,1357-1366.
    [54]C. M. So,M. Y. Cheng, J. C. Yu, P. K. Wong. Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation[J].Chemosphere,2002,46,905-912.
    [55]Guangming Liu, Xiangzhong Li, Jincai Zhao, Satoshi Horikashi, Hisao Hidaka.Photooxidation mechanism of dye alizarin red in Ti02 dispersions under visible illumination:an experimental and theoretical examination [J]. Journal of lllolecular Catalysis A:Chemical,2000,153; 221-229.
    [56]杨鼎宜,孙伟.纳米材料的结构特征与特殊性能[J].材料导报,2003,17(10):7-10.
    [57]方晓明,陈焕饮.纳米粉体的液相制备方法[J].石化技术与应用,2001,19(2):126-130.
    [58]李晓娥,祖庸.溶胶-凝胶法制备超细二氧化钛[J].化工新型材料,1997,(10):28-30.
    [59]霍玉秋,翟玉春.醇盐水解沉淀法制备二氧化硅纳米粉[J].微纳电子技术,2003,40(9):26-28).
    [60]J.Yves,D.Cabaret,H.Renevier,et al.Electron Population Analysis by Full-Potential X-Ray Absorption simulations.Phys.Rev. Lett.1999,82(11):2398-2401.
    [61]V. G. Bessergeneva, V Khmelinskii, R. T. F. Pereira, V. V Krisuk,A.E Turgambaevab,K. Igumenov. Preparation of TiO2 films by CVD method and its electrical,structral and optical properties[J]. Vacuum.,2002,64:275-279.
    [62]M. L. Lavcevic,A. Turkovc.The measurements of particle/crystallite size in nanostructured TiO2 films by SAXS/WAXD method[J].Scripta Materialia,2002,46:501-505.
    [63]T. M. Wang, S. K. Zheng, W. C. Hao, C. Wang. Studies on photocatalytic activity and transmittance spectra of TiO2 thin films prepared by r. F.magnetron sputtering method[J].Surface and Coatings Technology,2002,155:141-145.
    [64]George Atanassov,James Turlo,Ji Kai Fu,Yi ShengDai,etc.Mechnical,optical and structural erties of TiO2 and MgF2 thin Films deposited by plasma ion assisted deposition[J].Thin Solid Films, 1999,342:83-92.
    [65]T. Tsuchiya, A. Watanahe, H. Nino, A. Yabe, I. Yamaguchi, T.Manabe, T.Kumagai,S.Mizuta.Low temperature growth of metal oxide thin films by metallorganic laser photolysis[J].Applied Surface Science,2002,186:173-178.
    [66]V. Sammelseig, A. Rosental, A. Tame, L Niinisto, K. Heiskanen, K. Ilmonen, L S.Johansson, T. Uustare, TiO2 thin films by atomic layer deposition: a case of uneven growth at low temperature[J]. Applied,Surface Science,1998,134:78-85.
    [67]A. P. Ragas, E. Androalaki, A. Hiskia, P. Falaras .Preparation, fractal surface morphology and photocatalytic properties of TiO2 films[J].Thin Solid Films,1999,357:173-178.
    [68]Jiaguo Yu, Xiujian Zhao, Qingnan Zhao, Effect of surface structure on photocatalytic activity of TiO2 thin films prepared by sol-gel method[J].Thin Solid Films,2000,379,7-14.
    [69]Y. Djaoued, R. Taj, R. Bruning, S. Badilescu, P. V. Ashrit, G. Baler, Truong Vo-Van.Study of the phase transition and the thermal nitridation of nanocrystalline sol-gel titania films[J].Journal of Non-Crystalline Salads,2002,297:55-56.
    [70]E. Stathatos and P. Lianos, F. Del Monte and D. Levy, D. Tsiourvas. Formation of TiO2 Nanoparticles in Reverse Micelles and Their Deposition as Thin Films on Glass Suhstrates [J].Langmuir,1997, 13:4295-4300.
    [71]R.Islam, H. D. Banerjee, D. R. Rao. Structure and optical properties of CdSexTe1-x thin films grown by electron beam evaporation[J].Thin Solid Films,1995,266:215-218.
    [72]吴自勤,王兵.薄膜生长[M].北京:科学出版社,2001:11-25.
    [73]孙振范,李玉光.TiO2纳米膜上吸附态甲基橙光催化降解反应活性研究[J].化学学报,2002,6,1965-1972.
    [74]Y. Leprince-Wang, K. Yu-Zhang.Study of the morphoiogy of TiO2 thin films by AFM and TEM[J]. Suface and Contangs Technology,2001,140:155-160.
    [75]By K. Chandraseharan and J. K. Thomas. Photochemical Reactions of Amorphous and Crystalline Titanium Dioxide Powder Suspensions in Water[J]. Chem.Soc. Faraday.,1984,80:1163-1172.
    [76]E. Stathatos.D. Tsiourvas, P. Lianos. Titanium dioxide films made from reverse micelles and their use for the photocatalytic degradation of absorbed dyes[J].Colloids and surface A:Physicochemical and Enginerering Aspects,1999,149:49-56.
    [77]D. Stathatos and P. Lianos, F. Del Monte and D. Levy, D. Tsiourvas.Formation of TiO2 Nanoparticles in Reverse Micelles and Their Deposition as Thin Films on Glass Substrates[J]. Langmuir,1997,13: 4295-4300.
    [78]A.Selafanl, L.Palmisano, M.Sehiavello,J Phys .Chem.,1990,94:829.
    [79]A Mills, P Sawunyama, J Photoehem Photobiol. A:Chem.,1994,84:305.
    [80]K.Okamoto, Y.Yamamoto, H.Tanaka, Bull. Chem.Soc.Jpn,1985,58:2015.
    [81]C.Y.Hsiao, C.L.Lee, D.F.Ollis.J.Catal.1983,82:418-423.
    [82]R. Bickley, T. Gonzalea-Carreno, J. Lees, J. Solid state Chem.,1991,92:178-190.
    [83]孙奉玉,吴鸣,李文钊,李新勇,顾婉贞,王复东.催化学报[J].1998,19(3):229-233.
    [84]张梅,杨绪杰,陆路德.化工新型材料[J].2000,28(4):11-13..
    [85]L.E. Brus, J Chem. Phys.,1984,80:4403-4409.
    [86]陈士夫,陶跃武.南开大学学报(自然科学版)[J].1998,31(4):79-82.
    [87]孙奉玉,吴鸣,李文钊,李新勇,顾婉贞,王复东.催化学报[J].1998,19(2):121-124.
    [88]符小荣,张校刚,宋世庚,化学学报[J].1998,56(6):521-526.
    [89]N. Serpone, E. Borgarello, M. Barbeni, J Photochem.,1987,36:373-388.
    [90]李凤生等编著,超细粉体技术[M].北京,国防出版社,2000,318.
    [91]刘正保,姚清照.光催化氧化技术及其发展[J].工业水处理,1997,17(6):7-8.
    [92]Ashokkumar M,Maruthamuthu P.J Mater Sci,1999,24(6):2135.
    [93]徐锐,童仁唐.武汉科技大学学报(自然科学版)[J].2001,24(4):3598.
    [94]王艳芹,张莉,程虎民,等.高等化学学报[J].2000,21(6):958.
    [95]Yamashita H,Ichihashi M,et al.Synchrotron Rad,1999,20(6):451.
    [96]M. Miyake, H. Yoneyama, H. Tamura, Bull. Chem. Soc. Jpan.,1977,50 (6):1492-1496.
    [97]H. Yoneyama, Y Yamashita, H. Tamura, Nature,1979,282 (2741):817-818.
    [98]姚建年,陈萍,藤岛昭.电解沉积成膜法制备氧化钼变色薄膜的研究[J].感光科技与光化学,1996,(3):224-225.
    [99]杨宗志.国外超细透明二氧化钛的生产[J].钒钛,1994(4):45-52.
    [100]李大成,周大利,等.纳米TiO2的应用[J].四川有色金属.2002,4:14-16.
    [101]B.K. Bernard, M.R. Osheroff.J. Toxicol Environ. Health,1989,28:415.
    [102]R.X. Cai, K. Hashimoto, K. Itoh, Bull Chem. Soc. Jpan.,1991,64:1268.
    [103]T. Matsunaga, R. Tomoda, T. Nakajima, FEMSMicrobiol. Lett.,1985,29:211.
    [104]R.X. Cai,Y Kubota, T. Shuin, Cancer Res.1992,52:2346.
    [105]H. Sakai, E. Ito, R.X. Cai, Biochim. Biophys. Acta,1994,120:259.
    [106]Liu J F, Jonsson J A, Jiang G B.Trac--Trends in Anal.Chem.,2005,24:20-27.
    [107]Seddon K R. Kinet. Catal. Engl.Transl.,1996,37:693-699.
    [108]}Elaiwi A, Hzteheoek P B, Seddnn K R, Srinivasan N, Thn Y M, Welton J, Zora J A.J. Chem. Soc.Dalton Trans.,1995.37:3467-3471.
    [109]Walden P. Bull. Acad. Ixnper. Sci. (St. Petersburg),1914:1800-1808.
    [110]Sugde S, Wilkins H. J. Chem. Soc.1929,7:1291-1298.
    [111]Hurley E H, Wier T P. J. Electsoehcm. Soc.,1951,98:203-206.
    [112]Chum H L, Koch V R, Miller L L,Osteryong R A. J. Am. Chem. Soc.,1975,97:3264-3265.
    [113]Gale R J, Osteryoung R A. Inarg. Chern.,1979,18:1603-1605.
    [114]Wilkes J S.Zaworotka M. Chem.Commun.,1992.13:965-967.
    [115]Yuan L M.Hart Y, Zhau Y, Meng X, Li Z Y, Zi M, Chang Y X. Anal. Lett.,2006,39:1439-1449.
    [116]Jodry J J, Mikami K, Tetrahedron Lett.2004,45:4429-4431.
    [117]Tosomi M.Lasohat S.Barn A. Helv. Chimi. Acta,2004,87:2742-2749.
    [118]Zhao H, AiaS, Ma R. J. Chew. Technol. Biotechnol.,2005,80,1089-1096.
    [119]Seddon K. Green Chenn.,2002,4:G25-G26.
    [120]Bao W L, Wand Z, Li Y. Org. Chem.2003.68:591-593.
    [121]Welton T. Chem. Rev.,1999,99:2071-2083.
    [122]Bonhote P, Dias A P, Papageorgiou N, Kalyanasundaram K, Gratzel M. Inorg. Chem, 1995,35:1168-1178.
    [123]Huddleston J. G.Visser A. E.,Reichert W. M.,Willauer H.D.,Rogers It D.,Green Chem., 2001,3:156-164.
    [124]Merrigan T L, Bates E D, Dorman S C.Davis J H. Chem. Commun.,2000,20:2051-2052.
    [125]张锁江,吕兴梅,等.离子液体-从基础研究到工业应用[M].北京:科学出版社,2006.
    [126]刘靖平,任周阳,赵元鸿,等.几种新型离子液体的合成[J].有机化学,2004,24(9):1091-1094.
    [127]Holbrey J D, Reichert W M, Swatloski R P. Green Chem.,2002,4:407-413.
    [128]Varma R S, Namboodiri V V. Chem. Commun.,2001,7:643-644.
    [129]Hiraa M, Sugimoto H, Ohno H. J. Electrochem. Soc.,2000,147:4168-4172.
    [130]高转转,郭宪英.微波控制下咪唑类离子液体的制备[J].应用化工,2008,37(12):1440-1442.
    [131]Bonhote P, Dias A P, Papageorigiou N. Inorg. Chem.,1996,35:1168-1178.
    [132]Dzyuba S V,Bartsch R A. J. Heterocyclic Chem.,2001,38:265-258.
    [133]Hagiwara R, Hirashige T, Tsuda T. J. Fluorine Chem.,1999,99:1-3.
    [134]Wang W,Lee D,Leone A M, Murray R W. J. Phys. Chem. B,2005,109:7012-7021.
    [135]Antonietti M, Kuang D, Smarsly B. Ionic liquids for the convenient synthesis of functional inorganic nanopartieles [J]. Angew.Int.Ed.,2004,43:4998-4999.
    [136]G. Chaxlton,P. B. Howes,C. L. Nicklin, et al,Phys. Rev. Lets.78(1997):495.
    [137]B. Hird,R. A. Armstrong,Surf. Sci.420(1999):L131.
    [138]B. Hird,R. A. Armstrong,Surf. Sci.385(1997):L1023.
    [139]E. Asari,T. Suzuki,R. Souda, Phys. Rev. B 61(2000):5679.
    [140]A.Verdini,M. Sa:rnbi, F. Bruno,D. Cvetko,etc.,Surf: Rev. Lett.5(1999):2101.
    [141]D. Vogtenhuber, R. Pvdloucky,A. Neckel,etc.,Phys. Rev. B 49(1994):299.
    [142]P. Reinhardt,B. A. He,P. Rev. B50(1994):12015.
    [143]S.P. Bates,G. Kresse,M. J. Gillan,Surd:Sci.409(1998):336-337.
    [144]D. R. Hamann,Fhys. Rev:B 56(1997):14979-14981.
    [145]K. M. Glassford,J. R. Chelikowovslcy,Phys.Rev. B 46(1892):1284.
    [146]仲崇波等,氰化物的危害及其处理方法综述[J].金属矿山,2001(5):1-2.
    [147]格鲁什科·(?)·M,工业废水中有害无机化合物[M].北京:化学工业出版社,1984.
    [148]高大明,氰化物污染及其治理技术(续二)[J].黄金,1998,19(3):57-59.
    [149]汪祺,唐圣姣,胡敏.苯酚的光催化氧化降解[J].伊犁师范学院学报(自然科学版),2007,9(3):33-35.
    [150]蒋文新,张天胜.含酚废水处理技术研究进展[J].天津科技大学学报,2004,(6):14-17.
    [151]M Salaices, B Serrano, H I de Lasa. Photocatalytic conversion of phenolic compounds in slurry reactors [J],Chemical Engineering Science,2004,59:3-15.
    [152]俞慧芳.光催化氧化技术处理含酚废水的研究[J].景德镇高专学,2006,21(2):8-10.
    [153]张彭义,余刚,蒋展鹏.半导体催化剂及其改性技术进展[J].环境科学进展,1997,5(3):1-10.
    [154]王传以,刘春艳,沈涛.半导体光催化剂的表面[J].高等学校化学学报,1998,19(12):2013-2019.
    [155]Fujishima A,Honda K.Electrochemical photolysis of water at a semiconductor electrode [J].Nature.1972,238(5358):37-38.
    [156]Chen.X,Lou.Y,Samia.A.C.S,Burda.C,Gole.J.L.Fonnation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder[J].AdV.Funct.Mater.2005,15(1):41-49.
    [157]Burda.C,Lou.Y,Chen.X,Samia.A.C.S,Stout.J,Gole.J.L.Enhanced Nitrogen Doping in TiO2 Nanoparticles[J].Nano Lett.2003,3(8):1049-1051.
    [158]Szczepankiewicz.S.H,Colussi.A.J,Hoffmann.M.R.Infrared Spectra of Photoinduced Species on Hydroxylated Titania Surfaces[J].J.Phys.Chem.B.2000,104(42):9842-9850.
    [159]Szczepankiewicz.S.H,Moss.J.A.,Hoffmann.M.R.J.Phys.Electron Traps and the Stark Effect on Hydroxylated Titania Photocatalysts[J]. J.Phys.Chem.B.2002,106(31):7654-7658.
    [160]Berger.T.,Sterrer.M.,Diwald.O.,Knoezinger.E.,Panayotov.D.et al. Light-Induced Charge Separation in Anatase TiO2 Particles.The journal of physical chemistry[J].J.Phys.Chem.B.2005,109(13):6061-6068.
    [161]XiaoboChen,SamuelS.Mao.Titanium Dioxide Nanomaterials:Synthesis, Properties,Modifications, and Applications[J].Chem.Rev.2007,107(7):2891-2959.
    [162]郭俊刚,杨志远,宫传东.提高纳米TiO2可见光催化活性的元素掺杂方法研究进展宁波化工[J].2008,1:9-14.
    [163]Nagaveni.K,Hegde.M.S,Madras.G.Structure and Photocatalytic Activity of Ti1-xMxO2 delta(M= W,V,Ce,Zr,Fe,and Cu) Synthesized by Solution Combustion Method[J].J.Phys.Chem.B.2004, 108(52):20204-20212.
    [164]Jing LQ,Sun XJ,Shang J,Cai WM,Xu ZL,Du YG,Fu HG.Review of surface photovoltage spectra of nano-sized semiconductor and its applications in heterogeneous photocatalysis[J].Sol.Energy Mater. Sol.Cells.2003,79(2):133-151.
    [165]DING Z,LU G Q,GREENFIELD P F.Role of the crystallite phase of TiO2 in heterogeneous photo-catalysis for phenol oxidation in water[J].J.Phys.Chem.B 2000,104(19):4815-4820.
    [166]Choi W, Termin A, Hoffmann MR. Structural and spectroscopics studies of iron(Ⅲ) doped titania powders prepared by sol-gel synthesis and hydrothermal processing[J]. Dyes and Pigments,2004, 62:199-212.
    [167]Litter M I.Heterogeneous photocatalysis transition metal ions in photocatalytic systems[J].Apllied Catalys B:Enviromental,1999,23:89-114.
    [168]赵秀峰,孟宪峰,张志红,等.Pb掺杂TiO2薄膜的制备及光催化活性研究[J].无机材料学报,2004,19(1):140-146.
    [169]柳丽芬,李秀婷,杨凤林等.Ag/TiO2光催化氧化还原反应脱除水体中无机氮[J].感光科学与光化学,2006,24(4):291-300.
    [170]闫晔.纳米二氧化钛光催化降解苯酚废水的实验研究[J].化工职业技术教育,2009,Z1:49-53.
    [171]T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, M. Matsumura. Photocatalytic oxidation of water by visible light using ruthenium-doped titanium dioxide powder. J. Photochem. Photobiol. A:Chem.1999,127:107-110.
    [172]Bahnemann Detlef, Boekelmann Dirk, GosliehRoland. Mechanistie studies of water detoxifieation in illuminated TiO2 suspensions.Sol Energy,1991,24(1-4):564-583.
    [173]DaiQ, ShiLY, Luo YG.Effeets of templates on the strueture, stability and photoeatalytic activity of mesostruetured TiO2[J] .J Photochem Photobio A:Chem,2002,148(1-3):295-301.
    [174]Hsien Yu-Hsien, Chang Chi Fu, Chen Yu Huang.Photodegradation of aromatic pollutants in water over TiO2 supported on molecular sieves[J].Appl Catal B:Environ,2001,31(4):241-249.
    [175]Matos J, Laine J, Herrmann J M.Effect of the type of activated carbons on the photocatalytic degradation of aqueous organic pollutants by UV-irradiatedtitania[J].J Catal,2001,200(1):10-20.
    [176]Reddy Ettireddy P, Davydov Lev, Smirniotis Panagiotis. TiO2 — loaded zeolites and mesoporous materials in the sonophotoeatalytic decomposition of aqueous organic pollutants:the role of the support[J].Appl Catal B:Environ,2003,42(1):1-11.
    [177]王长平,王琪,董浩.负载Ti02海泡石粉体的制备[J].硅酸盐通报,2004,23(1):31-34.
    [178]Torimoto T, Ito S, Kuwabata S.Effects of Adsorbents Used as Supports for Titanium Dioxide Loading on Photoeatalytic Degradation of Propyzamide[J].Environ Sci and Technol,1996,30: 1275-1281.
    [179]Tokeda N, Torimoto T, Sam Path S.Effect of Inert Supports for Titanium Dioxide Loading on Enhancement of Photodecomposition Rate of Gaseous Propionaldehyde[J]. Phys Chem,1995, 99:9986-9991.
    [180]Welton T. Chem. Rev.,1999,99:2071-2083.
    [181]Wasserscheid P,Keim W.Angew.Chem.Int.Ed.,2000,39:3772-3789.
    [182]Gordon C M.Appl.Catal.A:General.,2001,222:101-117.
    [183]Lau R M,Rantiwijk F,Seddon K R,Sheldon R A.Org.Lett.,2000,2:4189-4191.
    [184]Jaeger D A,Tucker C E.Tetrahedron Lett.,1989,90:1785-1788.
    [185]张亚.离子液体的应用及研究[M].陕西:陕西科学技术出版社,2009:17-18.
    [186]荆晶,王连军.二氧化钦催化氧化研究进展[J].污染防治技术1991,20(2):114-117.
    [187]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京,化学工业出版社,2002:41.
    [188]姜世楠.纳米二氧化钛光催化空气净化技术研究进展.舰船防化[J].2006年增刊:1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700