用户名: 密码: 验证码:
三角洲外前缘砂体结构及生产动态响应规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊三角洲是中国陆相含油气盆地中最为重要的油气储集砂体,其中三角洲前缘相带内的砂体是油气藏最主要的赋存部位。三角洲前缘相砂体由陆地向湖方向又可分为三角洲内前缘和三角洲外前缘两种亚相。其中三角洲外前缘砂体在沉积位置、沉积能量、水体深浅等方面均有其自身独特性,目前对于该类砂体的沉积特征、砂体内部结构特征、动态开发响应规律等方面的研究还较少。本文以南襄盆地泌阳凹陷毕店地区为例,从地质、地震、岩心、录井、测井、测试和实际动态开发数据等基础资料入手,开展了三角洲外前缘砂体的层序地层、沉积特征及沉积体系、砂体空间组合结构及生产动态响应规律研究。论文不仅对于泌阳凹陷毕店地区砂体沉积特征和演化规律的认识具有重要意义,也对于砂体空间组合样式及相关特征的认识具有重要意义,对于该类油藏的油气勘探开发具有重要的指导意义。
     论文在层序地层学、沉积学、储层地质学、测井地质学等学科理论的指导下,建立了毕店地区层序地层格架,对研究区沉积相进行了进一步细化,分析了沉积相垂向演化规律、提出了三角洲外前缘的沉积模式。在地层特征及沉积特征的基础上,对三角洲外前缘砂体空间组合样式进行了划分,提出了进积式和退积式两种砂体成因组合类型的分布模式。结合毕店地区实际生产数据,对三角洲外前缘砂体的三维地质建模方法及生产动态响应规律进行了研究。本论文研究取得的研究成果和主要认识可以概括为以下几个方面:
     应用Cross的旋回性层序地层学分析方法构建了毕店地区核桃园组核三段地层格架。利用地震资料、地球化学元素、岩心及测井资料,可识别出9个地震反射层(SBH23、SBH3、 SBH32、SBH33、SBH34、SBH35、SBH36、SBH37、SBH38)。具体标定层位为:核二段Ⅲ油组顶界面(SBH23)、核三段顶界面或核三段Ⅰ油组顶界面(SBH3)、核三段Ⅱ油组顶界面(SBH32)、核三段Ⅲ油组顶界面(SBH33)、核三段Ⅳ油组顶界面(SBH34)、核三段V油组顶界面(SBH35)、核三段Ⅵ油组顶界面(SBH36)、核三段Ⅶ油组顶界面(SBH37)、核三段Ⅷ油组顶界面(SBH38)。通过合成地震记录进行层位精细标定,实现测井、地震资料的协调统一。
     根据高分辨率旋回性层序地层学原理,按照地层的级次性特点,将研究区内核三段地层旋回划分为长期旋回、中期旋回和短期旋回三种级次,分析了不同级次地层旋回特征,并将研究区核三段划分为9个基准面上升或下降的长期半旋回,23个基准面上升或下降的中期半旋回及若干个短期旋回。
     依据研究区内井位的分布情况、砂体展布特征及不同沉积物源供给方向,进行了全区所有井的不同级别层序地层的划分与对比,共划分出58个小层及114个单层。
     从砂体发育程度及重矿物资料分析出发,对毕店地区物源供给特征进行了分析,在四个物源中北部的付湾—张厂物源和古城物源为本区内主要物源方向,南部双河物源和东北部王集物源为本区次要物源方向。
     利用岩心观察结果及岩石学特征分析结果,将毕店地区岩石相划分四类:含砾砂岩岩石相、中粗砂岩岩石相、粉细砂岩岩石相和泥页岩岩石相,并对每种岩石相结构特征及成因进行了分析解释。
     在泌阳凹陷宏观沉积背景下,充分利用岩心、录井、测井等资料,对研究区内三角洲、扇三角洲沉积微相类型进行了划分,将三角洲前缘相进一步细分为内前缘亚相和外前缘亚相,内前缘亚相沉积微相包括:水下分流河道、道间和河口坝,外前缘亚相沉积微相包括:水下分流河道末梢、远砂坝。其对应的扇三角洲沉积微相分别为:水下分流河道、道间、前缘砂、水下分流河道末梢、席状砂。
     从沉积物粒度特征、测井相形态、沉积砂体厚度等方面,对不同沉积微相类型的岩性、砂体厚度、测井相形态进行了分析。对比了不同沉积体系内外前缘亚相与内前缘亚相沉积特征的差异,提出了三角洲和扇三角洲外前缘亚相与内前缘亚相分界线的界定,对比了三角洲外前缘与内前缘沉积砂体在岩性、构造层理、微相分布等方面的差异。
     在微相划分的基础上,对沉积相垂向和平面展布规律进行了研究,分析了沉积相垂向演化规律,提出了毕店地区不同沉积物源的沉积模式。
     利用岩心样品物性测试资料,分析了毕店地区不同沉积物源区、不同岩性、不同沉积微相的物性差异。从沉积物源区来看,古城物源区域物性最好,孔隙度平均值为21.75%,渗透率平均值为427.31×10-3μm2;其次为南部双河物源区和付湾—张厂物源区;王集物源区域物性最差,孔隙度平均值为16.93%,渗透率平均值为197.33×103μm2。从岩性来看,粉砂岩孔隙度小于21%,渗透率小于80x10-3μm2;细砂岩孔隙度集中在21-26%,渗透率集中在80-350x10-3μm2;中砂岩孔隙度集中在26-29%,渗透率集中在350~1600×10-3μm2;粗砂岩与含砾砂岩孔隙度大于29%,渗透率大于1600x10-3μm2。从沉积微相类型来看:三角洲外前缘砂体孔隙度小于23,渗透率小于200x10-3gm2;扇三角洲外前缘砂体孔隙度小于24.5%,渗透率小于250x10-3μm2,比三角洲外前缘砂体略高。
     在微相划分的基础上,依据研究区内砂体的垂向叠置关系,对三角洲外前缘与内前缘及外前缘内部砂体成因组合类型进行了划分。在三角洲沉积体系内,砂体成因组合类型有:水下分流河道—水下分流河道末梢组合、河口坝水下分流河道末梢组合、水下分流河道—远砂坝组合、河口坝—远砂坝组合、水下分流河道末梢—远砂坝组合、远砂坝叠加组合六种类型。在扇三角洲沉积体系内,砂体成因组合类型有:水下分流河道—水下分流河道末梢组合、前缘砂—水下分流河道末梢组合、水下分流河道—席状砂组合、前缘砂—席状砂组合、水下分流河道末梢—席状砂组合、席状砂叠加组合六种类型。在水下重力流沉积内砂体成因组合类型只有一种:水下重力流—远砂坝组合。上述几种成因类型中,远砂坝叠加组合为三角洲内最为常见的砂体组合类型,席状砂叠加组合为扇三角洲内最为常见的砂体组合类型。
     依据研究区物源供给、湖平面升降变化特征,提出了砂体成因组合的两种分布模式:进积式和退积式。退积式沉积过程主要为在沉积晚期三角洲外前缘比较发育,薄层席状砂体分布范围广,砂体垂向叠置由下往上依次为远砂坝、水下分流河道末梢、河口坝、水下分流河道;进积式沉积过程主要为在沉积晚期三角洲内前缘比较发育,水下分流河道延伸范围广,砂体垂向叠置由下往上依次为水下分流河道、河口坝、水下分流河道末梢、远砂坝。毕店地区不同砂体成因组合类型在Ⅶ油组、Ⅵ油组、V油组、Ⅳ油组下段、Ⅲ油组下段和Ⅱ油组下段多为退积式沉积过程,在Ⅳ油组上段、Ⅲ油组上段和Ⅱ油组上段多为进积式沉积过程。
     从沉积砂体厚度、垂向钻遇率、物性韵律率、非均质性等方面,对不同砂体成因组合的各种特征进行了阐述,河道—水下分流河道末梢砂体成因组合及河口坝—水下分流河道末梢砂体成因组合沉积砂体厚度最大(最大厚度可达1Om,平均厚度为7m左右),垂向钻遇率最低,非均质性相对较弱,分布范围最小,其渗透率韵律性多为反正复合韵律或正反复合韵律,在研究区内少见;由薄层远砂坝(席状砂)叠加砂体成因组合沉积砂体厚度最小(最小厚度仅为0.8m,平均厚度为2.6m左右),垂向钻遇率较高,非均质性强,分布范围最广,其渗透率韵律性多为对称复合韵律,在研究区内常见。
     在含油性方面,不同含油级别其物性差异明显:当物性较好时(孔隙度>25%,渗透率>1000×10-3μm2)时,岩心含油级别多为含油和油浸;当物性较差时(孔隙度<10%,渗透率<10×10-3-μm2)时,岩心含油性较差,含油级别多为荧光。
     统计了毕店地区核三段各个单层砂体发育最大厚度、平均厚度、砂岩百分比和夹层厚度,核三段Ⅱ~Ⅶ油组各个单层砂体发育程度差异大,在Ⅱ油组顶部、Ⅱ油组底部、Ⅲ油组顶部、Ⅲ油组底部、Ⅳ油组顶部、Ⅳ油组底部、V油组底部、Ⅵ油组底部和Ⅶ油组底部砂体发育程度相对较高,砂体厚度大,砂岩百分比含量高,夹层较薄,在核三段其余层位砂体发育程度较低,砂体厚度小,砂岩百分比含量较低。
     随着砂岩厚度及砂岩百分比的变化,砂体发育表现出不同的类型。毕店地区核三段砂体结构划分为四种类型:稳定河道厚层、不稳定河道厚层、稳定席状薄层和不稳定席状薄层。当砂岩厚度≥3m、砂岩百分比≥30%时,砂体厚度大、砂体横向连通性较好,可认为是一种“稳定河道厚层”砂体结构;当砂岩厚度≥3m、砂岩百分比<30%时,砂体厚度大、砂体横向连通性较差,可认为是一种“不稳定河道厚层”砂体结构;当砂岩厚度<3m、砂岩百分比<30%时,砂体厚度小、砂体横向连通性较差,可认为是一种“不稳定席状薄层”砂体结构;当砂岩厚度<3m、砂岩百分比≥30%时,砂体厚度小、砂体横向连通性较好,是一种“稳定席状薄层”砂体结构。
     针对毕店地区主要研究层段物源分布及砂体发育情况,总结了三种砂体结构三维模型:单物源单支河道、单物源多支河道和多物源砂体结构模型。稳定河道厚层砂体结构多分布在顺物源方向、靠近物源区,砂体厚度大、砂岩百分含量高,横向及垂向连通性较好,发育在三角洲内前缘或内外前缘交汇区域,非均质性相对较弱;不稳定河道厚层砂体结构多发育在内前缘多支水下分流河道分叉处,砂体多为孤立透镜状,横向连通性差,垂向连通性好;稳定席状薄层砂体结构多发育在外前缘靠近陆地一端,砂体厚度较薄呈席状分布,横向连通性好,垂向连通性差;不稳定席状薄层砂体结构多分布在物源交汇区、远离物源且垂直物源方向,砂体厚度小、砂岩百分含量低,横向及垂向连通性较差,发育在三角洲外前缘末端或前三角洲区域,非均质性较强。
     结合钻井、分层、断层、构造等基础资料,利用Petrel建模软件,建立了毕店地区构造模型、沉积相模型和物性参数模型。在物性参数模型的建立过程中,采用了确定性建模和相控随机建模两种方法。从结果对比来看,在毕店地区采用相控随机建模效果更好,模拟结果可信度较高。
     以毕店地区为例,对三角洲外前缘储层开发现状现在进行了分析,三角洲外前缘砂体往往由于物性差,含油性差,开发效果差,产能低,产液强度低,综合含水率上升快。
     依据实际生产动态数据,通过对毕店地区不同砂体成因组合类型的产液强度、产能评价、产量递减分析,认为:三角洲外前缘不同砂体组合类型差异比较明显,河口坝—水下分流河道末梢、河口坝—远砂坝砂体组合类型,沉积砂体厚度大,物性好,在动态开发过程中,开发效果要明显好于远砂坝叠加砂体组合类型,产液强度相对较大,初期产能相对较高,产量稳产时间相对较长,初始递减率较低。
Lake delta is one of the most important oil and gas reservoir of Chinese continental petroliferous basin, in which the sand body from front facies is the main reservoir occurrence position. Depending on the direction of the land-to-lake, sand body of front facies of Delta can be divided into two subfacies:outer delta front and inner frontal of delta.The outer delta front sand body has its own uniqueness in sedimentary position, sedimentary energy, water depth, etc. At present there is little research about this kind of sand body about the sedimentary characteristics, sand body internal structure characteristics, and dynamic development response law. Taking the Bidian district of Biyang sag in Nanxiang basin as an example, this thesis is based on the geological, seismic, core, well logging, testing and the actual dynamic development data and other basic material of the front delta to discuss the sequence stratigraphy and sedimentary characteristics and sedimentary system, sand body space combination structure and production dynamic response law. It is not only important for understanding of sedimentary characteristics and evolution of sand body, but also for sand body space combination style and features. It has a great significance for this kind of reservoir for oil and gas exploration and development.
     Based on the sequence stratigraphy, sedimentology, reservoir geology, logging geology, this thesis established the sequence stratigraphic framework of study area, refined the sedimentary facies, analysis of the vertical evolution law of sedimentary facies, and put forward the deposition model for delta front. On the basis of the formation characteristics and sedimentary characteristics, the thesis classified space combination style of the sand body of the delta front, advanced two kinds of sand body causes combination types of distribution mode:the aggradations type and retro gradation type. Combined with production data in Bidian district, study on the3D geological modeling and production dynamic response has been done. The achievements obtained can be summarized as the following.
     Through the application of analysis method of high resolution sequence stratigraphy by Cross this thesis constructs stratigraphic framework of third member of Hetaoyuan Formation. By using seismic data and geochemical elements analysis, core and logging data, we can identify nine seismic reflectors (SBH23, SBH3, SBH32, SBH33, SBH34, SBH35, SBH36, SBH37, and SBH38). These specific calibration horizons are:top interface of III pay zone of the second member of Hetaoyuan foramtion (SBH23), top interface of the third member of Hetaoyuan foramtion nuclear or top interface of I pay zone in HⅢ formation (SBH3), top interface of II pay zone of the third member of Hetaoyuan foramtion (SBH32), top interface of III pay zone of the third member of Hetaoyuan foramtion ((SBH33), top interface of IV pay zone of the third member of Hetaoyuan foramtion (SBH34), top interface of V pay zone of the third member of Hetaoyuan foramtion (SBH35), top interface of VI pay zone of the third member of Hetaoyuan foramtion (SBH36), top interface of Ⅶ pay zone of the third member of Hetaoyuan formation (SBH37), top interface of Ⅷ pay zone of the third member of Hetaoyuan foramtion (SBH38). Through the synthetic seismic records horizon fine calibration, this thesis made the well logging, seismic data harmonious and unified.
     According to theory of the high resolution sequence stratigraphy, and the hierarchy of the formation, this thesis divided the third member of Hetaoyuan Foramtion into long-term cycle, medium-term cycle and short-term cycle three orders, analyzed on the differences of characteristics in multi-order formation cycle, and divided study area into9long-term half cycle of basal level up or down,23middle of half cycle of basal level up or down and several short cycles.
     Based on the research of the location, distribution pattern of sand body and supply direction of different provenances, this thesis made all wells in different level of sequence stratigraphic division and correlation, which is divided into58thin layers and114single sand bodies.
     Depending on the development of sand body and analysis of heavy mineral material this thesis analyzed the characteristic of provenance in Bidian district, finding that Fuwan-Zhangchang and Gucheng in north is the main provenances, while Shuanghe in north and Wangji in northeast are the secondary provenances in study area.
     Using results from core observation and analysis of petrology characteristics, this thesis divided rock facies classification of Bidian district into four categories:pebbled sandstone rock facies, medium thick sandstone rock facies, silty sand rocks and mud shale rock facies, and explain structure characteristics and analyses the genesis for each rock facies.
     Under background of the macro sedimentary in Biyang sag, making full use of core, logging, well logging data, this thesis classified microfacies types of the delta, fan delta sedimentary. The delta front facies are fatherly subdivided into exo-front and external front subfacies, and inner front subfacies sedimentary microfacies include:subaqueous distributary channel, mouth bar and, the outer front subfacies sedimentary microfacies include:subaqueous distributary channel endings, far sand dam. Corresponding to fan delta sedimentary microfacies is respectively subaqueous distributary channel, between channels frontal sand, subaqueous distributary channel endings, sand sheet.
     From characteristics of the sediment grain size, logging facies, thickness of sedimentary sand body and different sedimentary microfacies types of lithology, sand body thickness, logging facies are analyzed. The thesis compared the deposition features of differences between inside and exo-front facies in the different sedimentary and proposed the phase boundary of exo-front and inside front facies of the delta and fan delta, and also pointed out the differences in lithology, constructions of the principle, the microfacies distribution of the delta front and inner front sedimentary sand body
     On the basis of the micro facies classification, the thesis studied the distribution of the sedimentary facies in vertical and plane, analyzed evolution regularity of the sedimentary facies in vertical, and introduced different sediment source of the depositional model in Bidian district.
     With the physical properties testing data of core sample, this essay analyzed the physical differences of different sediment provenances, lithology and sedimentary microfacies. Considering from the sediment provenance, the property of Gucheng is best, whose average porosity is21.75%, and the average permeability is427.31X10-3μm2; the second are Shuanghe and Fuwan-Zhangchang provenances; Wangji provenance is the worst whose average porosity is16.93%, and the average permeability is197.33×10-3μm2. Considering from lithology,powder sandstone porosity is less than21%, and permeability is less than80×10-3μm2; fine sandstone porosity is concentrated in21-26%, and permeability is concentrated in80-350×10-3μm2; the sandstone porosity is concentrated in26-29%, permeability is concentrated in350-1600X10-3μm2; the porosity of coarse and gravel sandstone is more than29%, and permeability is more than1600×10-3μm2.From the sedimentary microfacies, the porosity of delta outer frontal sand body is less than23and permeability is less than200×10-3μm2; porosity of fan delta outer frontal sand body is less than24.5%and permeability is less than250×10-3μm2, which is slightly higher than the outer frontal sand body of delta.
     On the basis of microfacies classification, according to the sand body vertical superimposed relationship, this thesis classified inner and exo-front delta, and the genesis assembly types of internal sand body of exo-front delta. In the delta depositional system, types of genesis assembly of sand body are:underwater distributary channel and its endings, mouth bar peripheral combination of underwater distributary channel, underwater distributary channel and far sand dam, mouth bar and far sand dam, underwater distributary channel endings and far sand dam, far sand dam superposition combination. In the fan delta depositional system, types of combination cause about sand body are:underwater distributary channel, underwater distributary channel peripheral combination, frontal sand-underwater distributary channel peripheral combination, underwater distributary channel, sand sheet combination, frontal sand, sand sheet combination, underwater distributary channel endings-sand sheet combination, sand sheet superposition combination six types. Among them, the most common sand body combination type is the far sand dam superposition combination for delta and sand sheet superposition combination for fan delta.
     According to provenance supply and variation characteristics of lake level, this thesis proposed two kinds of distribution mode about genesis assembly of sand body in study area, namely progradation type and retrogradation type. Genesis assembly types of different sand bodies in Ⅶ oil formation,Ⅵ oil formation, Ⅴ oil formation, lower Ⅳ oil formation, lower Ⅲ oil formation and lower Ⅱ oil formation belong to retrogradation type, while which in upper Ⅳ oil formation, upper Ⅲ oil formation and upper Ⅱ oil formation mostly belong to progradation type.
     Through thickness of sedimentary sand body, drilling footage vertically, property rhythm rate, heterogeneity etc, this thesis discussed the features of different sand bodies combination, and found that the thickness of the sedimentary sand bodies in genesis assembly of channel-underwater distributary channel endings sand body and mouth bar-underwater distributary channel endings is the largest, and the vertical drilling footage is lower, heterogeneity is relatively weak.With minimum distribution range, the permeability rhythm city is likely negative-positive or positive-negative, which in study area is rare. On the contrary, the genesis assembly of overlying sand made of thin layer far sand dam (sand sheet) is totally different, and its permeability rhythm city is mostly symmetric composite.
     With the change of sandstone thickness and sandstone percentage, the development of sand body show different types. There are four types of sand body structure in the third member of Hetaoyuan formation in Bidian district such as stable channel thick layer, unstable river thick layer, stable sheet thin layer and unstable sheet thin layer. When the sandstone thickness is thicker than3m, sandstone percentage is higher than30%, the thickness of sand body which is supposed to be large with its good lateral connectivity can be considered as a kind of "stable channel thick layer" sand body structure. When the sandstone thickness is thicker than3m, sandstone percentage is lower than30%, the thickness of sand body which is supposed to be small with its bad lateral connectivity can be considered as a kind of "unstable channel thick layer" sand body structure. When the sandstone thickness is thinner than3m, sandstone percentage is lower than30%, the thickness of sand body which is supposed to be small with its bad lateral connectivity can be considered as a kind of "unstable sheet thin layer" sand body structure. When the sandstone thickness is thinner than3m, sandstone percentage is higher than30%, the thickness of sand body which is supposed to be small with its good lateral connectivity can be considered as a kind of "stable sheet thin layer" sand body structure.
     On basis of source distribution and sand body development of the main research formation in Bidian district, this paper sums up the three kinds of sand body structure3d model such as single source single channel, single source many branch channel and multiple source sand body structure model. The distribution of sand body structure of stable channel thick layer is often on the provenance direction, and mostly close to the provenance with large sand body thickness, high sandstone percentage, good horizontal and vertical connectivity, and relatively weak heterogeneity, which is developed in the delta front or internal and external front intersection area. The distribution of sand body structure of Unstable river thick layer is often on front underwater distributaries channel crotch, and mostly lenticular in isolation with bad horizontal and good vertical connectivity. The distribution of sand body structure of stable sheet thin layer is closer to land outside of the front delta with thin sheet presented sand body, good lateral connectivity and poor vertical connectivity; the distribution of sand body structure of unstable sheet thin layer is often in the provenance intersection area, which is away from the source and vertical source direction, with small sand body thickness, low sandstone percentage, poor lateral and vertical connectivity, which is often developed in the end of delta front or front delta area with stronger heterogeneity.
     Combined with the basic data of drilling, stratification, fault and so on, this thesis use Petrel modeling software to establish the structure model, the sedimentary facies model and physical property parameter model of Bidian district. In the process of establish model of physical parameters, this thesis choose the deterministic modeling and phased stochastic modeling. Through results, the phased stochastic modeling effect is better, while the simulation results high reliability in study area.
     Taking Bidian district as a example, the thesis does research on the existing production situation of the outer delta front reservoir. This thesis concludes that, the oiliness of sand body of the delta front is not so good, and the development effect is poor, productivity is low, composite water cut is rising fast, due to poor property.
     According to the actual production performance data, considering fluid producing strength, capacity evaluation and production decline analysis of genesis assembly types of different sand bodies, this thesis believe that the difference of sand bodies of different combination types in delta exo-front facies is obvious. The sedimentary sand bodies of mouth bar-underwater distributary channel endings and mouth bar-far sand dam combination types are thick whose property is good. In dynamic development process, its development effect is obviously better than that of overlying sand body in the far sand dam of which the fluid producing strength is relatively bigger, initial capacity is relatively higher, the time of stable production is relatively longer and the initial decline rate is relatively lower.
引文
[1]孙永传,李蕙生.碎屑岩沉积相和沉积环境[M].北京:地质出版社,1986.
    [2]姚光庆,马正,赵彦超,等.浅水三角洲分流河道砂体储集层特征[J].石油学报,1995,16(1):24-30.
    [3]吕晓光,李长山,蔡希源,等.松辽大型浅水湖盆三角洲沉积特征及前缘相储集层结构模型[J].沉积学报,1999,17(4):572-576.
    [4]Frideman G M, Sanders J E. Principles of Sedimentology [M]. New York: John Wiley,1978: 5-121.
    [5]Andrew D, Miall Reconstructing the architecture and sequence stratigraphy of the preserved fluvial record as a tool for reservoir development: a reality check [J]. AAPG Bulletin,2006, 90:989-1002.
    [6]杨道庆,邱荣华,赵追,等.泌阳凹陷北部下切谷——低位扇沉积体系及其油气勘探意义[J].石油地球物理勘探,2002,37(5):485-490.
    [7]薛红兵,彭勇民,朱如凯,等.泌阳凹陷毕店地区核桃园组浊积扇薄砂体沉积特种及横向预测[J].石油地质,2008,(1):28-33.
    [8]丁艳红,靳玲,夏东领,等.泌阳凹陷东南部浅层系地质特征及有利区块分析[J].河南石油,2002,16(1):7-9.
    [9]陈文学,姜在兴,鲜木忠.层序地层学与隐蔽圈闭预测——以河南泌阳凹陷为例[M].北京:石油工业出版社,2001,101-113.
    [10]田小敏,赵亮,朱清奇.古城油田中南部断块研究与增储潜力分析[J].河南石油,1995,9(2):5-8.
    [11]邱荣华,李纯菊,郭双亭.泌阳凹陷三类三角洲沉积特征及储集性能[J].石油勘探与开发,1994,21(1):99-105.
    [12]朱颜,张伊琳,黄生娣,等.泌阳凹陷毕店地区油藏特征浅析[J].四川地质学报,2011,31(4):417-419.
    [13]Gllbert, G. K., Lake Bonneville[M]. U.S. Geol. Surv. Monogr.1.1890.
    [14]Bates, C. C., Rationl theory of delta formation[J]. AAPG. Bulletin,1953,37.
    [15]W. Nemee, R.J. Steel, Fan Deltas:Sedimentology and Teetonic Settings,1988, Blaekie.
    [16]Munir Zaman, River Basin Development[M]. Tyeooly, International Publishing,1983.
    [17]Klein, G. Dev, Current aspects of basin analysis[J]. Sediment. Geol.,1987,50:95-118.
    [18]S. Cloetingh, Basin analysis and dynamics of sedimentary basin evolution an introduction[J]. Sedimentary Geology,1993,86.
    [19]Coleman J M, Prior D B, Deltaic Environments of Deposition In:Schelle P A, Spearing D(ed.), Sandstone Depositional Environments,1981, AAPG, TULSA Oklaham,7401, USA.
    [20]Farguharson. G W, Laeustrine Deltas in a Mesozoic Alluvial Sequence from Camp Hill, 1982, Antarctica.
    [21]Miall A D, Facies Architecture in Clastic Sedimentary Basin. In:Kleinspeh K L, Paola C(eds). New perspectives in Basin Analysis.1988, New York: Springer-Verlag,67-81.
    [22]Weber K J and Van Geuns L C. Framework for constructing clastic reservoir rsimulation models.1990. JPT 1248-1297.
    [23]Jens Peter V. Hansen, Erik S. Rasmussen. Structural, Sedimentologic, And Sea-Level Controls On Sand Distribution In A Steepclinoform Asymmetric Wave-Influenced Delta: Miocene Billund Sand, Eastern Danish North Sea And Jylland[J]. Journal of Sedimentary Research,2008,130-146.
    [24]Richard G. Hoy, Kenneth D. Ridgway. Sedimentology and sequence stratigraphy of fan-delta and river-delta deposystems, Pennsylvanian Minturn Formation, Colorado[J]. AAPG Bulletin,2010,1169-1191.
    [25]Douglas A. Edmonds, John B. Shaw, David Mohrig. Topset-dominated deltas:A new model for river delta stratigraphy [J]. Geology,2011,1175-1178.
    [26]Szczepan J. Pore, Bski, Ronald J. Steel. deltas And Sea-Level Change[J]. Journal of Sedimentary Research,2006,390-403.
    [27]Keumsuk Lee, M. Royhan Gani, George A. McMechan, et al. Three-dimensional facies architecture and three-dimensional calcite concretion distributions in a tide-influenced delta front [J]. AAPG Bulletin,2007,191-241.
    [28]Jens Peter V. Hansen, Erik S. Rasmussen. Planform And Facies Variability In Asymmetric Deltas:Facies Analysis And Depositional Architecture Of The Turonian Ferron Sandstone In The Western Henry Mountains, South-Central Utah, U.S.A. [J]. Journal of Sedimentary Research,2010,455-479.
    [29]Sarbani Patranabis Deb, Asru Kumar Chaudhuri. A retreating fan-delta system in the Neoproterozoic Chattisgarh rift basin, central India: Major controls on its evolution[J]. AAPG Bulletin,2007,785-808.
    [30]Havard D. Enge, John A. Howell, Simon J. Buckley. The Geometry And Internal Architecture Of Stream Mouth Bars In The Panther Tongue And The Ferron Sandstone Members, Utah, U.S.A. [J]. Journal of Sedimentary Research,2010,1018-1031.
    [31]Cornel Olariu, Janok P. Bhattacharya. Terminal Distributary Channels And Delta Front Architecture Of River-Dominated Delta Systems[J]. Journal of Sedimentary Research,2006, 212-233.
    [32]Keumsuk Lee, Robert Szerbiak, George A. McMechan, et al. A 3-D ground-penetrating radar and wavelet transform analysis of the morphology of shoreface deposits in the Upper Cretaceous Ferron Sandstone Member, Utah[J]. AAPG Bulletin,2009,181-201.
    [33]Cornel Olariu, Ronald J. Steel, Andrew L. Petter. Delta-front hyperpycnal bed geometry and implications for reservoir modeling: Cretaceous Panther Tongue delta, Book Cliffs, Utah[J]. AAPG Bulletin,2010,819-845.
    [34]M. Royhan Gani, Janok P. Bhattacharya. Basic Building Blocks and Process Variability of a Cretaceous Delta: Internal Facies Architecture Reveals a More Dynamic Interaction of River, Wave, and Tidal Processes Than Is Indicated by External Shape[J]. Journal of Sedimentary Research,2007,284-302.
    [35]Keumsuk Lee, Xiaoxian Zeng, George A. McMechan, et al. A ground-penetrating radar survey of a delta-front reservoir analog in the Wall Creek Member, Frontier Formation, Wyoming[J]. AAPG Bulletin,2005,1139-1155.
    [36]胡见义,等.中国陆相石油地质理论基础[M].北京:石油工业出版社,1991.
    [37]裘亦楠,等.湖盆三角洲分类的探讨[J].石油勘探与开,1982,1:1-10.
    [38]何治亮.湖盆三角洲分类的初步探讨[J].石油与天然气地质,1986,4(7):395-403.
    [39]Cross T A. Controls on coal distribution in transgressive-regressive cycle, Upper Cretaceous, Western Interior, U S A.[A]. In: Wilgus C K, Posamentier H W, Ros s C A, et al eds. Sea-level changes:an integrated approach, SEPM special publication 42[M]. Tulsa, OK: SEPM,1980.371-380.
    [40]邓宏文.美国层序地层研究中的新学派——高分辨率层序地层学[J].石油与天然气地质,1995,16(2):87-97.
    [41]姚光庆,蔡忠贤.油气储层地质学原理与方法[M].武汉:中国地质大学出版社,2005.
    [42]Miall A. D. Architectural-element analysis a new method of facies analysis applied to fluvial deposits[J]. Earth Sciences Rewiew,1985,261-308.
    [43]Haszeldine R S. Muddy deltas in freshwater lake, and tectonism in the Upper Carboniferous coal field of NE England. Sedimentology,1984,31(6):811-822.
    [44]Haldorsen H. H, Damsleth E. Challenges in Reservoir Characterization[J]. AAPG,1994, 77(4):71-73.
    [45]何义中,郑荣才,吴朝容.湖泊三角洲研究的回顾与展望[J].岩相古地理,1999,19(3):40-41.
    [46]王多云,陈应泰,徐洪生.受周期性湖平面升降控制的冲积扇扇三角洲沉积体系:柴达木盆地阿尔金山前西段干柴沟组[J].沉积学报,1991,20(4):43-48.
    [47]王峰,王多云,高明书,等.陕甘宁盆地姬塬地区三叠系延长组三角洲前缘的微相组合及特征[J].沉积学报,2005,23(2):218-223.
    [48]李凤杰,王多云,郑希民,等.陕甘宁盆地华池地区延长组缓坡带三角洲前缘的微相构成[J].沉积学报,2002,20(4):582-586.
    [49]李凤杰,王多云,宋广寿等.陕甘宁盆地坳陷型湖盆缓坡带三角洲前缘短期基准面旋回与储层成因分析[J].沉积学报,2004,22(1):73-78.
    [50]李凤杰,王多云.坳陷湖盆三角洲前缘沉积微相构成及其分带性——以鄂尔多斯盆地上三叠统延长组为例[J].天然气地质科学,2006,17(6):775-778.
    [51]李凤杰,蒋斌,赵俊兴.鄂尔多斯坳陷湖盆缓坡型三角洲前缘沉积微相分带及成因分析——以定边-安边地区延长组长6油组为例[J].矿物岩石,2008,28(3):111-117.
    [52]吕晓光,于洪文,田东辉,等.高含水后期油田细分单砂层的地质研究[J].新疆石油地质,1993,14(4):345-349.
    [53]吕晓光,李长山,蔡希源,等.松辽大型浅水湖盆三角洲沉积特征及前缘相储层结构模型[J].沉积学报,1999,17(4):572-577.
    [54]吕晓光.非均质多层砂岩油田开发后期储层建模研究[D].北京:中国地质大学(北京),2000.
    [55]张昌民,何贞铭,王振奇,等.不平坦的三角洲前缘席状砂——来自露头和地下的证据[J].江汉石油学院学报,2003,25(3):1-4.
    [56]焦养泉,李思田,杨士恭,等.湖泊三角洲前缘砂体内部构成及不均一性露头研究[J].地球科学——中国地质大学学报,1993,18(4):441-449.
    [57]Donaldson A C. Pennsylvanian sedimentation of central Appalachians[J]. Spec. Pap. Geo.l Soc.Am,1974,148:47-78.
    [58]Home J C, Ferm J C, Baganz B P. Depositional models in coal exploration and miner planning in Appalachian region[J]. AAPG,1976,62(12):2377-2411.
    [59]J. M. Coleman, H. H. Roberts, S. P. Murray, M. Salama. Morphology and dynamic sedimentology of the eastern Nile Delta shelf[J]. Marine Geology,1981,301-326.
    [60]夏文臣,雷建喜,王超勇.鄂尔多斯盆地南部延安组水下分流河道型湖泊三角洲体系的沉积构成[J].地球科学——中国地质大学学报,1991,16(2):219-228.
    [61]楼章华,袁笛,金爱民等.松辽盆地北部浅水三角洲前缘砂体类型、特征与沉积动力学过程分析[J].浙江大学学报(理学版),2004,31(2):211-215.
    [62]Allen, J. R. L. Studies in fluviatil esedimentation:bars, bar complexes and sandstone sheets (low-sinuosity braided streams) in the Brownstones (L. Devonian), Wels Borders. Sediment. Geol.1983.33:237-293.
    [63]王家豪,陈红汉,江涛,等.松辽盆地新立地区浅水三角洲水下分流河道砂体结构解剖[J].地球科学——中国地质大学学报,2012,37(3):556-564.
    [64]Home J C, Ferm J C, Baganz B P. Depositional models in coal exploration and miner planning in Appalachian region[J]. AAPG,1976,62(12):2377-2411.
    [65]郭佳,邓宏文,王红亮.松南西斜坡三角洲前缘——滑塌浊积岩沉积相及展布规律[J].地球科学——中国地质大学学报,2011,36(6):1095-1104.
    [66]张关龙,陈世悦,鄢继华,等.三角洲前缘滑塌浊积体形成过程模拟[J].沉积学报,2006,24(1):50-53.
    [67]鄢继华,陈世悦,宋国奇,等.三角洲前缘滑塌浊积岩形成过程初探[J].沉积学报,2004,22(4):573-576.
    [68]鄢继华,陈世悦,姜在兴.三角洲前缘浊积体成因及分布规律研究[J].石油实验地质,2008,30(1):16-19,25.
    [69]姜在兴,张乐,吝文,等.孤南洼陷古近系沙三段中亚段可容空间转换系统研究[J].地 学前缘,2008,15(2):26-34.
    [70]Miall A. D. Architectural-element analysis a new method of facies analysis applied to fluvial deposits[J]. Earth Sciences Review,1985,261-308.
    [71]Miall A. D. Reservoir heterogeneities in fluvial sandstone Lessons from outcrop studies[J]. AAPG,1988,72(6):682-697.
    [72]Douglas W. J, Wayne A.P.H ierarchical levels of heterogeneity in a Mississippi river meander belt and application to reservoir systems[J]. AAPG,1992,76(10):1601-1624.
    [73]田建锋,陈振林,杨永利,等.下二门油田上层系三角洲前缘砂体成因组合和分布规律[J].石油地质与工程,2008,22(5):18-21.
    [74]李祺,陈振林,田建锋,等.南襄盆地泌阳凹陷下二门油田核二段沉积微相研究[J].岩性油气藏,2007,19(3):68-72.
    [75]李凤杰,王多云,王峰,等.坳陷湖盆三角洲前缘储层砂体成因研究[J].石油实验地质,2007,29(1):63-68,94.
    [76]陈昭佑,王光强.鄂尔多斯盆地大牛地气田山西组砂体组合类型及成因模式[J].石油与天然气地质,2010,31(5):632-639.
    [77]田景春,陈高武,窦伟坦,等.湖泊三角洲前缘砂体成因组合形式和分布规律—以鄂尔多斯盆地姬塬白豹地区三叠系延长组为例[J].成都理工大学学报(自然科学版),2004.31(6):636-639.
    [78]田景春,隆昊,苏楠,等.鄂尔多斯盆地白豹—华池地区长6-3厚层块状砂岩成因[J].成都理工大学学报(自然科学版),2010,37(4):359-365.
    [79]Tian JC, Wu Q, Wang F, et al. Research on development factors and the deposition Model of large area reservoir sandstones of He8 section of Xiashihezi Formation of Permian in Ordos basin[J]. Acta Petrologica Sinica,2011,27(8):2403-2412.
    [80]刘自亮,王多云,王峰,等.陕甘宁盆地西峰油田主要产层储油砂体沉积微相组合及特征[J].沉积学报,2005.23(2):248-254.
    [81]刘自亮.三角洲前缘储集砂体的成因组合与分布规律——以松辽盆地大老爷府地区白垩系泉头组四段为例[J].沉积学报,2009,27(1):32-38.
    [82]王峰,王多云,高明书,等.陕甘宁盆地姬塬地区三叠系延长组三角洲前缘的微相组合及特征[J].沉积学报,2005.23(2):218-223.
    [83]Harris D. G. The role of geology in reservoir simulation studies[J]. JPT.1975,27:625-632.
    [84]Shanmugam G.50 years of the turbidite paradigm (1950s-1990s):deepwater processes and facies models-a critical perspective[J]. Marine and Petroleum Geology,2000,17:285-342.
    [85]Paul Mcleod, Steven Carey,.Stephen R, Sparks J. Behavior of particle laden flows into the ocean: experimental simulation and geological implication. Sedimentology,1999,46: 523-536.
    [86]Patrice E, Carbonneau, Normand Bergeron E. The effect of bedload transport onmean and turbulent flowproperties. Geomorphology,2000,35:267-278
    [87]毛超林.松辽盆地南部长岭凹陷高台子油层三角洲前缘砂体储层特征评价[D].中国 地质大学(北京)博士学位论文,2006.
    [88]李宇志,毕明威,刘惠民,等.沙三中亚期东营三角洲前缘滑塌浊积岩定量预测[J].地学前缘(中国地质大学(北京);北京大学),2012,19(1):146-155.
    [89]杨会东,刘万洙,单玄龙,等.宋辽盆地南部西部斜坡带三角洲前缘中沉积微相识别标志及应用[J].世界地质,2005,24(1):43-47.
    [90]刘自亮,王多云,李凤杰,等.鄂尔多斯盆地西峰油田主要储层砂体的成因与演化[J].地质科技情报,2008,27(2):68-72.
    [91]郭亚杰.杏南开发区外前缘相砂体沉积类型及非均质性描述研究[D].浙江大学硕士学位论文,2010.
    [92]于润涛.大庆油田萨中开发区高含水期地质储量精细计算方法研究[D].大庆石油学院博士学位论文,2006.
    [93]王元庆,杜庆龙,刘志胜,等.三角洲前缘相储层沉积特征及剩余油分布研究[J].大庆石油地质与开发,2002.21(5):27-29.
    [94]裘亦楠.石油开发地质方法论(一)[J].大庆石油地质与开发,1996.23(2):43-47.
    [95]裘亦楠.石油开发地质方法论(二)[J].大庆石油地质与开发,1996.23(3):48-51.
    [96]裘亦楠.石油开发地质方法论(三)[J].大庆石油地质与开发,1996.23(4):42-45.
    [97]赵翰卿,付志国,吕晓光,等.大型河流——三角洲沉积储层精细描述方法[J].石油学报,2000.21(4):109-113.
    [98]张昌民,何贞铭,王振奇,等.不平坦的三角洲前缘席状砂——来自露头和地下的证据[J].江汉石油学院学报,2003.25(3):1-4.
    [99]胡玉双,张明学.松辽盆地梨树断陷沉积演化规律及层序地层学模式[J].大庆石油学院学报,1999.23(1):5-7.
    [100]马世忠,葛政俊,王继平,等.远砂坝能量相单元沉积模式及流动单元划分[J].大庆石油学院学报,2006.30(2):9-12.
    [101]马世忠,吕桂友,闫百泉,等.河道单砂体建筑结构控三维非均质模式”研究[J].地学前缘(中国地质大学(北京);北京大学),2008.15(1):57-64.
    [102]张雁,蔺景龙,朱炎,等.大庆杏南地区葡Ⅰ组三角洲前缘储层的非均质性[J].现代地质,2008.22(5):810-816.
    [103]朱筱敏,董艳蕾,胡廷惠,等.精细层序地层格架与地震沉积学研究——以泌阳凹陷核桃园组为例[J].石油与天然气地质,2011.32(4):615-624.
    [104]陈文学,朱水安,秦秉操,等.南阳凹陷张店油田二次勘探及认识[J].石油勘探与开发,2002.29(6):64-66.
    [105]张明安,鲜本忠.层序地层学在泌阳凹陷隐蔽油藏预测中的应用[J].石油实验地质,2003.25(4):395-398.
    [106]Zhu Xiaomin, Liu Changli, Zhang Yina, et al. On seismic sedimentology of lacustrine deltaic depositional systems[J]. Acta Sedimentologica Sinica,2009,27(5):19-25.
    [107]朱水安,李纯菊,陈永正,等.泌阳凹陷双河水下扇的沉积特征[J].沉积学报.1983,4,(1):11-16.
    [108]李纯菊.对泌阳凹陷核桃园组沉积环境的初步认识[R].河南油田石油勘探研究院(内部资料).1980.
    [109]李纯菊,陈永正.南阳凹陷下第三系核桃园组沉积环境分析[R].河南油田石油勘探研究院(内部资料).1981.
    [110]邱荣华.泌阳凹陷北部斜坡油气富集条件及油藏类型[J].石油与天然气地质,1990,11(2).
    [111]邱荣华,李纯菊,钟俊娴,等.泌阳凹陷核桃园组储层特征及评价[R].河南油田勘探研究报告集第四集(内刊).1990.
    [112]王寿庆.双河油田Ⅶ油组油藏地质特征[J].石油勘探与开发.1985,12(2):40-46.
    [113]王寿庆,苟光汉,侯方浩,等.双河油田Ⅶ油组砂岩的孔隙演化和次生储集空间[J].石油勘探与开发.1986,13(1):42-49.
    [114]敬国超.双河油田Ⅴ-Ⅸ油组油藏地质研究[R].河南油田勘探研究报告集第一集(内刊).1987.
    [115]贾振远,孙永传.泌阳凹陷下第三系核桃园组白云岩系沉积环境及储集性能[R].武汉地质学院石油系.河南油田勘探研究(内刊).1986.
    [116]林社卿,李连生,白振瑞,等.泌阳凹陷复杂断块群油藏特征及勘探技术[J].河南石油.2002,16(3):12-14.
    [117]任建业,张俊霞.低角度正断层的形成模式[J].地质科技情报.1995,14(3):9-13.
    [118]Catumeanu, O., Abreub, V., Bhattacharya, J.P., et al. Towards the standardization of sequence stratigraphy[J]. Earth-Science Reviews,2009,92(1-2):1-33.
    [119]Galloway W E. Genetic stratigraphic sequences in basin analysis Ⅰ: architecture and genesis of flooding -surface bounded depositional units[J]. AAPG 1989,73:125-142.
    [120]纪友亮,张世奇,张宏,等.层序地层学原理及层序成因机制模式[M].北京:地质出版社,1998.
    [121]池英柳,张万选,张厚福,等.陆相断陷盆地层序成因初探[J].石油学报,1996,17(3):19-25.
    [122]冯有良,李思田,解习农.陆相断陷盆地层序形成动力学及层序地层模式[J].地学前缘,2000,7(3):119-132.
    [123]Van Wagoner J C, Mitchum R M, Campion K M, et al. Siliciclastic sequences stratigraphy in well logs, cores and outcrops:concepts for high-resolution correlation of time and facies[J]. AAPG Methods in Exploration Series,1990,7:1-57.
    [124]Cross T A.Stratigraphic controls on reservoir attributes in continental strata[J].Earth Science Frontiers,2000,7 (4):322-350.
    [125]Posamentier H W, Weimer P. Siliciclastic sequence stratigraphy and petroleum geology-where to from here[J]. AAPG Bulletin,1993,77 (5):731-742.
    [126]赵追.南襄盆地泌阳凹陷层序地层与隐蔽油气藏研究[D].四川:成都理工大学博士学位论文,2002.
    [127]郑荣才,文华国,梁西文.鄂尔多斯盆地上古生界高分辨率层序地层分析[J].矿物岩 石,2002,22(4):66-74.
    [128]温志新.泌阳凹陷南部陡坡带砂砾岩体成因分布与油气聚集[D].北京:中国地质大学(北京)博士学位论文,2006.
    [129]陈春强,张亚中,吴丽艳,等.安棚油田扇三角洲沉积微相特征与油气分布[J].新疆石油地质,2005,26(5):529-532.
    [130]董荣鑫,苏美珍,近岸水下冲积扇相特征及实例[J].石油实验地质,1985,7(4).
    [131]张建光,姚光庆,陈亚兵,等.南襄盆地泌阳凹陷深水湖底扇厘定及碎屑锆石U-Pb年代学物源追踪[J].地球科学——中国地质大学学报,2011,36(6):1105-1118.
    [132]邓万友.扇三角洲前缘储层描述及地质建模研究——以泌阳凹陷双河油田核三段储层为例[D],大庆石油学院博士学位论文,2008.
    [133]余功铭.泌阳凹陷核三下段沉积相及有利砂体预测研究[D],中国地质大学(北京)博士学位论文,2008.
    [134]鲜本忠,姜在兴,操应长,等.泌阳凹陷东南部下切谷的发现及其意义[J].石油与天然气地质,2001,22(4):304-308.
    [135]鲜本忠,姜在兴,高凤珍.河南泌阳凹陷古近系核桃园组核二段沉积体系[J].古地理学报,2002,4(2):31-36.
    [136]林社卿,李连生,白振瑞,等.泌阳凹陷复杂断块群油藏特征及勘探技术[J].河南石油,2002,16(3):12-14.
    [137]孙尚如.泌阳凹陷湖相白云岩层序地层学分析[J].西北地质,2004,37(1):302-307.
    [138]樊中海,杨振峰,张成,等.高精度层序地层格架在扇三角洲体系储层精细对比中的应用——以泌阳凹陷赵凹油田为例[J].地质科技情报,2005,24(2):33-38.
    [139]陈亮,王华,韩晋阳,等.泌阳凹陷下二门地区南部核三上亚段层序地层特征及地层-岩性圈闭预测[J].石油勘探与开发,2006,33(1):262-267.
    [140]温志新,王红漫,陈春强,等.南襄盆地泌阳凹陷南部陡坡带隐蔽油气藏形成与分布[J].石油实验地质,2006,28(2):117-121.
    [141]陈萍.泌阳凹陷陡坡带砂砾岩体预测[J].石油勘探与开发.2006,33(2):198-200.
    [142]彭勇民,黄捍东,罗群,等.泌阳凹陷毕店地区核三段湖底扇与重力流沉积[J].岩石矿物学杂志,2008,27(1):32-38.
    [143]吕晓光,张永庆,陈兵,等.深度开发油田确定性与随机建模结合的相控建模[J].石油学报,2004,25(5):60-64.
    [144]吴胜和,李宇鹏.储层地质建模的现状与展望[J].海相油气地质,2007,12(3):53-60.
    [145]陈欢庆,朱筱敏.精细油藏描述中的沉积微相建模进展[J].地质科技情报,2008,27(2):73-79.
    [146]Matthew, J P, Amanda, I, Ellison, R D, et al. Analysis and modeling of intermediate scale reservoir heterogeneity based on a fluvial point-bar outcrop analog Williams Fork Formation, Piceance Basin, Colorado[J]. AAPG Bulletin,2007,91(7):1025-1051.
    [147]Ranie, L, Elizabet, H H. Conceptual model for predicting mudstone dimensions in sandy braided river reservoirs [J]. AAPG Bulletin,2006,90(8):1273-1288.
    [148]Chia, G, Gilesb, P S, Williamson, M A. Diagenetic history and porosity evolution of Upper Carboniferous sandstones from the Spring Valley #1 well, Maritimes Basin, Canada-implications for reservoir development[J]. Journal of Geochemical Exploration,2003,80: 171-191.
    [149]Chowdhury, A H, Noble, J P A. Origin, distribution and significance of carbonate cements in the Albert Formation reservoir sandstones, New Brunswick, Canada[J]. Marine and Petroleum Geology,1996,13(7):837-846.
    [150]王家华,张团峰.油气储层随机建模[M].北京:石油工业出版社,2001.
    [151]尹艳树,吴胜和,张昌民,等.用多种随机建模方法综合预测储层微相[J].石油学报,2006,27(2):68-71.
    [152]陈欢庆,朱筱敏.精细油藏描述中的沉积微相建模进展[J].地质科技情报,2008,27(2):73-79.
    [153]于兴河.油气储层表征与随机建模的发展历程及展望[J].地学前缘,2008,15(1):1-15.
    [154]朱蓉,楼章华,金爱民,等.塔河油田S48缝洞单元流体分布及开发动态响应[J].浙江大学学报(工学版),2009,43(7):13-48.
    [155]樊友宏,李跃刚.河流相储层产能评价方法研究[J].天然气工业,2005,25(4):100-102.
    [156]王元庆,杜庆龙,刘志胜,等.三角洲前缘相储层沉积特征及剩余油分布研究[J].大庆石油地质与开发,2002,21(5):27-29.
    [157]赵春明,胡景双,霍春亮,等.曲流河与辫状河沉积砂体连通模式及开发特征——以渤海地区秦皇岛32-6油田为例[J].油气地质与采收率,2009,16(6):88-91.
    [158]张筠,葛祥.神经网络技术在气田产能评价中的应用[J].测井技术,2001,25(1):53-56.
    [169]俞启泰.七种递减曲线的特征研究[J].新疆石油地质,1994,15(1),49-55.
    [160]计秉玉.产量递减方程的渗流理论基础[J].石油学报,1995,16(3):86-91.
    [161]Fraim ML, Wattenbarger R A. Gas reservoir decline-curve analysis using type curves with real gas pseudopressure and normalized time[J]. SPE Formation Evaluation,1987, (4): 671-682.
    [162]Levine, J. S. and Prats, M. The calculated Performance of Solution-Gas-Drive Reservoirs [J]. SPEJ (1961):Trans AIME,222.
    [163]Bailcy, W. Optimized Hyperbolic Decline Curve analysis of Gas Well[J]. Oil & Gas J, 1982.
    [164]McNulty, R. R. and Knapp, R. M. Statistical Decline-Curve Analysis[J]. SPE10279.
    [165]Towler, B. and Bansal, S. Hyperbolic Decline-Cure Analysis Using Linear Regression[J]. J. Pet. Sei & Eng,1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700