用户名: 密码: 验证码:
水作用下地裂缝成因机制及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是地裂缝形成及加剧发展的重要因素,这是大家所公认的,但是关于其具体的作用机制问题,一直以来却争议颇多。究其原因,一方面是水土相互作用的机理很复杂,二是各个地区地质环境条件各异。开展水作用下的地裂缝综合成因机制的研究,具有重要的科学意义和社会价值。
     本文所作的主要工作,一是对水土相互作用的类型及模式进行了分析,总结了水作用下土体物质流动、物理力学性质和地质环境场变化的成因机制;二是分别采用理论分析、数值模拟等方法对水作用下地裂缝的成因机理进行了研究;三是结合西安地裂缝、三原双槐树村地裂缝的实例分析,验证了理论模型的正确性,并对一些传统的认识进行了科学的解释。
     主要的工作及创新性成果如下:
     (1)基于随机介质理论对抽水沉降致裂机理进行了研究,结果表明由于抽水作用将在沉降中心区形成挤压区、在沉降边缘区形成张拉区,张拉区的应变在地面沉降漏斗的曲率变化最大处达到最大值,从而引起自上而下发展的张性地裂缝。
     (2)采用考虑偶应力的Mohr-Coulomb理论对抽水致裂机理进行了分析,结果表明抽水作用下产生的差异沉降,将会在土体单元中产生附加偶应力的作用,该作用使得单元应力呈现非对称的特点,从而使得强度曲线中的摩尔圆偏转,加大了土体剪切破坏的可能,从而在土体中形成剪切地裂缝。
     (3)首次采用基于弱面破坏和塑性滑动的理论对地裂缝活动进行了研究,结果表明具有先期断裂存在的地裂缝在抽水等扰动力的作用下,由于弱面抵抗变形和破坏的能力差,断裂容易再次破坏并沿破裂面发生滑移,该效应是西安这类具有先期隐伏断裂的地裂缝形成及发展的最主要因素。
     (4)通过建立考虑水土耦合作用并考虑先期断裂的数值计算模型,作者模拟计算了单裂隙抽水作用下的发展过程,并对其影响因素进行了敏感性分析计算,结果表明先期断裂对地面沉降具有诱导,隔离和放大的作用;地裂缝的强度参数内摩擦角和几何参数倾角对地裂缝活动的敏感性强。
     (5)通过对西安祭台村地裂缝段水文、地质、地貌等条件的分析,建立了考虑两条地裂缝的精细计算模型,计算结果与实际吻合较好。模型计算验证了很多问题,并取得了一些新认识:
     ①西安地裂缝与抽水作用直接相关,但其活动的主要因素是下伏断层控制作用下的弱面破坏和滑移效应,抽水沉降漏斗和地层差异导致的差异沉降只是次要的因素;
     ②西安的梁洼地貌对地裂缝的发展有一定的影响,梁洼相对高差大的先期发展要快一些,但总的量值相差不大。
     (6)浅表水作用下地裂缝的形成机制包括黄土湿陷致裂机制、冲蚀溶蚀致裂机制、水压致裂机制、失水收缩开裂机制等,三原双槐树村地裂缝暴雨开裂的分析表明,该地裂缝是在隐伏地裂缝的优势控水作用(包括阻水、截水作用,导水与强渗水作用)下,暴雨时引起的劈裂效应,冲刷效应和拖曳牵引效应的综合作用而造成的。
It is accepted that water is the most important factor to the formation and development of the ground fissures. But the specific mechanism is a controversial question. The reasons are the complex mechanism of water-soil action and different geological environmental conditions. It has important scientific significance and social value to carry out the research on the comprehensive formation mechanism of the ground fissures by the action of water.
     In this paper, the main works done are as follows. Firstly, the types and modes of water-soil action are studied. Formation mechanism of the flow of soil material and the changes of physico-mechanical properties and geological environment are summaried. Secondly, formation mechanism of the ground fissures under the role of water is researched by theoretical analysis and numerical simulation. Thirdly, through analysizing the ground fissures in xi'an city and shuanghuaishu village of sanyuan, the validity of theoretical mode is verified. And some traditional understandings are explained scientificly.
     The main work and innovative results are as follows:
     (1) Based on the theory of random medium, the ground fissures caused by extractive are studied. The results show that the crush zone would be formed in settlement central area and the tension zone would be formed in settlement fringe area owing to extractive function. The strain of tension area in the biggest curvature change of the subsidence funnel reaches the maximum value, so the tension-cracks are developed from top to bottom.
     (2) Based on the theory of Mohr-Coulmb considering the accidentally stress, the ground fissures caused by extractive are studied. The results show that different subsidence produced under the action of extractive would generate additional couple stress role in the soil mass unit. The role makes the unit stress present the asymmetric feature and causes the Mohr-round to deflect. The possibility of soil shear failure is increased and the shear-cracks are developed.
     (3) Based on the theory of damage of weak surface and plastic sliding, activities of the ground fissures are researched firstly. The results show that the ground fissures developed on the basis of early fractures are very easy to damage again and to slide along the fracture surface under the action of extractive and other disturbing forces, because the ability of weak surface to resistant deformation and failure is poor. The effect is the main factor to the formation and development of the ground fissures developed on the basis of early fractures in xi'an city.
     (4) Through the establishment of numerical calculation model considering water-soil coupling and the prior fracture, the author simulates the development of single fissure under the action of extractive and analyzes the sensitivity of influence factors. The results show that the prior fracture has effect of induction, isolation and enlargement. And the parameters of ground fissures, such as internal friction angle and dip angle, are sensitive strongly to the activities of the ground fissures.
     (5) Through the analysis of hydrology, geology, geomorphic conditions of the ground fissure in jitai village of xi'an city, the author establishes a fine calculation model including two ground fissures.The calculation results are in good agreement with the actual. Model calculation verifies many problems and some new understandings are achieved:
     ①The activities of ground fissures in xi'an city are relate to extractive directly. But the main activities are the damagement of weak surface and slippage effect under the control of subjacent faults. Descend funnel by extractive and different subsidence caused by stratigraphic differences are just the minor factors.
     ②Ridge-depression physiognomy in xi'an has certain effection to the development of ground fissures. The big relative elevation of ridge-depression physiognomy develops quickerly in advance, but they have little difference in the total magnitudes.
     (6) The formation mechanism of ground fissures by the action of superficial water includes failure mechanism caused by collapse of loess, failure mechanism caused by erosion and corrosion, failure mechanism caused by hydraulic pressure, failure mechanism caused by water loss shrinkage, and so on. Through analysizing the ground fissures in shuanghuaishu village of sanyuan caused by rainstorm, the results show that the ground fissures caused by the comprehensive function of fracturing effect, scouring effect, drag traction effect during rainstorm under preponderant controlling role of concealed ground fissures, incuding water-blocking and water-interception role, permeability and strong seepage role.
引文
[1]李永善.西安地裂缝[M].地震出版社.1986.
    [2]张家明.西安地裂缝研究.西北大学出版社[M].1990.
    [3]李永善等.西安地裂及渭河盆地活动断层研究[M].地震出版社.1992.
    [4]彭建兵等.渭河盆地活动断裂与地质灾害[M].西北大学出版社.1992.
    [5]王景明等著.地裂缝及其灾害的理论与应用[M].西安:陕西科学技术出版社.2000.
    [6]王景明.黄土构造节理的理论及其应用[M].水利水电出版社.北京:1996.
    [7]武强,陈佩佩,张宇等.我国城市地裂缝灾害问题与对策[J].中国地质灾害与防治学报.2002,13(2):70-72.
    [8]徐光黎,张家明,佟永贺等.西安市地裂缝的时空预测预报[J].西北地震学报.1992,14(4):75-80.
    [9]索传郿,王德潜,刘祖植.西安地裂缝地面沉降与防治对策[J].第四纪研究.2005,,25(1):23-28.
    [10]陈志新,袁志伟,彭建兵等.渭河盆地地裂缝发育特征[J].工程地质学报.2007,15(4):441-447.
    [11]宋彦辉,彭建兵.卢全中等.山西地堑一类特殊的剪切—挤压形地裂缝[J].工程地质学报.2007,15(4):448-452.
    [12]玉明,彭建兵,李寻昌.山西清徐地裂缝灾害现状及类型分析[J].工程地质学报.2007,15(4):443-457.
    [13]卢全中,彭建兵,范文等.陕西三原双槐树村地裂缝的发育特征[J].工程地质学报.2007,15(4):458-462.
    [14]李新生.西安地裂缝场地工程地质勘察[J].工程地质学报.2000,08(增刊):17-19.
    [15]王景明,刘贯一,王春梅.我国地裂缝灾害对城乡建设的危害[J].国土资源与环境.2001,57(3):28-30.
    [16]王景明,王春梅,刘科.地裂缝及其灾害研究的新进展[J].地球科学进展.2001,16(3):303-313.
    [17]蒋金平.水在地裂缝形成过程中的作用[J].矿业世界.1998,(2):38-40.
    [18]谢广林.地裂缝[M],地震出版社.1988.
    [19]刘传正.环境工程地质学导论[M].地质出版社.1995.
    [20]卢积堂.河南省地裂缝,减灾与发展[M].地震出版社,1982.
    [21]彭建兵,范文,李喜安等.渭河盆地地裂缝成因研究中的若干关键问题[J].工程地质学报.2007,15(4):433-440.
    [22]姜振泉,武强,隋旺华.临汾地裂缝的成因及发育环境研究[M].中国矿业大学出版社.1999.
    [23]Pratt W.E., Jonhson D.W.. Local subsidence of the Goose Creek oil field[J]. The Geographical Journal,1926.34 (9):557-590
    [24]耿大玉,李忠生.中美两国的地裂缝灾害[J],地震学报,2000(4):433-441.
    [25]Jonhson D.W.. Pratt W.E.. A Local Subsidence of the Gulf Coast of Texas[J]. The Geographical Journal.1927.69(1):61-65
    [26]Minor, H.E.. Goose Creek oil field. Harris county, Texas[J]. Bull Am Assn Petr Geol,1925(9): 286-297
    [27]Snider L.C.. A suggested explanation for the surface subsidence in the Goose Creek oil and gas field[J]. Bull Am Assn Petr Geol,1927(11):729-745
    [28]Schumann, H.H., and Cripe, L.S., Land subsidence and earth fissures caused by groundwater depletion in southern Arizona, U.S.A.[A]. International Symposium on Land Subsidence[C], International Association of Scientific Hydrology Publication,1986:841-851.
    [29]Holzer, T.L., Gabrysch, R.K. Effect if Water-Level Recoveries on Fault Creep, Houston, Texas[J]. Ground Water.1987,25(4)4:392-397.
    [30]Jachens, R.C., Holzer, T.L. Differential compaction mechanism for earth fissures near Casa Grande, Arizona[J]. Geological Soc America Bulletin,1982:998-1012.
    [31]武强,陈佩佩.地裂缝灾害研究现状与展望[J].中国地质灾害与防治学报2003,14(1):22-27.
    [32]Leonard, R.J., An earth fissure in southern Arizona[J], Journal of Geology,1929,37(8):165-774.
    [33]Savage,J.C., L.M.Hastie, Surface deformation associated with dip slip faulting[J],J.Geophys.Res.,1966(71):4897.
    [34]Kreitler,C.W. Fault control of subsidence[J], Houston, Texas, Ground Water,1977,15(3):203.
    [35]Lippincott D K,Bredehoeft John D,Moyle Jr W R,et al.Recent movement on the carlock faultas suggested By waterlevel fluctuation in a well in Fremont valley,California[J].Journal of Geophysical Research,1985,90 (B2):1911-1924.
    [36]Carpenter, M.C., Earth-fissure movements associated with fluctuations in ground-water levels near the Picacho mountains, south-central Arizona,1980-1984, U.S.[A]. Geological Survey Professional Paper [C], Washington:United States Government Printing Office,1993, p497
    [37]Feth, J.H., Structural reconnaissance of the Red Rock quadrangle, Arizona:U.S.[R]. Geological Survey open-file report,32 p.,1951
    [38]Fletcher J E, Peterson H B. Piping:American Geophysical Union[J].Transaction,1954,35(2):258-262.
    [39]Lofgren BE. Land subsidence due to the application of water.Geological Society of America[J]. Reviews in Engineering Geology 11.1969:271-303.
    [40]Lofgren,B.E. Hydraulic stresses cause ground movement and fissures, Picacho, Arizona[J]. G.S.A. Abstract with Programs,1978,10(3):p113.
    [41]Lofgren,B.E. Earth cracks caused by horizontal stresses[J], EOS,1984,65:882-883.
    [42]Neal J T,L anger A M,Kerr P F,et al.Giant desiccationpolygons of great basin plays[J].Geological Society ofAmerican Bulletin,1968,79:69-90.
    [43]Schumann, H.H., and Poland, J.F., Land subsidence, earth fissures, and ground-water withdrawal in south-central Arizona, U.S.A.[A]., in Land subsidence:Tokyo International Association of Scientific Hydrology Publication[C],1970(1):295-302.
    [44]Herman Bouwer. Land Subsidence and Cracking Due to Ground-Water Depletion[J]. GROUND WATER.1977,15(5):358-364
    [45]Holzer, T.L., Ground failure in areas of subsidence due to ground-water decline in the United States[J].Proc.2nd Internat Symp. On Land Subsidence, Internat. Assoc. Sci. Hydrol.,Anaheim, Calif.,1984, Dec.13-17.
    [46]Holzer, T.L., Davis S.N., Lofgren B.E. Faulting caused by groundwater extraction in Southcentral Arizona[J], Journal of Geophysical Research,1979,84(2):603-612.
    [47]Holzer, T.L. Faulting Caused by Groundwate Level Declines,San Joaquin Valley, California[J]. WATER RESOURCES RESEARCH.1980,16(6):1065-1070.
    [48]Holzer, T.L. PreconsolidationS tresso f Aquifer Systems in Areas of Induced Land Subsidence[J]. WATER RESOURCES RESEARCH.1981,17(3):693-704.
    [49]Holzer, T.L, E. H. PAMPEYAN, Earth Fissures and Localized Differential Subsidence[J]. WATER RESOURCES RESEARCH,1981,17(1):223-227.
    [50]Holzer, T.L. Ground failure induced by groundwater withdrawal from unconsolidated sediments[J]. Reviews Engineering Geology,1984(6):67-105
    [51]William C. Haneberg,Charles B. Reynolds,Irene B. Reynolds. Geophysical Characterization of Soil Deformation Associated with Earth Fissures near San Marcial and Deming, New Mexico[J]. Land Subsidence (Proceedings of the Fourth International Symposium on Land Subsidence, May 1991). IAHS Publ. no.200,1991,271-280.
    [52]Bell, J.W., Price, J.G., and Mifflin, M.D., Subsidence-induced fissuring along preexisting faults in Las Vegas Valley, Nevada[J]. Proceedings, Association of Engineering Geologists,35th Annual Meeting, Los Angeles,1992,66-75.
    [53]Zhuping Sheng and Donald C.Helm.Conceptual models for earth fissuring in Las Vegas Valley,Nevada,USA[J]. Land Subsidence(Proceedings of the Fifth International Symposium on Land Subsidence,The Hague,October 1995). IAHS Publ. No.234,1995:381-387.
    [54]Donald C.Helm. Hydraulic forces that play a role in generating fissures at depth[J]. USGS Subsidence interest Group Conference, Edwards AFB, Antelope Valley,Nov.18-19,1992.
    [55]Zhuping Sheng, Donald C.Helm. Jiang Li, Mechanisms of earth fissuring caused by groundwater withdrawal[J]. The Geological Society of America,2003, Ⅸ(4):351-362.
    [56]JEFFREY R. KEATON, ROY J. SHLEMON. The Fort Hancock Earth Fissure System, Hudspeth County,Texas:Uncertainties and Implications. Land Subsidence (Proceedings of the Fourth International Symposium on Land Subsidence, May 1991). IAHS Publ. no.200,1991,281-290.
    [57]Rojas E. Arzate J. Arroyo M. A method to predict the group fissuring and faulting caused byregional groundwater decline[J]. Engineering Geology.2002(65):245-260
    [58]Ayalew L. Yamagishi H. Reik G. Ground cracks in Ethiopian Rift Valley:facts and uncertainties[J]. Engineering Geology,2004(75):309-324.
    [59]王辛,赵振才;西安地区的地壳形变及构造活动[J].地震.1984,(6).
    [60]王兰生,李天斌.赵其华.浅生时效构造与人类工程[M].北京:地质出版社,1994.
    [61]王兰生,赵其华.地裂缝、地面沉降灾害防治[J].169-173
    [62]赵其华,王兰生.构造重力扩展机制的地质力学模拟研究[J].工程地质学报.1995,(3):21-27.
    [63]刘国昌.西安地裂缝[J].西安地质学院学报.1986,(4).
    [64]Peng J B, Sun P, Li X An. Ground fissure:the major geological and environmental problem in the development of Xi'an city, China[J]. Environmental Science and Technology, American Science Press,2006:469-474
    [65]王绍中.晋南地裂缝及其工程地质意义[J].水文地质工程地质.1985,(5).
    [66]王景明,常丕兴.汾渭地裂缝与现代地震活动[J].地震学报.1989,11(1):57-67.
    [67]夏其发.论外力作用形成的地质灾害的预报和防治[J].中国地质灾害与防治学报.1990,(1).
    [68]刘国昌.西安的地裂缝[A].刘国昌工程地质文集[c].陕西科学技术出版社,1992:259-271.
    [69]姜规模,西安市地面沉降与地裂缝研究[J].城市勘测.2005,(3):53-55.
    [70]林颂恩,李珍英.对西安地裂缝几个问题的看法[J].勘查科学技术.2006,1:43-47.
    [71]刘玉海,陈志新等.大同城市地质研究[M].西安地图出版社,1995.
    [72]Wang Qingliang, Wang Wenping et. al.. Horizontal aquifer movement induced by groundwater pumping and its applications to the analysis of some geological disasters[J]. ACTA SEISMILOGICA SINICA,1997,17 (4),434-441.
    [73]王庆良,刘玉海,陈志新等.抽水引起的含水层水平应变地裂缝活动新机理[J].工程地质学报.2002,10(1):46-50.
    [74]陈志新.地裂缝成灾机理及防御对策[J].西安工程学院学报.2002,24(2):17-25.
    [75]邓安利.大同市地裂缝的分布特征及形成原因与防治对策探讨[J].安全与环境工程.2007,14(4):44-48.
    [76]易学发.西安市地面不均匀沉降及地裂缝成因的讨论[J].地震.1984,(6):50-54.
    [77]易学发.西安铁炉庙地裂缝与地下水动态变化[J].西北地震学报,1981,3(4):83-85.
    [78]赵其华,王兰生.西安地面沉降与地裂缝关系的量化分析[J].地质灾害与环境保护,1994,5(1):18-25.
    [79]晏同珍.西安地面沉降及地裂缝阶段预测[J].现代地质,1990,4(3):101-109.
    [80]LEO Rothenburg. Horizontal ground movements due to water abstraction and formation of earth fissures[J]. Land Subsidence(Proceedings of the Fifth International Symposium on Land Subsidence,The Hague,October 1995). IAHS Publ.No.234,1995:239-249.
    [81]王卫东,苏刚,易学发.西安地裂缝的数值模拟研究[J].灾害学.1998,13(3):33-37.
    [82]高金川.西安地裂缝活动多因素影响的GM(1,N)数学模型[J].地壳形变与地震.1999,19(1):56-64.
    [83]李新生,闫文中,李同录,孙国梁.西安地裂缝活动趋势分析[J].工程地质学报.2001,9(1):39-43.
    [84]孙粤琳,沈振中,吴越健等.考虑渗流-应力耦合作用的裂缝扩展追踪分析模型[J].岩土工程学报.2008,30(2):199-204.
    [85]Martin Hernandez-Marin. Thomas J. Burbey. Controls on initiation and propagation of pumping-induced earth fissures:insights from numerical simulations[J]. Hydrogeology Journal. 2010,(9).
    [86]Bruno M S, Nakagawa F M. Porepressure influence on tensile fracture propagation in sedimentary rock[J]. Rock Mech.& Min.1991,28(4):261-273.
    [87]邹继兴,邵德友.邯郸北部地区地裂缝与土层构造节理[J].水文地质工程地质.1994,(3):45-49.
    [88]白海波.徐州矿区地裂缝成因机制的探讨[J].煤田地质与勘探.2002,30(2):46-48.
    [89]汪丽.地表水与地裂缝活动关系的现场试验研究[D].西安:长安大学.2006.
    [90]Carpenter M.C. South-Central Arizona:Earth Fissures and Subsidence Complicate Development of Desert Water Resources[A]. Land Subsidence in the United States[C], Galloway D. etal. U.S. Geological Survey Circular,1999:65-78.
    [91]Carpenter M.C., Earth-fissure movements associated with fluctuations in groundwater levels near the Picacho mountains, South-Central Arizona[J].1980-84:U.S. Geological Survey Professional Paper 497.
    [92]沈宝智.保定平原区地裂缝的几个有趣现象[J].地方地震报.1989.
    [93]沈珠江.邓刚,粘土干湿循环中裂缝演变过程的数值模拟[J].岩土力学,2004,25(2):1:12.
    [94]孙即超等.临界状态下非饱和土裂缝开裂间距[J].科学通报,2009,54(9):1311-1314.
    [95]William J.Johnson, Marcella G.Johnson and Edward G.Zullo Characterization of Unusual Ground Fissuring in a Dry Lakebed-Broadwell Basin, San Bernardino County,California[J].GeoFlorida 2010:Advance in Analysis,Modeling & Design (GSP 199) 2010 ASCE:338-346.
    [96]赵仲牧.物理场论对哲学思考的提示[J].思想战线,2000(5):1-6.
    [97]汪民.饱水粘性土中粘粒与水相互作用的初步探讨[J].水文地质工程地质,1987,13(3):1~5,12..
    [98]仵彦卿.岩土水力学[M].科学出版社.北京:2009.
    [99]姚海林.关于基质吸力及几个相关问题的一些思考[J].岩土力学.2005,26(1):67-70.
    [100]贾兆宏,郑洪坚.考虑水作用的边坡稳定性分析[J].科技资讯,2007(12):91-92.
    [101]仵彦卿.地下水与地质灾害[J].地下空间,1999,19(4):303-310.
    [102]汤连生.水_土化学作用的力学效应及机理分析[J].中山大学学报(自然科学版),2000,39(4):104-109.
    [103]汤连生.略论岩土化学力学[J].中山大学学报(自然科学版),2002,41(3):86-90.
    [104]鲁嘉.城市地下水环境场变异与土结构相互作用的理论分析[D].广西大学.2006.
    [105]汤连生.水—岩土化学作用的环境效应[J].中山大学学报(自然科学版),2001,40(5):103-107..
    [106]孙萍.黄土破裂特性试验研究[D].长安大学.2007.
    [107]李红.黄土三轴拉伸破裂特性试验研究[D].长安大学.2010.
    [108]杨和平,张锐,郑健龙.非饱和膨胀土总强度指标随饱和度变化规律[J].土木工程学报.2006,,39(4):58-62.
    [109]姜献民,尹利华,张留俊.膨胀土强度与含水量关系研究[J].公路.2008,(9):127-129.
    [110]凌华,殷宗泽.丰饱和土强度随含水量的变化[J].岩石力学与工程学报.2007,,26(7):1499-1503.
    [111]边加敏,王保田.含水量对非饱和土抗剪强度影响研究[J].人民黄河.2010,32(11):124-125.
    [112]罗军,王桂尧,匡波.含水量对粉土强度影响的试验研究[J].路基工程.2010,(1):116-117.
    [113]党靖,胡李俐,南帅.含水量及天然密度对土体抗剪强度参数的影响研究[J].中国西部科技.2007,(5):14-15.
    [114]高国瑞黄土湿陷变形的结构理论[J].岩土工程学报,1990,12(4):1-10。
    [115]苗天德,刘忠玉,任九生.湿陷性黄土的变形机制与本构关系[J].岩土工程学报,1999,21(4):383-387.
    [116]关文章.湿陷性黄土工程性能新篇[M].西安交通出版社.西安:1992.
    [117]李保雄,苗天德.黄土抗剪强度的水敏感性特征研究[J].岩石力学与工程学报,2006,25(5):1004-1008.
    [118]李永乐,张红芬,佘小光等.原状非饱和黄土的三轴试验研究[J].岩土力学,2008,29(10):2859-2863.
    [119]吴志刚,党进谦,高建勇.非饱和黄土抗剪强度与结构强度的关系特性[J].人民长江2007,38(1):117-118.
    [120]米海珍,李如梦,牛军贤.含水量对兰州黄土剪切强度特性的影响[J].甘肃科学学报.2006,18(1):78-81.
    [121]工程地质手册[M].中国建筑工业出版社.北京:2007
    [122]龚晓南.高等土力学[M].浙江大学出版社.浙江:2001
    [123]钱家欢,殷宗泽.土工原理与计算(第二版)[M].中国水利水电出版社.北京:1996.
    [124]易念平,魏华松,鲁嘉,张信贵.城市地下水动力场变异对土体环境稳定性影响分析[J].广西大学学报(自然科学版).2006,31(2):160-166.
    [125]李广信,周晓杰.土的渗透破坏及其工程问题[J].工程勘察,2004,(05)
    [126]李新生,王静,王万平.西安地铁二号线沿线地裂缝特征、危害及对策[J].工程地质学报,2007,15(4):464-468.
    [127]西安市城市快速轨道交通二号线详细勘察阶段沿线地裂缝勘察报告[R].长安大学工程设计研究院,2007.
    [128]刘宝琛,张家生,廖国华.随机介质理论在矿业中的应用[M].湖南科学技术出版社.湖南:2004.
    [129]张家生,刘宝琛.随机介质理论基本参数的反分析确定[J].湘潭矿业学院学报.2004,19(1)5-8.
    [130]刘宝琛,乔世范.随机介质理论在地表移动和变形规律预测中的应用[J].鲁东大学首届岩土与地下工程科技研讨会论文集.3-4.
    [131]刘宝琛.随机介质理论及其在开挖引起的地表下沉问题中的应用[J].中国有色金属学报.1992,2(3):8-14.
    [132]阳军生,刘宝琛.抽水地面沉降预计的随机介质模型[J].水文地质工程地质.1999,5:11-13.
    [133]张华兴,仲惟林.受断层影响的地表移动计算[J].煤炭学报.1995,20(2):163-166.
    [134]张春会,郭海燕,于广明.基于随机介质理论的抽水地表变形时空耦合预测模型[J].中国地质灾害与防治学报.2007,18(2):106-111.
    [135]谢桂华,张家生,尹志政.基于随机介质理论的采水地面变形时空分布[J].岩土力学.2010,31(1):282-286.
    [136]Muniram Budhu, Mechanics of earth fissures using the Moht-coulomb failure criterion[J]. The Geological Society of America.2008,ⅪⅤ(4):281-295.
    [137]周筑宝.最小耗能原理及其应用[M].科学出版社.北京:2001.
    [138]郑颖人,沈珠江.岩土塑性力学原理[M].中国人民解放军后勤工程学院.1988.
    [139]张建山,仵彦卿,李哲.考虑土体颗粒运动的承压含水层单井抽水数学模型及其解析分析.干旱地区农业研究.2005,23(1):45-49.
    [140]Flac说明书
    [141]长安大学.汾渭盆地典型地区地裂缝地面沉降监测与防治工作项目专题研究报告.2009.
    [142]徐光黎,唐辉明,贾思吉等.西安地裂缝活动数学模型研究[R].中国地质大学,陕西省地矿局:1994.
    [143]李盛,王起才,马莉.水的流速和接触面积对黄土溶蚀的影响程度研究[J].水利与建筑工程学报,2008,6(3):103-104.
    [144]邢义川.黄土力学性质研究的发展和展望[J].水力发电学报.2000(4):54-65.
    [145]程小勇,项伟,于月娥等.原状黄土抗剪强度参数定量化研究[J].人民长江.2008,39(8):78-95.
    [146]王景明,倪玉兰,孙建中.黄土构造节理研究及其应用[J].工程地质学报,1994,,2(4):31-41.
    [147]孙建中.黄土学(上篇)[M].香港考古学会.香港:2005.
    [148]王正贵,康国瑾,马崇武.关于黄土垂直节理形成机制的探讨[J].中国科学(B辑),1993,23(7):765-770.
    [149]庄茁,蒋持平.工程断裂与损伤[M].机械工业出版社.北京:2004.
    [150]张行.断裂与损伤力学[M].北京航空航天大学出版社.北京:2009.
    [151]朱珍德,胡定.裂隙水压力对岩体强度的影响[J].岩土力学.2000,21(1):64-67.
    [152]李宗利,张宏朝,任青文等.岩石裂纹水力劈裂分析与临界水压计算[J].岩土力学.2005,26(8):1216-1220.
    [153]王育平,王永红.水-土相互作用对土体裂隙水流的影响[J].岩石力学与工程学报,1999,18(5):554-557.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700