用户名: 密码: 验证码:
盐芥重要生长发育期的生理生态机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐生植物在其整个生长发育内会面临许多外界环境变化,如:土壤盐度和季节更替带来的光照、温度和水分的变化。盐生植物能否在重要生长发育期(如:种子萌发和开花繁殖期)适应这些外部环境的变化,直接决定着其种群生存和分布。本文针对盐生植物模式材料盐芥在重要生长发育期对外界环境的生理生态适应性及机制进行研究,旨在探究盐芥在重要生长发育对外界环境的适应机制,为阐明其分布和生存机理提供依据。主要研究结果如下:
     在盐胁迫条件下种子能否萌发及高盐条件不能萌发的种子在足够降雨后能否萌发直接决定该物种能否在盐碱地形成群落及完成生活史。为此,我们通过与拟南芥的对比实验,用不同浓度盐胁迫对盐芥种子进行处理,探讨盐芥种子萌发期和幼苗生长期的耐盐机制。实验采用培养皿法,盐芥和拟南芥种子分别用0、30、60、90、120、200、300、400和500mmol L~(-1)NaCl处理液处理,处理后分别春化10天,取出观察其种子萌发情况,萌发的幼苗7天后测定生理指标。结果表明,NaCl处理对盐芥和拟南芥种子萌发均有一定的抑制作用。拟南芥和盐芥在萌发的最初两天在各个NaCl浓度的胁迫下,萌发率都在缓慢增加,3天后萌发趋于稳定。30mmol L~(-1)NaCl对拟南芥的种子萌发没有影响。在较高盐胁迫浓度,拟南芥和盐芥的萌发受到显著抑制,盐芥种子萌发受抑程度强于拟南芥。30、60、90和120mmol L~(-1)NaCl胁迫7天时,拟南芥种子的萌发率分别为对照的100%、99%、77%和28%,盐芥的种子萌发率分别为对照的91%、68%、26%和0%。当NaCl浓度超过200mmol/L,盐芥和拟南芥种子的萌发率均为0。但是,在高浓度NaCl处理抑制的盐芥种子在盐胁迫解除后比拟南芥种子表现出较好的萌发,与对照相比,在200、300、400、500mmol L~(-1)NaCl胁迫下盐芥种子萌发恢复率分别为105%、104%、106%和99%,但拟南芥在相同浓度的NaCl胁迫下种子萌发恢复率分别为94%、84%、82%、54%。可见盐胁迫促进了盐芥种子在盐胁迫解除后的萌发能力,而拟南芥在高盐胁迫下,种子萌发恢复率低说明发生了拟南芥种子在高盐胁迫下受到了一定程度的离子毒害。
     在幼苗生长阶段,盐芥的幼苗比拟南芥表现出较好的耐盐性,幼苗长势好,根长、干鲜重、色素含量、脯氨酸含量和K+/Na+均高于拟南芥,MDA积累少。这些结果表明:盐芥在种子萌发和幼苗生长期对盐胁迫表现出了较强的适应机制,这是盐芥能够在盐碱地存活并形成群落的原因之一。
     耐逆模式植物-盐芥是十字花科植物,自然条件下在秋天萌发,以莲座状幼苗度过冬季并完成春化作用,春天接受长日照完成光周期诱导并开花结果。但是,对于盐芥春化作用所需天数及个体发育阶段及光周期诱导参数了解很少,这极大地限制了对盐芥耐逆分子机理的研究。本实验对山东生态型盐芥种子春化和光周期进行了系统研究,旨在缩短盐芥春化和开花的时间,获得实验室条件完成生活史的最短时间,以方便对盐芥耐逆机理的研究。种子春化采用培养皿恒定4℃冰箱处理法,将准备好的盐芥种子,在实验室充分吸水后,置于4℃冰箱中,使种子春化的时间分别为:0、2、4、6、8、10、12、14、16、18、20、22、24、26、28、30天,处理结束后,将春化后的种子置于拟南芥培养箱中培养观察种子萌发情况,7天后将萌发幼苗移栽于盆中培养观察其开花情况。结果表明,盐芥种子春化促进了盐芥种子的萌发,随着种子春化时间的延长,盐芥种子萌发率逐渐升高,种子春化30天,盐芥种子萌发率为90%。萌发的种子定植于盆观察到盐芥种子春化后,可以开花,说明盐芥种子具有春化的能力。盐芥种子春化时间小于6天时,盐芥不开花,一直处于营养生殖状态。盐芥种子春化时间6-22天,盐芥开花植株数随着春化时间的增加呈S曲线上升,盐芥种子春化时间22-40天,盐芥开花植株数恒为100%。开花盐芥植株第一朵花开放时间被盐芥种子春化时间缩短,盐芥种子春化时间越长,盐芥植株第一朵花开时间越短。盐芥种子春化时间30-40天,盐芥植株第一朵花开放时间在春化结束后的第29天。种子经过30天的春化处理,开花最理想。种子春化能够促进盐芥开花,与其抑制ThFLC(开花抑制基因)的表达有关。盐芥种子未经春化,ThFLC的表达量为100%,随着种子春化时间的延长,盐芥相应植株内ThFLC的表达量逐渐减少,当盐芥种子春化30天时,ThFLC的表达量为24.3%。经过30天种子春化处理的盐芥植株在拟南芥培养箱的恒定温度、湿度和光照下,分别进行7、8、9、10、11、12、13、14小时的光照长度处理,结果表明:经过种子春化的盐芥盐芥种子经过30天春化长出植株在光周期为9到14小时,能够开花。如果光周期小于8小时,盐芥则不开花。随着光周期的延长,盐芥开花的时间缩短,开花数量和单株干鲜重增加。在14小时的光周期下,盐芥植株开花数量和单株干鲜重达到最大值。这些结果表明盐芥为典型的长日照植物,至少需要9小时的光周期才能开花。这些结果极大地方便了人们对盐芥分子机理的研究。其次,这些结果还表明盐芥对春化和对光周期的要求,与其对生存环境的适应有关。
     山东生态型盐芥在黄河三角洲盐碱地在秋天萌发,以莲座状幼苗度过冬季,三月份开始返青生长、抽薹开花,五月份种子成熟。这个季节正是降雨少、温度回升快及返盐高峰期。盐芥为什么在这一时期完成其生活史,其生理生态机理是什么?值得深入研究。我们通过2012年一月至五月对在黄河三角洲盐碱地自然生长盐芥植株内的离子含量和某些生理生态指标变化的研究,揭示盐芥耐盐的生理生态基础。结果表明,土壤中Na~+、Ca~(2+)和Cl~-含量从2012年一月至五月呈逐渐上升趋势,与气温的上升正相关,与土壤水分含量呈负相关。说明气温和土壤含水量是影响土壤中Na+、Ca2+和Cl-浓度的主要原因。在气温较低的一月和二月盐芥地上部分Na+离子含量最高,随着植物的生长发育,整体呈下降趋势,而K~+、Ca~(2+)、Mg~(2+)、Cl~-、SO_4~(2-)则呈上升趋势,尤其是Cl~-上升更为明显。盐芥植株内这些离子的累积与其生长发育阶段有很大关系,离子的累积也有利于其进行渗透调节作用。在生长发育中后期根部呈下降趋势,可能是由于根部向地上部输送较多的营养物质。盐芥的生理生态指标变化表明,盐芥的生长受低温的影响要大于受土壤盐度变化的影响。在气温较低的一月和二月,盐芥表现出一定的受害症状,MDA累积,叶绿素含量低,但是其植株内较高的脯氨酸和可溶性糖含量使盐芥在低温条件下免受伤害,起到一定的渗透调节和保护作用。这些结果表明,盐芥植株组织中可溶性物质含量与春天温度有关,是其适应低温和高盐的机制之一。
     人们对盐芥耐盐性进行了深入研究,可以在200mmolL~(-1)NaCl处理条件完成生活史,其耐盐机理主要是把过多的盐区域化到液泡中,这种特性与重金属超富集植物有类似的机理,而黄河三角洲土壤近年来重金属污染日趋严重,作为自然生长该地区盐碱地的植物是否具有重金属超富集特性及耐重金属机理值得研究,这些结果对于利用盐芥对遭受重金属污染的盐碱地进行修复具有重要意义。我们通过盆栽试验,比较分析了盐芥在Cd、Cu和Pb重金属处理下生长等生理生态特性。结果表明,随着Cd、Cu和Pb处理浓度的升高,盐芥的根长及干物质重均显著下降,MDA均显著升高。与Cu和Pb相比, Cd处理浓度较低,但受害症状明显,具体表现为:高浓度下,叶绿素含量显著下降,叶片黄化,MDA累积多,幼苗死亡率高等。Pb处理浓度最高,但在这三种重金属中Pb处理的受害症状表现不明显,说明盐芥对Pb具有一定的耐性。从盐芥对三种重金属的累积量来看,盐芥对Cd具有一定的累积作用,但在高浓度(130mg kg~(-1))下很难存活,在Cu和Pb胁迫下能够完成正常的生活周期,但对Cu和Pb并不累积。所以盐芥对Cd污染土壤的修复具有一定的潜力,但不适宜用于Cu和Pb污染土壤的修复。
     本论文主要创新点:
     1通过与拟南芥的比较研究发现,虽然盐芥种子萌发受到高浓度盐的强烈抑制,但能够在盐胁迫缓解时迅速且整齐萌发,甚至超过无盐胁迫时的萌发率。在幼苗生长期,盐芥幼苗在盐胁迫下,能够维持较高的叶绿素含量,K~+/Na~+和脯氨酸含量,累积较少的MDA,表现出良好的生长势。这些结果表明盐芥在种子萌发和幼苗生长期比拟南芥表现出较好的对盐的适应性。这可能是盐芥能够在盐碱地存活并形成群落的原因之一。
     2本文首次研究了种子春化和光周期对盐芥开花的影响。研究结果表明种子春化促进了盐芥种子的萌发,种子春化后盐芥能够开花说明盐芥具有种子春化的能力。种子春化低于6天盐芥不能开花,一直处于营养生长阶段,种子春化22-40天,盐芥开花率可达100%。种子春化缩短了植株的开花时间,降低了开花抑制基因ThFLC的表达。山东生态型盐芥的开花依赖于春化作用,对春化作用的需求是必须的,而不是兼性的。山东生态型盐芥种子经过充分的春化后,只有在光照时间大于9小时的光周期下才能开花。而且随着光照时间的延长,盐芥开花数目增加,植株干重增大,开花时间缩短。当光周期为14小时,盐芥植株的干重和开花数达到最大值,开花时间最短。这些结果表明盐芥为典型的长日照植物,其临界日长为9小时。盐芥对春化和对光周期的要求,与其对生存环境的适应有关。对盐芥种子春化和光周期的研究大大方便了今后对盐芥耐逆分子机理的研究。
     3自然生境下盐芥植株内离子含量、可溶性有机物、MDA和叶绿素含量的变化与生长阶段、土壤中的离子含量、降水量等外界环境变化有关。通过对盐芥生理生态的季节性研究结果表明:对盐芥生理生态起主要作用的是植物本身的生长发育阶段,其次是环境温度及土壤盐度等环境因子。盐芥在黄河三角洲盐碱地低温、干旱和盐度的逆境中通过生理生态的适应来得以生存并形成群落。
     4在土壤Cd、Cu和Pb污染环境下,盐芥对Cd、Cu和Pb都有吸收,其中盐芥对Cd具有一定的累积作用,但在高浓度下(130mg kg~(-1))盐芥很难存活。盐芥在Cu和Pb胁迫下能够完成正常的生活周期,说明盐芥对Cu和Pb具有一定的耐性但对Cu和Pb并不累积。所以盐芥对Cd污染土壤的修复具有一定的潜力,但不适宜用于Cu和Pb污染土壤的修复。
Halophytes face many abiotic stressors such as salinity, light,temperature and water content caused by seasonal alteration during thewhole life span. Whether halophyte could adapt the changes at the keystages such as seed germination and flowering determined the surviral anddistribution of the species population. In this paper the eco-physiologicaladaptations of Thellungiella halphila to salinity, temperatures and seasonalchanges were studied with the aim to illustrate the adaptive mechanism andcertainty of its survival and distribution. The main results are as follows:
     Salinity is one of the major abiotic stresses that adversely affect plantgrowth and development. The occurrence of halophytes in inland saltmarshes may depend on their tolerance to salt stress at different stages ofplant development. Germination is a key stage in the life cycle of plants insaline environments as it determines whether or not plants can establishsuccessfully in certain areas. So, in the first experiment, effects of salinityon germination and seedling growth of T. salsuginea and Arabdopsisthaliana were compared with the aim to explore the salinity-resistantmechanisms of T. salsuginea. The seeds of T. salsuginea and A. thalianawere treated with0(control),30,60,90,120,200,300,400and500mmol L~(-1)NaCl in discs after10days’ seed vernalization. Then the seedgermination and physiology indexes of seedlings grown for7days weredetermined.The results showed that salinity inhibited seed germination inboth species.The germination rate of both A. thaliana and T. salsugineaincreased gradually by all concentrations of NaCl in the initial2days,germination rate kept consitent in some extent after3days.30mmolL~(-1)NaCl treatments had no effect on seed germination rate of A. thaliana,but higher concentrations of NaCl markedly decreased seed germinationrate in both species. At30,60,90and120mmol L~(-1)NaCl, the germinationpercentage of A. thaliana was100%,99%,77%and28%of the control,however the germination percentage of T. salsuginea was91%、68%、26%and0%of the control. Seeds of both species did not germinate when theconcentration of NaCl was over200mmol L~(-1). Surprisingly, theungerminated seeds of both species quickly germinated. Moreover, the totalseed germination rate recovering from200,300,400and500mmol L~(-1)NaCl in T. salsuginea was105%,104%,106%and99%, but in A.thaliana was94%、84%、82%、54%, respectively. Therefore, salinitypromotes the seed germination of T. salsuginea during the water recoverystage. The ungerminated seeds of A. thaliana suffered ion toxicity in highsalinity to some degree as evidenced by the low final germination rate afterungerminated seeds pretreated with NaCl were transferred to distilledwater.
     At the seedling growth stage, seedlings of T. salsuginea were more salttolerant than those of A. thaliana. For example, seedlings of T. salsugineahad better plant growth (root length, fresh and dry weight), higherchlorophyll content, less MDA content and higher proline content and K+/Na+ratio under salinity. These characteristics indicate that T. salsuginea ismore salt-tolerant to salinity than A. thaliana at both seed germination andseedling stages.
     Generally, salt cress, Thellungiella salsuginea (Cruciferae), germinatesin autumn, is vernalized at rosette seedling in winter and flowers afterlong-day irradiance in spring in its natural habitat. But little was knowabout how many days did T. salsuginea finish its vernalization andphotoperiod requirement, which restricts the insight into the molecularmechanisms of abiotic stresses sach as salt tolerance in labotory. Tofacilitate research on T. salsuginea, the present study focuses on seedvernalization and photoperiod for flowering induction. Seeds of T.salsuginea were vernalized at4°C in discs for0,2,4,6,8,10,12,14,16,18,20,22,24,26,28and30days respectively. After vernalization, seedswere placed in a growth chamber to observe the seed germination. After7days’germination, the seedling were planted in the pots in the samechamber to observe the flowering.The results showed that seedvernalization promoted the seed germination. Seed germination rateincreased with the prolonged duration of vernalization. The seed germination rate was90%of the control when the seeds were vernalizedfor30days and flowered after the the seedlings grown under suitable lightperiod. These results suggested that T. salsuginea can finish itsvernalization at stage of imbibed seeds. T. salsuginea still stayed atvegetative stage and could not flower when seeds were vernalized for lessthan6days. The flowering plants increased when seeds were vernalized for6-22days. And100%of T. salsuginea flowered when seeds werevernalized for22-40days. The time when the first flower appeared wasshortened by seed vernalization. Longer seed vernalizaiton, earlier the firstflower emergence. The earliest emergence of the first flower was the29thday after seeds were vernalized for30-40days. Expression of ThFLC,which is a repressor of flowering, was reduced by vernalization. Relativeexpression of ThFLC dropped from100%of control to24.3%of30d ofseed vernalization. Plants growing from seeds that had been vernalized for30d did not flower when day length was <9h, and day lengths>9hpromoted flowering. These results will facilitate the utilization of T.salsuginea as a model plant of abiotic stress to study the molecularmechanisms. The results also suggest that the dependency on vernalizationand long-day photoperiod is critical for the adaptation of T. salsuginea tothe local environment.
     T. salsuginea (Shangdong ecotype) germinates in autumn, vernalized asrosette seedlin in winter, flowers in March and ripen in May in the Yellow River Delta. This season is characteristic of low rainfall, quick temperaturerise and high salinity in the soil.Why does T. salsuginea complete its lifespan in this season and what is the adaptive mechanism? These questionsdeserve further research. In the third expreripent, seasonal ion content andeco-physiological characters variation in T. salsuginea in its habitat, YellowRiver delta saline and alkaline land, from January to May in2012were alsostudied. The results showed that Na~+, Ca~(2+) and Cl~-content in the soilincreased from January to May, and was closely related to temperature andwater content in the soil. Na+content in T. salsuginea was highest inJanuary and February and decreased with time. K~+、Ca~(2+)、Mg~(2+)、Cl~-、SO_4~(2-)content showed increasing tendency, in particular, Cl-content, with theincrease of temperature and the growth stage. The accumulation of K~+、Ca~(2+)、Mg~(2+)、Cl~-、SO_4~(2-) was beneficial to osmaregulation in T. salsugineaunder salinity. K~+, Mg~2+and Ca~(2+) content in the root were lower than that inthe shoot because nutritional ion was in priority distribution to leaves,flowers and pods from roots. The eco-physiological variation in T.salsuginea showed that the effect of temperature was larger than that of ioncontent changes in the soil. T. salsuginea showed retarded growth withhigher accumulation of MDA, lower chlorophyte content. But T. salsugineaadjusted eco-physiological characters to the low temperature such as higherproline and soluble sugar content which protected T.salsuginea from theharm of low temperature and ion variation. These results suggested that compatible solute content is closely related to temperature, which is one ofthe adaptive mechanisms of T. salsuginea to low temperature and highsalinity.
     Based on the research of T. salsuginea, T. salsuginea could survive in200mmol L~(-1)NaCl. The main mechanism was compartmentalization ofexcessive salt ion into vacuoles, which is similar to heavy metalsuperaccumulator plant. Heavy metal pollution in Yellow River delta soil isgetting worse; T. salsuginea might be a potential heavy metalsuperaccumulator, which needs to study. In the fourth experiment, a potexperiment was used to investigate growth responses and eco-physiologicalcharacters of T. salsuginea under Cd, Cu and Pb treatments. The resultshowed that the root length and dry mass decreased and MDA accumulatedsignificantly with the increase of Cd, Cu and Pb concentrations. T.salsuginea showed apparent damage symptoms such as lower chlorophyllcontent, etiolated leaves, higher MDA accumulations and death ofseedlings under Cd treatment compared with Cu and Pb. T. salsuginea cangrow well under Pb treatment though Pb treatment concentration was thehighest. From the point of metal accumulation and BAF, T. salsugineaabsorbed Cd>Cu>Pb. These results indicate that T. salsuginea has certainpotential on remedying the soil polluted by Cd with low and middleconcentrations.
     The innovations of this thesis were shown as follows:
     1. In this study, the ungerminated seeds of T. salsuginea under highsalinity quickly germinated though the seed germination of T. salsugineawas a little more sensitive to salinity compared with A. thaliana. At theseedling stage, however, T. salsuginea showed better growth with higherchlorophyll content, less MDA content and higher proline content and K~+/Na~+ratio under salinity. These characteristics indicate that T. salsuginea ismore adaptive to salinity than A. thaliana at both seed germination andseedling stages and explain why A. thaliana is excuded from salinelocations and T. salsuginea can survive and form its populations in salinesoils.
     2. The seed vernalization and photoperiod of T. salsuginea were studiedfor the first time. The results showed that seed vernalization promoted theseed germination and that T. salsuginea flowered after seed vernalizationwhich showed that T. salsuginea is capable of vernalization at stage ofimbibed seeds. T. salsuginea still stayed at vegetative stage and couldn’tflower when seeds were vernalized less than6days. And100%of T.salsuginea flowered when seeds were vernalized for22-40days. The timewhen the first flower appeared was shortened by seed vernalization.Expression of ThFLC, which is a repressor of flowering, was markedlyreduced by vernalization. The requirement for vernalization of T. salsuginea is obligate instead of facultative. We also observed here that T.salsuginea generated flowers only when day length exceeded9h. Thenumber of flowers and dry mass per plant also increased with an increaseof day length. Dry mass per plant and number of flowers per plant were thehighest when day length exceeded14h. These results therefore confirmthat T. salsuginea is a long-day plant with a critical day length requirementof approximately9h. In addition, the time required to produce the firstflower decreased as day length exceeded9h. These results indicated that T.salsuginea is a typical long-day plant with9h photoperiod. Therequirement of vernalization and long days by T. salsuginea (Shandongecotype) is at least partially the product of adaptation to the localenvironment. These results facilitate greatly the future research onsalt-tolerant mechanisms of T. salsuginea.
     3. Soluble ion, proline, MDA and chlorophyll content of T. salsugineawere closely related to growth and development stages, ion content in thesoil and rainfall. For T. salsuginea, the effect of growth and developmentstages on the adaptation to stress environment was larger than that oftemperature and ion content changes in the soil. Under the natural location,T. salsuginea adjusted eco-physiological characters to low temperature,drought and salinity caused by the seasonal variances.
     4. T. salsuginea accumulated Cd to some degree, but did not survive inhigher concentration of Cd (130mg kg~(-1)). T. salsuginea finished its life cycle under Cu and Pb stress. Therefore, T. salsuginea was tolerant to Cuand Pb but not accumulated them. Conclusively, T. salsuginea can be usedin remedying the soil polluted by Cd with low and middle concentrations.
引文
[1] Al-Shehbaz IA, O'Kane Jr SL, Price RA. Generic placement of speciesexcluded from Arabidopsis (Brassicaceae)[J]. Novon,1999,296-307.
    [2] Warwick SIWSI, Al IAASIA, Sauder CASCA. Phylogenetic positionof Arabis arenicola and generic limits of Aphragmus and Eutrema(Brassicaceae) based on sequences of nuclear ribosomal DNA[J].Botany,2006,84(84):269-281.
    [3]孙稚颖,张学杰,李法曾.拟南芥属与盐芥属的亲缘关系:叶表皮和分子证据[J].云南植物研究,2007,632-638.
    [4] Wu HJ, Zhang Z, Wang JY, et al. Insights into salt tolerance from thegenome of Thellungiella salsuginea[J]. Proceedings of the NationalAcademy of Sciences,2012,109(109):12219-12224.
    [5] German D. Genus Thellungiella (Cruciferae). Europe[J]. BotanicalJournal (Moscou&St. Petersburg),2008,93(93):1273-1280.
    [6] Amtmann A. Learning from evolution: Thellungiella generates newknowledge on essential and critical components of abiotic stresstolerance in plants[J]. Molecular Plant,2009,2(2):3-12.
    [7] Fang Q, Xu Z, Song R. Cloning, characterization and geneticengineering of FLC homolog in Thellungiella halophila[J].Biochemical and Biophysical Research Communications,2006,347(347):707-714.
    [8] Fang Q, Liu J, Xu Z, et al. Cloning and characterization of a floweringtime gene from Thellungiella halophila[J]. Acta Biochim Biophys Sin(Shanghai),2008,40(40):747-753.
    [9] Wang B, Davenport R, Volkov V, et al. Low unidirectional sodiuminflux into root cells restricts net sodium accumulation in Thellungiellahalophila, a salt-tolerant relative of Arabidopsis thaliana[J]. JExperimental Botany,2006,57(57):1161-1170.
    [10] Sun W, Li J, Zhao Y, et al. A facile procedure for efficient plantletregeneration and fruiting without vernalization in Thellungiellasalsuginea[J]. Pakistan Journal of Botany,2009,41(41):
    [11] Teusink R, Rahman M, Bressan R, et al. Cuticular waxes onArabidopsis thaliana close relatives Thellungiella salsuginea andThellungiella parvula[J]. Integral Journal of Plant Science,2002,163(163):309-315.
    [12] Inan G, Zhang Q, Li P, et al. Salt cress. A halophyte and cryophyteArabidopsis relative model system and its applicability to moleculargenetic analyses of growth and development of extremophiles[J]. PlantPhysiology,2004,135(135):1718-1737.
    [13] Volkov V, Wang B, Doming P, et al. Thellungiella halophila, a saltrelative of Arabidopsis thaliana, possesses effective mechanisms todiscriminate between potassium and sodium[J]. Plant CellEnvironment,2003,27(27):1-14.
    [14] M'Rah S, Ouerghi Z, Berthomieu C, et al. Effects of NaCl on thegrowth, ion accumulation and photosynthetic parameters ofThellungiella halophila [J]. Journal of Plant Physiology,2006,163(163):1022-1031.
    [15] M'Rah S, Ouerghi Z, Eymery F, et al. Efficiency of biochemicalprotection against toxic effects of accumulated salt differentiatesThellungiella halophila from Arabidopsis thaliana[J]. Journa of PlantPhysiology,2007,164(164):375-384.
    [16] Wang Z, Li P, Fredricksen M, et al. Expressed sequence tags fromThellungiella halophila, a new model to study plant salt-tolerance[J].Plant Science,2004,166(166):609-616.
    [17] Griffith M, Timonin M, WONG ACE, et al. Thellungiella: anArabidopsis‐related model plant adapted to cold temperatures[J].Plant, cell&environment,2007,30(30):529-538.
    [18] Taji T, Seki M, Satou M, et al. Comparative genomics in salt tolerancebetween Arabidopsis and Arabidopsis-related halophyte salt cressusing Arabidopsis microarray[J]. Plant physiology,2004,135(135):1697-1709.
    [19] Gong Q, Li P, Ma S, et al. Salinity stress adaptation competence in theextremophile Thellungiella halophila in comparison with its relativeArabidopsis thaliana[J]. Plant Journal,2005,44(44):826-839.
    [20] Kant S, Bi Y, Weretilnyk E, et al. The Arabidopsis halophytic relativeThellungiella halophila tolerates nitrogen-limiting conditions bymaintaining growth, nitrogen uptake, and assimilation[J]. Plantphysiology,2008,147(147):1168.
    [21] Chinnusamy V, Schumaker K, Zhu JK. Molecular genetic perspectiveson cross‐talk and specificity in abiotic stress signalling in plants[J].Journal of Experimental Botany,2004,55(55):225-236.
    [22] Vera-Estrella R, Barkla BJ, Garcia-Ramirez L, et al. Salt stress inThellungiella halophila activates Na+transport mechanisms requiredfor salinity tolerance[J]. Plant Physiology,2005,139(139):1507-1517.
    [23] Kant S, Kant P, Raveh E, et al. Evidence that differential geneexpression between the halophyte, Thellungiella halophila, andArabidopsis thaliana is responsible for higher levels of the compatibleosmolyte proline and tight control of Na+uptake in T. salsuginea[J].Plant Cell and Environment,2006,29(29):1220-1234.
    [24] Munns R, Tester M. Mechanisms of salinity tolerance[J]. AnnualReview of Plant Biology.,2008,59(59):651-681.
    [25] Ghars MA, Parre E, Debez A, et al. Comparative salt toleranceanalysis between Arabidopsis thaliana and Thellungiella halophila,with special emphasis on K(+)/Na(+) selectivity and prolineaccumulation[J]. Journal of Plant Physiology,2008,165(165):588-599.
    [26] Rogers EE, Glazebrook J, Ausubel FM. Mode of Action of theAmbidopsis thaliana Phytoalexin Camalexin and Its Role inArabidopsis-Pathogen Interactions[J].1996.
    [27] Pedras MSC, Adio AM. Phytoalexins and phytoanticipins from thewild crucifers Thellungiella halophila and Arabidopsis thaliana:Rapalexin A, wasalexins and camalexin[J]. Phytochemistry,2008,69(69):889-893.
    [28] Davenport RJ, Tester M. A weakly voltage-dependent, nonselectivecation channel mediates toxic sodium influx in wheat[J]. Plantphysiology,2000,122(122):823-834.
    [29] Véry AA, Sentenac H. Cation channels in the Arabidopsis plasmamembrane[J]. Trends in Plant Science,2002,7(7):168-175.
    [30] Volkov V, Amtmann A. Thellungiella halophila, a salt-tolerant relativeof Arabidopsis thaliana, has specific root ion-channel featuressupporting K+/Na+homeostasis under salinity stress[J]. The PlantJournal,2006,48(48):342-353.
    [31] Maathuis FJM, Sanders D. Sodium uptake in Arabidopsis roots isregulated by cyclic nucleotides[J]. Plant physiology,2001,127(127):1617-1625.
    [32] Demidchik V, Maathuis FJM. Physiological roles of nonselectivecation channels in plants: from salt stress to signalling anddevelopment[J]. New Phytologist,2007,175(175):387-404.
    [33] Amtmann A, Sanders D. Mechanisms of Na+Uptake by Plant Cells[J].Advances in Botanical Research,1998,29(29):75-112.
    [34] Amtmann A, Jelitto TC, Sanders D. K+-selective inward-rectifyingchannels and apoplastic pH in barley roots[J]. Plant physiology,1999,120(120):331-338.
    [35] Nieves-Cordones M, Miller AJ, Alemán F, et al. A putative role for theplasma membrane potential in the control of the expression of the geneencoding the tomato high-affinity potassium transporter HAK5[J].Plant Molecular Biology,2008,68(68):521-532.
    [36] Alemán F, Nieves-Cordones M, Martínez V, et al. Differentialregulation of the HAK5genes encoding the high-affinity K+transporters of Thellungiella halophila and Arabidopsis thaliana[J].Environmental and Experimental Botany,2009,65(65):263-269.
    [37] Oh D, Gong Q, Ulanov A, et al. Sodium stress in the halophyteThellungiella halophila and transcriptional changes in a thsos1-RNAinterference line[J]. Journal of Integrative Plant Biology,2007,49(49):1484.
    [38] Chung JS, Zhu JK, Bressan RA, et al. Reactive oxygen speciesmediate Na+‐induced SOS1mRNA stability in Arabidopsis[J]. ThePlant Journal,2008,53(53):554-565.
    [39] Bernstein L, Hayward H. Physiology of salt tolerance[J]. AnnualReview of Plant Physiology,1958,9(9):25-46.
    [40] Wong CE, Li Y, Labbe A, et al. Transcriptional profiling implicatesnovel interactions between abiotic stress and hormonal responses inThellungiella, a close relative of Arabidopsis[J]. Plant physiology,2006,140(140):1437-1450.
    [41] Gutterman Y. Seed germination in desert plants[M]. Springer-VerlagGmbH&Co. KG,1993:
    [42] Khan MA, Ungar IA. Effects of thermoperiod on recovery of seedgermination of halophytes from saline conditions[J]. American Journalof Botany,1997,84(84):279-279.
    [43] Khan M, Gul B, Weber D. Germination responses of Salicornia rubrato temperature and salinity[J]. Journal of Arid Environment,2000,45(45):207-214.
    [44]肖雯.五种盐生植物营养器官显微结构观察[J].甘肃农业大学学报,2002,37(37):421-427.
    [45]周三,韩军丽,赵可夫.泌盐盐生植物研究进展[J].应用与环境生物学报,2001,7(7):496-501.
    [46] Ungar I. Ecophysiology of vascular halophytes[M]. Boca Raton: CRCPress,1991:
    [47] Ungar I. Seed germination and seed-bank ecology in halophytes[J].Seed development and germination,1995,599-628.
    [48] Chapman VJ. Salt marshes and salt deserts of the world[J]. Ecology ofHalophytes, Reimold, R. J., and Queen, W. H.(eads.), Academic Press,Inc. New York. p3-19,1974.1Fig,112Ref.,1974,
    [49] Khan MA, Gul B, Weber DJ. Seed germination in the Great Basinhalophyte Salsola iberica[J]. Canadian Journal of Botany,2002,80(80):650-655.
    [50] Rivers W, Weber D. The influence of salinity and temperature on seedgermination in Salicornia bigelovii[J]. Physiologia Plantarum,1971,24(24):73-75.
    [51] Okusanya O. An Experimental Investigation into the Ecology of SomeMaritime Cliff Species: II. Germination Studies[J]. The Journal ofEcology,1979,293-304.
    [52] Khan MA, Weber DJ. Factors influencing seed germination inSalicornia pacifica var. utahensis[J]. American Journal of Botany,1986,1163-1167.
    [53] Unger I. Influence of salinity on seed germination in succulenthalophytes[J]. Ecology,1962,43(43):763-764.
    [54] Ungar IA. The effect of salinity and temperature on seed germinationand growth of Hordeum jubatum[J]. Canadian Journal of Botany,1974,52(52):1357-1362.
    [55] Breen C, Everson C, Rogers K. Ecological studies on Sporobolusvirginicus (L.) Kunth with particular reference to salinity andinundation[J]. Hydrobiologia,1977,54(54):135-140.
    [56] Katembe WJ, Ungar IA, Mitchell JP. Effect of Salinity on Germinationand Seedling Growth of twoAtriplexspecies (Chenopodiaceae)[J].Annals Botany-london,1998,82(82):167-175.
    [57] Ungar IA, Capilupo F. An ecological life history study of Suaedadepressa (Pursh) Wats[J]. Advancing frontiers of plant sciences,1969,23(23):137-158.
    [58]王艳华,王爱云,柏新富.盐胁迫对三角滨藜种子萌发和幼苗生长的影响[J].烟台师范学院学报:自然科学版,2006,21(21):290-292.
    [59] Waisel Y, Ovadia S. Biological flora of Israel:3. Suaeda monoicaForssk. ex[J]. JF Gmel. Israel Journal of Botany,1972,21(21):42-52.
    [60] Ungar IA. Halophyte seed germination[J]. The Botanical Review,1978,44(44):233-264.
    [61] Williams MD, Ungar IA. The effect of environmental parameters onthe germination, growth, and development of Suaeda depressa (Pursh)Wats[J]. American Journal of Botany,1972,912-918.
    [62] Macke AJ, Ungar IA. The effects of salinity on germination and earlygrowth of Puccinellia nuttalliana[J]. Canadian Journal of Botany,1971,49(49):515-520.
    [63] Ungar I. Salinity, temperature, and growth regulator effects on seedgermination of Salicornia europaea L[J]. Aquatic Botany,1977,3(3):329-335.
    [64] Lesko G, Walker R. Effect of sea water on seed germination in twoPacific atoll beach species[J]. Ecology,1969,730-734.
    [65] Heydecker W, Higgins J, Gulliver R. Accelerated germination byosmotic seed treatment[J].1973,
    [66] Onnis A, Bellettato R. Dormienza e alotolleranza in due speciespontanee di Hordeum (H. murinum L. e H. marinum Huds.)[J]. PlantBiosystem,1972,106(106):101-113.
    [67] Ungar IA. An ecological study of the vegetation of the Big Salt Marsh,Stafford County, Kansas[M].1965:
    [68] Binet P. La germination des semences des halophytes[J]. Bull. Soc. Fr.Physiol. Veg,1964,10(10):253-263.
    [69] Kaufmann MR. Effects of water potential on germination of lettuce,sunflower, and citrus seeds[J]. Canadian Journal of Botany,1969,47(47):1761-1764.
    [70] McWilliam J, Phlllips P. Effect of osmotic and matric potentials on theavailability of water for seed germination[J]. Australian Journal ofBiological Sciences,1971,24(24):423-432.
    [71] Chatterton NJ, McKell CM. Atriplex polycarpa: I. Germination andgrowth as affected by sodium chloride in water cultures[J]. AgronomyJournal,1969,61(61):448-450.
    [72] Keren A, Evenari M. Some ecological aspects of distribution andgermination of Pancratium maritimum L[J]. Israel Journal of Botany,1974,23(23):202-215.
    [73] Lerner H, Mayer A, Evenari M. The nature of the germinationinhibitors present in dispersal units of Zygophyllum dumosum andTrigonella arabica[J]. Physiologia Plantarum,1959,12(12):245-250.
    [74] Ungar I. Halophyte seed germination[J]. The Botanical Review,1978,44(44):233-264.
    [75] Levitt J. Responses of plants to environmental stresses. Volume II.Water, radiation, salt, and other stresses[M]. Academic Press.,1980:
    [76] Strogonov BP. Structure and function of plant cells in saline habitats.New trends in the study of salt tolerance[M]. New York.: Halsted Press284pp.. Ecological anatomy, Salt, General article (PMBD,185508594),1973:
    [77] Gifford GF, Nelson ED. Uptake of22Na by intact seeds[J]. NewPhytologist,1965,64(64):360-365.
    [78] Redmann R. Osmotic and specific ion effects on the germination ofalfalfa[J]. Canadian Journal of Botany,1974,52(52):803-808.
    [79] Chaudhuri I, Wiebe H. Influence of calcium pretreatment on wheatgermination on saline media[J]. Plant Soil,1968,28(28):208-216.
    [80]阎顺国,沈禹颖.生态因子对碱茅种子萌发期耐盐性影响的数量分析[J].植物生态学报,1996,20(20):414-422.
    [81] Gul B, Weber DJ. Effect of salinity, light, and temperature ongermination in Allenrolfea occidentalis[J]. Canadian Journal ofBotany/Revue Canadien de Botanique,1999,77(77):240-246.
    [82] Huang Z, Zhang X, Zheng G, et al. Influence of light, temperature,salinity and storage on seed germination of Haloxylonammodendron[J]. Journal of Arid Environment,2003,55(55):453-464.
    [83] Badger KS, Ungar IA. The effects of salinity and temperature on thegermination of the inland halophyte Hordeum jubatum[J]. CanadianJournal of Botany,1989,67(67):1420-1425.
    [84] Okusanya O. The effect of sea water and temperature on thegermination behaviour of Crithmum maritimum[J]. PhysiologiaPlantarum,1977,41(41):265-267.
    [85] Khan MA, Ungar IA. Effect of salinity on seed germination ofTriglochin maritima under various temperature regimes[J]. West N AmNaturalist,1999,59(59):144-150.
    [86] Khan MA, Rizvi Y. Effect of salinity, temperature, and growthregulators on the germination and early seedling growth of Atriplexgriffithii var. stocksii[J]. Canadian Journal of Botany,1994,72(72):475-479.
    [87] Gulzar S, Khan M. Seed germination of a halophytic grass Aeluropuslagopoides[J]. Annals Botany-london,2001,87(87):319.
    [88] Khan M, Weber D. Factors influencing seed germination in Salicorniapacifica var. utahensis[J]. Amemrican Journal of Botany,1986,73(73):1163-1167.
    [89] Khan MA, Gul B, Weber DJ. Germination of dimorphic seeds ofSuaeda moquinii under high salinity stress[J]. Australian Journal ofBotany,2001,49(49):185-192.
    [90] Khan M, Ungar I. The effect of salinity and temperature on thegermination of polymorphic seeds and growth of Atriplex triangularisWilld[J]. American Journal of Botany,1984,481-489.
    [91] Ungar IA. Salinity, temperature, and growth regulator effects on seedgermination of Salicornia europaea L[J]. Aquatic Botany,1977,3(3):329-335.
    [92] Myers B, Morgan W. Germination of the salt-tolerant grass Diplachnefusca. II. Salinity responses[J]. Australian Journal of Botany,1989,37(37):239-251.
    [93] Khan M, Ungar I. Influence of Salinity and Temperature on theGermination of Haloxylon recurvum Bunge ex. Boiss.[J]. AnnalsBotany,1996,78(78):547-551.
    [94] Khan MA, Sheith, KH.. Effects of different levels of salinity on seedgermination and growth of Capsicum annuum.[J].Biologia,1996,22:15-16.
    [95] Ungar I. Effect of salinity on seed germination, growth, and ionaccumulation of Atriplex patula (Chenopodiaceae)[J]. AmericanJournal of Botany,1996,83(83):604-607.
    [96] Keiffer C, Ungar I. Germination responses of halophyte seeds exposedto prolonged hypersaline conditions[J]. Biology of salt tolerant plants,1995,43-50.
    [97] Khan M, Gul B, Weber D. Seed germination in the Great Basinhalophyte Salsola iberica[J]. Botany,2002,80(80):650-655.
    [98] Gul B, Weber DJ. Effect of salinity, light, and temperature ongermination in Allenrolfea occidentalis[J]. Canadian Journal of Botany,1999,77(77):240-246.
    [99] Bewley JD, Black M. Seeds: physiology of development andgermination[M]. Springer,1994:
    [100] Ungar IA. Ecophysiology of vascular halophytes[M]. CRC,1991:
    [101] Gulzar S, Khan M. Alleviation of salinity-induced dormancy inperennial grasses[J]. Biol Plantarum,2002,45(45):617-619.
    [102] Khan M, Gul B, Weber D. Temperature and high salinity effects ingerminating dimorphic seeds of Atriplex rosea[J]. West N AmericanNaturalist,2004,64(64):193–201.
    [103] Ajmal Khan M, Ungar IA, Showalter AM. The effect of salinity on thegrowth, water status, and ion content of a leaf succulent perennialhalophyte, Suaeda fruticosa (L.) Forssk[J]. Journal of AridEnvironment,2000,45(45):73-84.
    [104] Gul B, Weber D. Effect of Dormancy Relieving Compounds on theSeed Germination of Non-dormantAllenrolfea occidentalisunderSalinity Stress[J]. Ann Bot-london,1998,82(82):555.
    [105] Baskin CC, Baskin JM. Seeds: ecology, biogeography, and evolutionof dormancy and germination[M]. Academic Press,2000:
    [106] Hendrix SD. Variation in seed weight and its effects on germination inPastinaca sativa L.(Umbelliferae)[J]. American Journal of Botany,1984,795-802.
    [107] Ungar IA. Population ecology of halophyte seeds[J]. The BotanicalReview,1987,53(53):301-334.
    [108]赵仲华,曾群,赵淑清.植物春化作用的分子机理[J].植物学通报,2006,23(23):60-67.
    [109] Koornneef M, Alonso-Blanco C, Peeters AJM, et al. Genetic control offlowering time in Arabidopsis[J]. Annual Review of Plant Biology,1998,49(49):345-370.
    [110] Simpson GG, Gendall AR, Dean C. When to switch to flowering[J].Annual Review of Cell Development Biophysics,1999,15(15):519-550.
    [111]种康,雍伟东.高等植物春化作用研究进展[J].植物学通报,1999,16(16):481-487.
    [112] Chouard P. Vernalization and its relations to dormancy[J]. AnnualReview of Plant Physiology,1960,11(11):191-238.
    [113] Bernier G, Kinet JM, Sachs RM. The physiology of flowering[M].CRC Press Boca Raton, FL,1981.
    [114] Hackett WP, Hartmann HT. The influence of temperature on floralinitiation in the olive[J]. Physiologia Plantarum,1967,20(20):430-436.
    [115] Thompson H, Further studies on effect of temperature on initiation offlowering in celery45,1944, pp.425-430.
    [116] Purvis O, Gregory F. Studies in Vernalisation: XII. The Reversibilityby High Temperature of the Vernalised Condition in Petkus WinterRye[J]. Annals Botany-london,1952,16(16):1-21.
    [117] Purvis O. The physiological analysis of vernalization[J]. Encyclopediaof plant physiology,1961,16(16):76-122.
    [118] Lang A. Hyoscyamus niger[J]. CRC handbook of flowering,1986,5(5):144-186.
    [119]石磊,傅佑丽.植物春化作用研究进展[J].聊城大学学报:自然科学版,2005,18(18):39-42.
    [120] Meyer P. Transcriptional transgene silencing and chromatincomponents[J]. Plant Molelcular Biology,2000,43(43):221-234.
    [121] Habu Y, Kakutani T, Paszkowski J. Epigenetic developmentalmechanisms in plants: molecules and targets of plant epigeneticregulation[J]. Current Opinion of Genetic Development,2001,11(11):215-220.
    [122] Burn J, Bagnall D, Metzger J, et al. DNA methylation, vernalization,and the initiation of flowering[J]. Proceedings of the NationalAcademy of Sciences,1993,90(90):287.
    [123] Finnegan E, Genger R, Kovac K, et al. DNA methylation and thepromotion of flowering by vernalization[J]. Proceedings of theNational Academy of Sciences,1998,95(95):5824.
    [124] Amedeo P, Habu Y, Afsar K, et al. Disruption of the plant gene MOMreleases transcriptional silencing of methylated genes[J]. Nature,2000,405(405):203-206.
    [125]邓志刚,毛洪捷,单华金.春化作用的研究进展[J].通化师范学院学报,2009,50-51.
    [126] Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novelMADS domain protein that acts as a repressor of flowering[J]. ThePlant Cell Online,1999,11(11):949-956.
    [127] Sheldon CC, Rouse DT, Finnegan EJ, et al. The molecular basis ofvernalization: the central role of FLOWERING LOCUS C (FLC)[J].Proceedings of the National Academy of Sciences,2000,97(97):3753.
    [128] Johanson U, West J, Lister C, et al. Molecular analysis of FRIGIDA, amajor determinant of natural variation in Arabidopsis flowering time[J].Science,2000,290(290):344-347.
    [129] Michaels S, Amasino R. Memories of winter: vernalization and thecompetence to flower[J]. Plant, cell&environment,2000,23(23):1145-1153.
    [130] Michaels SD, Amasino RM. Loss of FLOWERING LOCUS C activityeliminates the late-flowering phenotype of FRIGIDA and autonomouspathway mutations but not responsiveness to vernalization[J]. ThePlant Cell Online,2001,13(13):935-942.
    [131] Chandler J, Dean C. Factors influencing the vernalization response andflowering time of late flowering mutants of Arabidopsis thaliana (L.)Heynh[J]. Journal of Experimental Botany,1994,45(45):1279-1288.
    [132] Gendall AR, Levy YY, Wilson A, et al. The VERNALIZATION2genemediates the epigenetic regulation of vernalization in Arabidopsis[J].Cell,2001,107(107):525-535.
    [133] Hay R, Ellis R. The control of flowering in wheat and barley: whatrecent advances in molecular genetics can reveal[J]. AnnalsBotany-london,1998,82(82):541-554.
    [134] Sheldon CC, Finnegan EJ, Rouse DT, et al. The control of floweringby vernalization[J]. Curr Opin Plant Biology,2000,3(3):418-422.
    [135] Bünning E, Stern K. über die tagesperiodischen Bewegungen derPrim rbl tter von Phaseolus multiflorus. II. Die Bewegungen beiThermokonstanz[J]. Ber. Dt. Botan. Ges,1930,48(48):227-252.
    [136] Melchers G. Die Wirkung von Genen, tiefen Temperaturen undblühenden Propfpartnern auf die Blühreife von Hyoscyamus[J].Biology. Zbl,1937,57(57):568-614.
    [137] Zeevaart JAD. Flower formation as studied by grafting[M]. H.Veenman,1958:
    [138] Kobayashi Y, Weigel D. Move on up, it’s time for change mobilesignals controlling photoperiod-dependent flowering[J]. Genes&development,2007,21(21):2371-2384.
    [139] Johnson E, Bradley M, Harberd NP, et al. Photoresponses oflight-grown phyA mutants of Arabidopsis (phytochrome A is requiredfor the perception of daylength extensions)[J]. Plant physiology,1994,105(105):141-149.
    [140] Mockler T, Yang H, Yu XH, et al. Regulation of photoperiodicflowering by Arabidopsis photoreceptors[J]. Proceedings of theNational Academy of Sciences,2003,100(100):2140.
    [141] Devlin PF, Kay SA. Cryptochromes are required for phytochromesignaling to the circadian clock but not for rhythmicity[J]. The PlantCell Online,2000,12(12):2499-2510.
    [142] Lin C, Yang H, Guo H, et al. Enhancement of blue-light sensitivity ofArabidopsis seedlings by a blue light receptor cryptochrome2[J].Proceedings of the National Academy of Sciences,1998,95(95):2686.
    [143] Kim JY, Song HR, Taylor BL, et al. Light-regulated translationmediates gated induction of the Arabidopsis clock protein LHY[J]. TheEMBO journal,2003,22(22):935-944.
    [144]陈晓,李思远,吴连成等.光周期影响植物花时的分子机制[J].西北植物学报,2006,26(26):1490-1499.
    [145] Doyle MR, Davis SJ, Bastow RM, et al. The ELF4gene controlscircadian rhythms and flowering time in Arabidopsis thaliana[J].Nature,2002,419(419):74-77.
    [146]彭凌涛.控制拟南芥和水稻开花时间光周期途径的分子机制[J].植物生理学通讯,2006,42(42):1021-1031.
    [147] Suárez-López P, Wheatley K, Robson F, et al. CONSTANS mediatesbetween the circadian clock and the control of flowering inArabidopsis[J]. Nature,2001,410(410):1116-1120.
    [148] Yoo SK, Chung KS, Kim J, et al. Constans activates suppressor ofoverexpression of constans1through Flowering Locus T to promoteflowering in Arabidopsis[J]. Plant physiology,2005,139(139):770-778.
    [149] Schmid M, Uhlenhaut NH, Godard F, et al. Dissection of floralinduction pathways using global expression analysis[J]. Development,2003,130(130):6001-6012.
    [150] Borner R, Kampmann G, Chandler J, et al. A MADS domain geneinvolved in the transition to flowering in Arabidopsis[J]. The PlantJournal,2008,24(24):591-599.
    [151]雍伟东,种康.高等植物开花时间决定的基因调控研究[J].科学通报,2000,45(45):455-466.
    [152] Moon J, Lee H, Kim M, et al. Analysis of flowering pathwayintegrators in Arabidopsis[J]. Plant Cell Physiology,2005,46(46):292-299.
    [153] Colasanti J, Coneva V. Mechanisms of floral induction in grasses:something borrowed, something new[J]. Plant physiology,2009,149(149):56-62.
    [154] Huang T, Bohlenius H, Eriksson S, et al. The mRNA of theArabidopsis gene FT moves from leaf to shoot apex and inducesflowering[J]. Science Signalling,2005,309(309):1694.
    [155] Abe M, Kobayashi Y, Yamamoto S, et al. FD, a bZIP protein mediatingsignals from the floral pathway integrator FT at the shoot apex[J].Science Signalling,2005,309(309):1052.
    [156] Lin MK, Belanger H, Lee YJ, et al. FLOWERING LOCUS T proteinmay act as the long-distance florigenic signal in the cucurbits[J]. ThePlant Cell Online,2007,19(19):1488-1506.
    [157] Corbesier L, Vincent C, Jang S, et al. FT protein movement contributesto long-distance signaling in floral induction of Arabidopsis[J]. ScienceSignalling,2007,316(316):1030.
    [158] Wigge PA, Kim MC, Jaeger KE, et al. Integration of spatial andtemporal information during floral induction in Arabidopsis[J]. ScienceSignalling,2005,309(309):1056.
    [159] Kabata-Pendias A. Soil–plant transfer of trace elements—anenvironmental issue[J]. Geoderma,2004,122(122):143-149.
    [160] Pacyna JM, Pacyna EG. An assessment of global and regionalemissions of trace metals to the atmosphere from anthropogenicsources worldwide[J]. Environmental Reviews,2001,9(9):269-298.
    [161] Gustafson GM, Salomon E, Jonsson S, et al. Fluxes of K, P, and Zn ina conventional and an organic dairy farming system through feed,animals, manure, and urine—a case study at jebyn, Sweden[J].European journal of agronomy,2003,20(20):89-99.
    [162] Chaney RL, Malik M, Li YM, et al. Phytoremediation of soil metals[J].Current opinion in Biotechnology,1997,8(8):279-284.
    [163]赵胡,李裕红.植物对重金属耐性机理的研究进展[J].阜阳师范学院学报:自然科学版,2008,25(25):35-40.
    [164]王俊,环境科学,张义生等.化学污染物与生态效应[M].中国环境科学出版社,1993:
    [165]刘静宜,汪安璞,陈定茂等.跨世纪环境化学展望[J].北京:1998年,1998,
    [166]刘春阳,张宇峰,滕洁.土壤中重金属污染的研究进展[J].污染防治技术,2006,19(19):42-45.
    [167]利锋.镉污染土壤的植物修复[J].广东微量元素科学,2004,11(11):22-26.
    [168] Seregin I, Ivanov V. Physiological aspects of cadmium and lead toxiceffects on higher plants[J]. Russian Journal of Plant Physiology,2001,48(48):523-544.
    [169]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(7):92-99.
    [170]储玲,刘登义,王友保等.铜污染对三叶草幼苗生长及活性氧代谢影响的研究[J].应用生态学报,2004,15(15):119-122.
    [171]倪吾钟,马海燕,余慎等.土壤—植物系统的铜污染及其生态健康效应[J].广东微量元素科学,2003,10(10):1-5.
    [172]宋玉芳,许华夏,任丽萍.重金属对土壤中萝卜种子发芽与根伸长抑制的生态毒性[J].生态学杂志,2001,20(20):4-8.
    [173]刘春生,史衍玺,马丽等.过量铜对苹果树生长及代谢的影响[J].植物营养与肥料学报,2000,6(6):451-456.
    [174]王慧忠,何翠屏,赵楠.铅对草坪植物生物量与叶绿素水平的影响[J].草业科学,2003,20(20):73-75.
    [175]史长青.重金属污染对水稻土酶活性的影响[J].土壤通报,1995,26(26):34-35.
    [176]张金彪,黄维南.镉对植物的生理生态效应的研究进展[J].生态学报,2000,20(20):514-523.
    [177]曹德菊,汤斌.铅,镉及其复合污染对蚕豆根尖细胞的诱变效应[J].激光生物学报,2004,13(13):302-305.
    [178] Halliwell B, Gutteridge J. Oxygen toxicity, oxygen radicals, transitionmetals and disease[J]. Biochemical Journal,1984,219(219):1.
    [179]杨刚,伍钧,唐亚.铅胁迫下植物抗性机制的研究进展[J].生态学杂志,2005,24(24):1507-1512.
    [180] Cobbett CS. Phytochelatin biosynthesis and function in heavy-metaldetoxification[J]. Current opinion in plant biology,2000,3(3):211-216.
    [181] Chang CC, Huang P. Semi-empirical simulation of Zn/Cd binding sitepreference in the metal binding domains of mammalianmetallothionein[J]. Protein engineering,1996,9(9):1165-1172.
    [182]袁瑾,李聪.镉离子—氨基酸配合物在解释植物体对镉离子解毒机理上的研究[J].氨基酸杂志,1993,7-10.
    [183] Citterio S, Santagostino A, Fumagalli P, et al. Heavy metal toleranceand accumulation of Cd, Cr and Ni by Cannabis sativa L[J]. Plant andsoil,2003,256(256):243-252.
    [184]叶海波,林琴,陈建弟等.重金属复合污染的研究进展[J].台州学院学报,2005,27(27):64-68.
    [185]华珞,白铃玉.镉锌复合污染对小麦籽粒镉累积的影响和有机肥调控作用[J].农业环境保护,2002,21(21):393-398.
    [186]李森林,王焕,吴玉树.凤眼莲中锌对镉的拮抗作用[J].环境科学学报,1990,10(10):249-254.
    [187] Davies K, Davies M, Francis D. Zinc‐induced vacuolation in rootmeristematic cells of Festuca rubra L[J]. Plant, cell&environment,2006,14(14):399-406.
    [188] Lasat MM, Baker AJM, Kochian LV. Physiological characterization ofroot Zn2+absorption and translocation to shoots in Znhyperaccumulator and nonaccumulator species of Thlaspi[J]. Plantphysiology,1996,112(112):1715-1722.
    [189] Kr mer U, Pickering IJ, Prince RC, et al. Subcellular localization andspeciation of nickel in hyperaccumulator and non-accumulatorThlaspispecies[J]. Plant physiology,2000,122(122):1343-1354.
    [190] Lai Y, Wang Q, Yang L, et al. Subcellular distribution of rare earthelements and characterization of their binding species in a newlydiscovered hyperaccumulator Pronephrium simplex[J]. Talanta,2006,70(70):26-31.
    [191] Nalimova A, Popova V, Tsoglin L, et al. The effects of copper and zincon Spirulina platensis growth and heavy metal accumulation in itscells[J]. Russian Journal of Plant Physiology,2005,52(52):229-234.
    [192] Li TQ, Yang XE, Yang JY, et al. Zn accumulation and subcellulardistribution in the Zn Hyperaccumulator Sedum alfredii Hance[J].Pedosphere,2006,16(16):616-623.
    [193]许桂莲,王焕,吴玉树等. Zn, Cd及其复合对小麦幼苗吸收Ca, Fe,Mn的影响[J].应用生态学报,2001,12(12):275-278.
    [194] Li WX, Chen TB, Huang ZC, et al. Effect of arsenic on chloroplastultrastructure and calcium distribution in arsenic hyperaccumulatorPteris vittata L[J]. Chemosphere,2006,62(62):803-809.
    [195]赵新华,马伟芳,孙井梅等.玉米修复河道疏浚底泥重金属-有机复合污染的根际效应[J].农业环境科学学报,2006,25(25):100-106.
    [196]林琦,陈英旭,陈怀满等.根系分泌物与重金属的化学行为研究[J].植物营养与肥料学报,2004,9(9):425-431.
    [197] Tatár E, Mihucz V, Varga A, et al. Determination of organic acids inxylem sap of cucumber: Effect of lead contamination[J].Microchemical Journal,1998,58(58):306-314.
    [198]何振立.污染及有益元素的土壤化学平衡[M].中国环境科学出版社,1998:
    [199]周启星,黄国宏.环境生物地球化学及全球环境变化[M].科学出版社,2001:
    [200]骆永明.强化植物修复的螯合诱导技术及其环境风险[J].土壤,2000,32(32):57-61.
    [201]袁敏,铁柏请,唐美珍.土壤重金属污染植物组合修复技术的应用[J].云南农业大学学报,2005,20(20):274-704.
    [202]魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨[J].生态学杂志,2004,23(23):65-72.
    [203] Baker A, Brooks RR. Terrestrial higher plants which hyperaccumulatemetallic elements. A review of their distribution, ecology andphytochemistry[J]. Biorecovery,1989,1(1):81-126.
    [204] Brooks R, Lee J, Reeves R, et al. Detection of nickeliferous rocks byanalysis of herbarium specimens of indicator plants[J]. Journal ofGeochemical Exploration,1977,7(7):49-57.
    [205]陈同斌,韦朝阳,黄泽春等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(47):207-210.
    [206]韦朝阳,陈同斌,黄泽春等.大叶井口边草——一种新发现的富集砷的植物[J].生态学报,2002,22(22):777-778.
    [207]杨肖娥,傅承新.东南景天(Sedum alfreii H)—一种新的锌超积累植物[J].科学通报,2002,47(47):1003-1006.
    [208]薛生国,陈英旭,林琦等.中国首次发现的锰超积累植物——商陆[J].生态学报,2003,23(23):935-937.
    [209]刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)——一种新的镉超富集植物[J].科学通报,2003,48(48):2046-2049.
    [210]唐世荣.重金属在海州香薷和鸭跖草叶片提取物中的分配[J].植物生理学通讯,2000,36(36):128-129.
    [211]汤叶涛,仇荣亮,曾晓雯等.一种新的多金属超富集植物——圆锥南芥(Arabis paniculata L.)[J].中山大学学报:自然科学版,2005,44(44):135-136.
    [212] Lasat M, Cornish J, Ebbs S, et al. Phytoextraction of cadmium andzinc from a contaminated soil[J]. Journal of Environmental Quality,1997,26(26):1424-1430.
    [213] Brown SL, Chaney RL, Angle JS, et al. Zinc and cadmium uptake byhyperaccumulator Thlaspi caerulescens and metal tolerant Silenevulgaris grown on sludge-amended soils[J]. Environmental science&technology,1995,29(29):1581-1585.
    [214] Keiffer CH, Ungar IA. Germination and establishment of halophyteson brine\affected soils[J]. J Appllied Ecology,2002,39(39):402-415.
    [215] Stumpf D, Prisco J, Weeks J, et al. Salinity and Salicornia bigeloviiTorr. seedling establishment. Water relations[J]. Journal ofExperimental Botany,1986,37(37):160-169.
    [216] Iqbal M, Ashraf M, Jamil A, et al. Does Seed Priming Induce Changesin the Levels of Some Endogenous Plant Hormones in HexaploidWheat Plants Under Salt Stress?[J]. Journal of Integrative PlantBiology,2006,48(48):181-189.
    [217] Song J, Feng G, Tian C, et al. Strategies for adaptation of Suaedaphysophora, Haloxylon ammodendron and Haloxylon persicum to asaline environment during seed-germination stage[J]. AnnalsBotany-london,2005,96(96):399-405.
    [218] Song J, Feng G, Zhang F. Salinity and temperature effects ongermination for three salt-resistant euhalophytes, Halostachys caspica,Kalidium foliatum and Halocnemum strobilaceum[J]. Plant Soil,2006,279(279):201-207.
    [219] Pujol J, Calvo J, Ramirez-Diaz L. Recovery of germination fromdifferent osmotic conditions by four halophytes from southeasternSpain[J]. Annals Botany-london,2000,85(85):279-286.
    [220]张殿忠,汪沛洪,赵会贤. Determination of the content of free prolinein wheat leaves[J].植物生理学通讯,1990,1(1):62-65.
    [221]林植芳,李双顺,张东林.采后荔枝果实中氧化和过氧化作用的变化[J].植物学报,1988,30(30):382-387.
    [222] Sosa L, Llanes A, Reinoso H, et al. Osmotic and specific ion effects onthe germination of Prosopis strombulifera[J]. Annals Botany-london,2005,96(96):261-267.
    [223] Weber E, D'Antonio CM. Germination and growth responses ofhybridizing Carpobrotus species (Aizoaceae) from coastal California tosoil salinity[J]. American Journal of Botany,1999,86(86):1257-1263.
    [224] Khan M, Ungar I. Effects of thermoperiod on recovery of seedgermination of halophytes from saline conditions[J]. American Journalof Botany,1997,84(84):279-283.
    [225] Jamil M, Rha E. The effect of salinity (NaCl) on the germination andseedling of sugar beet (Beta vulgaris L.) and cabbage (Brassicaoleracea capitata L.)[J]. Korean Jounal of Plant Research,2004,7(7):226-232.
    [226] Bor M, zdemir F, Türkan I. The effect of salt stress on lipidperoxidation and antioxidants in leaves of sugar beet Beta vulgaris L.and wild beet Beta maritima L[J]. Plant Science,2003,164(164):77-84.
    [227] Shabala S, Cuin TA. Potassium transport and plant salt tolerance[J].Physiologia Plantarum,2008,133(133):651-669.
    [228] Kunert KJ, Ederer M. Leaf aging and lipid peroxidation: the role of theantioxidants vitamin C and E[J]. Physiologia plantarum,1985,65(65):85-88.
    [229] Azooz M, Shaddad M, Abdel-Latef A. The accumulation andcompartmentation of proline in relation to salt tolerance of threesorghum cultivars[J]. Indian Journal of Plant Physiology,2004,9(9):1-8.
    [230] Nordborg M, Bergelson J. The effect of seed and rosette cold treatmenton germination and flowering time in some Arabidopsis thaliana(Brassicaceae) ecotypes[J]. American Journal of Botany,1999,86(86):470-475.
    [231] Abbo S, Lev‐Yadun S, Galwey N. Vernalization response of wildchickpea[J]. New Phytologist,2002,154(154):695-701.
    [232] Bernier G, Havelange A, Houssa C, et al. Physiological signals thatinduce flowering[J]. Plant Cell,1993,5(5):1147.
    [233] Michaels SD. Flowering time regulation produces much fruit[J].Current Opinion of Plant Biology,2009,12(12):75-80.
    [234] Dennis ES. Vernalization in cereals Elizabeth S Dennis and W JamesPeacock[J]. Journal of Biology,2009,8(8):57.
    [235] Suge H. Re-examination on the role of vernalization and photoperiodin the flowering of Brassica crops under controlled environment[J].Japanese Journal of Breeding,1984,34(34):
    [236] Yan L, Loukoianov A, Blechl A, et al. The wheat VRN2gene is aflowering repressor down-regulated by vernalization[J]. Science'sSTKE,2004,303(303):1640.
    [237]刘爱荣,赵可夫.盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用[J].植物生理与分子生物学学报,2005,389-395.
    [238] Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novelMADS domain protein that acts as a repressor of flowering[J]. PlantCell,1999,11(11):949-956.
    [239] Sheldon CC, Burn JE, Perez PP, et al. The FLF MADS box gene: arepressor of flowering in Arabidopsis regulated by vernalization andmethylation[J]. Plant Cell,1999,11(11):445-458.
    [240] Sheldon CC, Burn JE, Perez PP, et al. The FLF MADS box gene: arepressor of flowering in Arabidopsis regulated by vernalization andmethylation[J]. The Plant Cell Online,1999,11(11):445-458.
    [241] Sheldon CC, Rouse DT, Finnegan EJ, et al. The molecular basis ofvernalization: the central role of FLOWERING LOCUS C (FLC)[J].Proceedings of the National Academy of Sciences,2000,97(97):3753.
    [242] Pang Q, Chen S, Dai S, et al. Comparative proteomics of salt tolerancein Arabidopsis thaliana and Thellungiella halophila [J]. Journal ofProteome Research2010,9(9):2584-2599.
    [243] Inan G, Zhang Q, Li P, et al. Salt cress. A halophyte and cryophyteArabidopsis relative model system and its applicability to moleculargenetic analyses of growth and development of extremophiles[J]. PlantPhysiology,2004,135(135):1718-1737.
    [244] Fang Q, Xu Z, Song R. Cloning, characterization and geneticengineering of FLC homolog in Thellungiella halophila [J].Biochemical and Biophysical Research Communications,2006,347(347):707-714.
    [245] Ballerini ES, Kramer EM. Environmental and molecular analysis ofthe floral transition in the lower eudicot Aquilegia formosa[J].EvoDevo,2011,2(2):1-20.
    [246] Kubota S, Momose H, Yoneda K, et al. Lavandula x intermedia is aVernalization Type Plant[J]. Japanese Agriculture Research,2010,44(44):67-72.
    [247] Schwartz CJ, Doyle MR, Manzaneda AJ, et al. Natural variation offlowering time and vernalization responsiveness in Brachypodiumdistachyon[J]. Bioenergy Research,2010,3(3):38-46.
    [248] Bressan RA, Zhang C, Zhang H, et al. Learning from the Arabidopsisexperience. The next gene search paradigm[J]. Plant Physiology2001,127(127):1354-1360.
    [249] Runkle E, Fisher P. Photoperiod and flowering[J]. Lighting Up Profits:Understanding Greenhouse Lighting. Meister Media Worldwide,Willoughby, OH,2004,25-32.
    [250] Furuta T. Photoperiod and flowering of Chrysanthemum morifolium[J].Proceeding of American Society for Horticultural Science,1954,63(63):457-461.
    [251] Turesson G. The species and the variety as ecological units[J].Hereditas,1922,3(3):100-113.
    [252] Sanda S, John M, Amasino R. Analysis of flowering time in ecotypesof Arabidopsis thaliana[J]. Journal of Heredity,1997,88(88):69-72.
    [253] Alonso-Blanco C, El-Assal SED, Coupland G, et al. Analysis of naturalallelic variation at flowering time loci in the Landsberg erecta andCape Verde Islands ecotypes of Arabidopsis thaliana[J]. Genetics,1998,149(149):749-764.
    [254] Amtmann A, Bohnert HJ, Bressan RA. Abiotic stress and plant genomeevolution. Search for new models[J]. Plant Physiology,2005,138(138):127-130.
    [255] Thei en G. Plant Breeding: MADS ways of memorizing winter:vernalization in weed and wheat[J]. Progress in Botany,2006,67(67):162-177.
    [256] Dennis ES, Peacock WJ. Vernalization in cereals[J]. Journal of Biology,2009,8(8):1-4.
    [257]刘静,张芳,崔悦慧等.小美旱杨不同部位可溶盐离子含量的季节动态及影响因素[J].干旱区资源与环境,2006,20(20):1762181.
    [258]刘友良,汪良驹,余叔文等.植物对盐胁迫的反应和耐盐性[J].植物生理与分子生物学,1998,3(3):752-769.
    [259]赵可夫,冯立田.中国盐生植物资源[M].科学出版社,2001:
    [260]沈伟其.测定水稻叶片叶绿素含量的混合液提取法[J].植物生理学通讯,1988,3(3):4.
    [261] Zhang DZ, Wang PH, Zhao HX. Determination of the content of freeproline in wheat leaves[J]. Plant Physiology,1990,04.
    [262]詹亚光,陈全淑.盐胁迫下树木的K+和Na+含量变化特点及其耐盐性[J].东北林业大学学报,1999,27(27):24-27.
    [263]沈善敏,宇万太,张璐.杨树主要营养元素内循环及外循环研究Ⅱ.落叶前后养分在植株体内外的迁移和循环[J].应用生态学报,1993,4(4):27-31.
    [264]张剑斌,唐永林,赵永和等.银中杨营养元素含量及季节变化动态的研究[J].防护林科技,1993,3(3):21-25.
    [265]薛立,薛达.名古屋风景林凋落物和凋落叶养分含量季节动态的研究[J].植物生态学报,2001,25(25):359-365.
    [266]高永生,王锁民.植物盐适应性调节机制的研究进展[J].草业学报,2003,12(12):1-6.
    [267]谢瑞芝,董树亭,胡昌浩.植物硫素营养研究进展[J].中国农学通报,2002,18(18):65-69.
    [268] Singh M. VA review of the sulphur research activities of theICAR-AICRP micro-and secondary nutrients project[J]. Sulphur inAgriculture,1995,19(19):35-46.
    [269]迟丽华,宋凤斌.松嫩平原羊草和虎尾草生物量及钠钾元素季节性变化的研究[J].农业系统科学与综合研究,2007,23(23):430-433.
    [270]杨劲松,姚荣江.黄河三角洲地区土壤水盐空间变异特征研究[J].地理科学,2007,27(27):348-353.
    [271] Hong Z, Lakkineni K, Zhang Z, et al. Removal of feedback inhibitionof Δ1-pyrroline-5-carboxylate synthetase results in increased prolineaccumulation and protection of plants from osmotic stress[J]. Plantphysiology,2000,122(122):1129-1136.
    [272] Hoque MA, Banu M, Okuma E, et al. Exogenous proline andglycinebetaine increase NaCl-induced ascorbate-glutathione cycleenzyme activities, and proline improves salt tolerance more thanglycinebetaine in tobacco Bright Yellow-2suspension-cultured cells[J].Journal of Plant Physiology,2007,164(164):1457.
    [273] Murake zy éP, Nagy Z, Duhazé C, et al. Seasonal changes in thelevels of compatible osmolytes in three halophytic species of inlandsaline vegetation in Hungary[J]. Journal of plant physiology,2003,160(160):395-401.
    [274]周瑞莲,赵哈林.高寒山区牧草生长过程中低温保护物质的作用[J].中国草地,2001,23(23):19-26.
    [275]张国民,李忠杰,王春艳.苗期低温对玉米体内脯氨酸,电导率及光合作用的影响[J].中国农业气象,1999,
    [276]孙德岭,方文惠.温度变化对番茄幼苗抗寒性的影响[J].华北农学报,1999,14(14):75-78.
    [277]王松华,周阮宝.三叶期前水稻幼苗抗寒生理研究[J].安徽农业技术师范学院学报,1998,12(12):15-18.
    [278] Yelenosky G. Accumulation of free proline in citrus leaves during coldhardening of young trees in controlled temperature regimes[J]. Plantphysiology,1979,64(64):425-427.
    [279]严寒静,谈锋.栀子叶片生理特性与抗寒性的关系[J].植物资源与环境学报,2005,14(14):21-24.
    [280] Hetherington SE, He J, Smillie RM. Photoinhibition at lowtemperature in chilling-sensitive and-resistant plants[J]. Plantphysiology,1989,90(90):1609-1615.
    [281]余叔文,植物学.植物生理与分子生物学[M].科学出版社,1992.
    [282] Clemente R, Walker DJ, Roig A, et al. Heavy metal bioavailability in asoil affected by mineral sulphides contamination following the minespillage at Aznalcollar (Spain)[J]. Biodegradation,2003,14(14):199-205.
    [283]顾继光,林秋奇,胡韧等.土壤—植物系统中重金属污染的治理途径及其研究展望[J].土壤通报,2005,36(36):128-133.
    [284]赵可夫,李法曾.中国盐生植物[J].北京:科学出版社,1999,48~49,58~59,173~177.
    [285] Zhu JK. Plant salt tolerance[J]. Trends in plant science,2001,6(6):66-71.
    [286] Volkov V, Wang B, Dominy P, et al. Thellungiella halophila, a salt‐tolerant relative of Arabidopsis thaliana, possesses effectivemechanisms to discriminate between potassium and sodium[J]. Plant,Cell&Environment,2004,27(27):1-14.
    [287]周国华,秦绪文,董岩翔.土壤环境质量标准的制定原则与方法[J].地质通报,2005,24(24):721-727.
    [288] Chamberlain A. Fallout of lead and uptake by crops[J]. AtmosphericEnvironment (1967),1983,17(17):693-706.
    [289] Baker A, Reeves R, Hajar A. Heavy metal accumulation and tolerancein British populations of the metallophyte Thlaspi caerulescens J.&C.Presl (Brassicaceae)[J]. New Phytologist,1994,127(127):61-68.
    [290] Horler D, Barber J, Barringer A. Effects of heavy metals on theabsorbance and reflectance spectra of plants[J]. International Journal ofRemote Sensing1980,1(1):121-136
    [291]孙健,铁柏清,钱湛等. Cu, Cd, Pb, Zn, As复合污染对灯心草的生理毒性效应[J].土壤,2007,39(39):279-285.
    [292] Liu J, Zhou Q, Sun T, et al. Growth responses of three ornamentalplants to Cd and Cd-Pb stress and their metal accumulationcharacteristics[J]. Journal of hazardous materials,2008,151(151):261-267.
    [293]徐进,魏嵬,韩璐等.重金属对油菜种子萌发和胚根生长的影响[J].西北植物学报,2008,27(27):2263-2268.
    [294]田晓锋,魏虹,贾中民等.重金属镉(Cd2+)对梧桐幼苗根生长及根系形态的影响[J].西南师范大学学报:自然科学版,2008,33(33):93-98.
    [295]宋菲,郭玉文,刘孝义.镉,锌,铅复合污染对菠菜的影响[J].农业环境保护,1996,15(15):9-14.
    [296]曹会聪,王金达,张学林.黑土中Cd, Pb, As复合污染对油菜的影响研究[J].农业系统科学与综合研究,2007,23(23):293-296.
    [297]王新,梁仁禄,周启星. Cd-Pb复合污染在土壤-水稻系统中生态效应的研究[J].农村生态环境,2001,17(17):41-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700