用户名: 密码: 验证码:
多不饱和脂肪酸生物合成途径相关酶基因的克隆及在集胞藻PCC6803中的表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多不饱和脂肪酸(PUFAs)在营养和医学上具有重要作用,目前已成为研究开发的热点。传统PUFAs产品主要来源于鱼油及少数贝类,但对鱼类的过度捕捞已造成严重的资源和环境问题,并且目前PUFAs主要从鱼油中提取,工艺复杂,价格昂贵,因此探索其它途径,开发新的可商业化生产的替代PUFAs资源成为人们关注的焦点,而利用基因工程方法生产PUFAs已成为一种新的有效手段。
     本实验克隆了PUFAs生物合成途径中的硫脂酶基因、△15和Δ6脂肪酸去饱和酶基因,并构建了花生、蓝藻和大肠杆菌相应的表达载体,进行了遗传转化,主要研究结果如下:
     1.花生硫脂酶基因的克隆及表达分析
     (1)以花生栽培品种‘鲁花14’为材料,通过RACE结合生物信息学方法首次克隆了长度为1650bp的花生AhFatA基因cDNA片段,编码372个氨基酸,分子量约为40.96kDa,基因组扩增表明该基因无内含子序列;利用同源克隆方法获得了一个长度为1242bp的AhFatBl基因cDNA片段,编码413个氨基酸,分子量约为45.47kDa,基因组序列全长为2996bp,含有6个外显子和5个内含子。亚细胞定位结果表明,AhFatA、AhFatBl基因编码的蛋白分布于细胞膜、细胞核及细胞质中。基因表达模式分析结果表明,AhFatA基因在种子中表达量最高,在花生果针入土后60天种子中表达量达到最高峰;AhFatBl基因在茎中表达量最高,在花生果针入土第70天种子中表达量达到最高峰。说明硫脂酶基因在花生种子脂肪酸积累和组成上作用明显。为进一步鉴定该基因的功能,构建了CaMV35S和NapinB启动子驱动的AhFatA、AhFatBl基因的正、反义植物表达载体,利用农杆菌介导法将它们导入花生,从过量表达及抑制表达角度验证该基因的功能,目前已获得T1代转基因花生植株,PCR检测结果表明已获得阳性植株,相关验证实验正在进行中。本研究将为花生基因工程改造和研究提供新脂肪酸种质资源和理论基础。
     (2)构建了GST-AhFatA和GST-AhFatBl融合蛋白的表达载体并在大肠杆菌BL21(DE3)中表达,获得67.93kDa和72.44kDa的融合蛋白,将37℃和25℃下培养的菌株收集干燥后进行脂肪酸组成和成分分析,结果表明,AhFatA能有效增加大肠杆菌中C16:1和C18:1含量,而AhFatBl可明显增加大肠杆菌中C14:0、C16:1和C18:1含量。初步证明花生硫脂酶基因有利于增加PUFAs上游底物的合成。
     (3)分别构建了集胞藻PCC6803psbA2启动子驱动的花生硫脂酶基因同源重组载体,并成功转化集胞藻PCC6803,气相色谱法分析转基因藻中脂肪酸组成和含量,结果表明,在30℃及20℃混养条件下,转花生硫脂酶基因集胞藻中C16:1和C18:0含量均明显提高。
     2.ω-3生物合成途径脂肪酸去饱和酶基因在集胞藻PCC6803的表达研究
     (1)克隆集胞藻PCC6803中△15和A6脂肪酸去饱和酶基因,人工合成串珠链孢霉Δ12/Δ15脂肪酸去饱和酶基因和高山被孢酶△6脂肪酸去饱和酶基因。将来源于集胞藻PCC6803的psbA2基因启动子与所获得的脂肪酸去饱和酶基因全编码序列进行重组,共构建10个同源重组质粒并转化集胞藻PCC6803,通过同源序列双交换将重组基因整合到集胞藻PCC6803染色体上以获得相应转基因藻。
     (2)气相色谱法分析检测转基因集胞藻中脂肪酸组成和含量,结果表明,转脂肪酸去饱和酶基因集胞藻中C18:3n3和C18:4含量明显提高,同时降低了C18:3n6含量,降低了脂肪酸ω6/ω3比例。
     本实验通过对花生硫酯酶基因、集胞藻PCC6803△15脂肪酸去饱和酶基因、集胞藻PCC6803A6脂肪酸去饱和酶基因、串珠链孢霉△12/A15脂肪酸去饱和酶基因和高山被孢霉△6脂肪酸去饱和酶基因进行转集胞藻PCC6803研究,获得高产PUFAs的转基因藻株,为提高蓝藻中PUFAs含量研究奠定基础,同时为下一步进行大规模生产二十碳五烯酸和二十二碳六烯酸提供理论依据和实验方案。
Polyunsaturated fatty acids (PUFAs) are essential for nutrition and medicine, which have become the hot point for research and industry development in recent years. Traditional polyunsaturated fatty acid products mainly come from fish oil and few shellfish, but overfishing has caused serious environmental and resource problems, and the PUFAs have the problems because of complex separation process and expensive cost. Exploring other ways to develop new commercial productions of PUFAs to substitute the convential resources has become the focus, and utilizing the gene engineering method to produce PUFAs is a new effective means.
     In this paper, key enzyme genes of fatty acid biosynthetic pathway were cloned and the corresponding expression vectors of peanut, cyanobacteria and Escherichia coli for genetic transformation were constructed and transformed. The main achievements of our studies are as follows:
     1. Cloning and expression analysis of Acyl-ACP Thioesterases from Arachis hypogaea L.
     (1) Peanut cultivar'Luhua14'was used in this study. A cDNA fragment of AhFatA which has1650bp was cloned by RACE and Bioinformatic methods. Sequence analysis shows that the open reading frame (ORF) encodes372amino acids, with a calculated molecular mass of40kDa, and the gene has no intron sequence. In addition, a1.2kb cDNA fragment of AhFatB1was amplified using RT-PCR method. Sequence analysis shows that it encodes413amino acids with molecular mass of45.47kDa, a2996bp DNA fragment was isolated and the genomic DNA sequence has six exons and five introns. The subcellular localization analysis indicates that both AhFatA and AhFatB1are localized in cytomembrane, cytoplasm and also in nucleus. The expression patterns of AhFatA and AhFatB1were detected by semi-quantitative RT-PCR and real-time quantitative RT-PCR in different tissues and seeds in different stages, the results showed that the AhFatA transcripts were detected most strongly in seeds of wild-type A. hypogaea L. and were higher at60days after pegging (DAP); the AhFatB1transcripts are detected most strongly in stems and are highest at70DAP, which demonstrates that Fat plays a very important role in fatty acids composition and accumulation of peanut seeds. To further identify the functions of AhFatA and AhFatB1, the sense and antisense plant expression vectors driven by35S promoter and NapinB promoter were constructed and introduced into peanut genome by Agrobacterium-mediated transformation respectively. The transgenic peanuts were obtained and examined by PCR, the verification experiment is in progress. This study will provide new germplasm resources and technical guidance for genetic engineering and research in peanuts.
     (2) The prokaryotic expression vectors of GST-AhFatA and GST-AhFatB1were constructed and expressed in E. coli BL21(DE3) and the fusion protein was obtained. The transformants cultured at37℃and25℃were collected and dryed, then we measured the fatty acid by gas chromatography (GC). The results showed that AhFatA can increase the contents of palmitoleic acid and oleic acid effectively and AhFatB1can increase the contents of myristic acid, palmitoleic acid and oleic acid effectively. These results indicates that Acyl-ACP Thioesterases of peanut were at least partially responsible for improving the synthesis of upstream substrate of PUFAs.
     (3) The homologous recombinant vectors of Acyl-ACP thioesterases of peanut driven by psbA2promoter were constructed and transformed into Synechocystis sp. PCC6803. The gas chromatography analysis shows that the content of palmitoleic acid and stearic acid increased obviously in transgenic cyanobacteria.
     2. Expression studies of fatty acids desaturases of ω-3biosynthetic pathway in Synechocystis sp. PCC6803
     (1) In this paper, the△15and△6fatty acid desaturases of Synechocystis sp. PCC6803were cloned and the Gibberella fujikuroi bifunctional△12/△15fatty acid desaturase and the Mortierella alpina A6fatty acid desaturase were optimized and synthesized. The psbA2promoter of Synechocystis sp. PCC6803was cloned and reconstructed with fatty acid desaturases,10recombinant plasmids were constructed and transformed Synechocystis sp. PCC6803.
     (2) The gas chromatography analysis shows that the content of a-linolenic acid and stearidonic acid in transgenic cyanobacteria increases significantly and reduces γ-linolenic acid content and ω6/ω3fatty acid ratio.
     In this study, some genes about fatty acid synthesis were cloned and transformed into Synechocystis sp. PCC6803, then the transgenic cyanobacteria that high polyunsaturated fatty acids were obtained. This study lays foundation for improving the fatty acids content of cyanobacteria and providing the theoretical basis and experimental programs for large-scale production of EPA and DHA.
引文
Beisson, F., Koo, A.J., Ruuska, S. et al. (2003) Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags inorgans, and a web-based database. Plant Physiol.132(2): 681-697.
    Benatti, P., Peluso, G., Nicolai, R. et al. (2004) Polyunsaturated fatty acids: biochemical, nutritional and epigenetic properties. J. Am. Coll. Nutr.23(4): 281-302.
    Bligh, E.G., and Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol.37(8):911-917.
    Bonaventure, G., Salas, J.J., Pollard, M.R., et al. (2003) Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth. Plant Cell.15(4):1020-1033.
    Bouyoub, A., Vernotte, C. and Astier, C. (1993) Functional analysis of the two homologous psbA gene copies in Synechocystis PCC 6714 and PCC 6803. Plant Mol. Biol.21(2):249-258.
    Browse, J. and Somerville, C. (1991) Glycerolipidsynthesis:biochemistry and regulation. Ann. Rev. Plant Physiol. Plant Mol. Biol.42:467-506.
    Chauvat, F., Vries, L., Ende, A. and Arkel, G.A. (1986) A host-vector system for gene cloning in the cyanobacterium Synechocystis PCC 6803. Mol. Gen. Genet.204(1): 185-191.
    Chen, R., Matsui, K., Ogawa, M., Oe, M., Ochiai, M., Kawashima, H., Sakuradani, E., Shimizu, S., Ishimoto, M., Hayashi, M., Murooka, Y. and Tanaka, Y. (2006) Expression of △6, △5 desaturase and GLELO elongase genes from Mortierella alpine for production of arachidonic acid in soybean [Glycine max (L.) Merrill] seeds. Plant Sci.170(2):399-406.
    Clarke, S.D. and Jump, D.B. (1996) Polyunsaturated fatty acid regulation of hepatic gene transcription. J. Nutr.126(4S):1105S-1109S.
    Crawford, M. (2000) Placental delivery of arachidonic and docosahexaenoic acids: implications for the lipid nutrition of preterm infants. Am. J. Clin. Nutr.71(1S): 275S-284S.
    Damude, H.G., Zhang, H.X., Farrall, L., Ripp, K.G., Tomb, J.F., Hollerbach, D. and Yadav, N.S. (2006) Identification of bifunctional △12/ω3 fatty acid desaturases for improving the ratio of ω3 to A6 fatty acids in microbes and plants. PNAS.103(25): 9446-9451.
    Davies, H.M., Anderson, L., Fan, C. et al. (1991) Developmental inroduction, purification, and further characterizationof 12:0-ACP thioesterase from immature cotyledons of Umbellularia californica. Arch. Biochem. Biophys.290(1):37-45.
    Davis, M.S., Solbiati, J., Cronan, J.E. Jr. (2000) Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J. Biol. Chem.275(37):28593-28598.
    Dextera, J. and Fu, P. (2009) Metabolic engineering of cyanobacteria for ethanol production. Energy Environ. Sci.2:857-864.
    Dormann, P., Voelker, T.A., Ohlrogge, J.B. (2000). Accumulation of palmitate in Arabidopsis mediated by the acyl-acyl carrier protein thioesterase FATB1. Plant Physiol.123(2):637-643.
    Facciotti, M.T. and Yuan, L. (1998) Molecular dissection of the plant acyl-acyl carrier protein thioesterases. Eur. J. Lipid Sci.Technol.100(4-5):167-172.
    Fulda, S., Huang, F., Nilsson, F., Hagemann, M and Norling, B. (2000) Proteomics of Synechocystis sp. strain PCC6803. Identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur. J. Biochem.267(19):5900-5907.
    Funk, C.D. (2001) Prostaglandins and leukotrienes:advances in eicosanoid biology. Science.294(5548):1871-1875.
    Gill, I. and Valiveyt, R. (1997) Polyunsaturated fatty acids, Part1:occurrence, biological activities and applications. Trends Biotehnol.15(10):401-409.
    Ginalski, K. and Rychlewski, L. (2003) Detection of reliable and unexpected protein fold predictions using 3D-Jury. Nucleic Acids Res.31(13):3291-3292.
    Golden, S.S. and Sherman, L.A. (1984). Optimal condition for genetic transformation of cyanobacterium Anacystis nidulans R2. J. Bacteriol.158(1):36-42.
    Golden, S.S. (1988) Mutagenesis of cyanobaeteria by classical and gene transfer-based methods. Methods Enzymol.167:717-727.
    Grigorieva, G. and Shestakov, S. (1982) Transformation in the cyanobacterium Synechocystis sp.6803. FEMS Microbiol. Lett.13(4):367-370.
    Hawkins, D.J. and Kridl, J.C. (1998) Characterization of acyl-ACP thioesterase of mangosteen (Garcinia magostana) seed and high levels of stearate production in transgenic canola. Plant J.13(6):743-752.
    He, Q.F., Schlich, T., Paulsen, H. and Vermass, W. (1999) Expression of a higher plant light-harvesting chlorophyll a/b-binding protein in Synechocystis sp. PCC 6803. Eur. J. Biochem.263(2),561-570.
    Hess, W., Rocap, G., Ting, C.S., Larimer, F., Stilwagen, S., Lamerdin, J. and Chisholm, S.W. (2001) The photosynthetic apparatus of prochlorococcus:Insights through comparative genomics. Photosynth. Res.70(1):53-71.
    Hihara, Y., Kamei, A., Kanehisa, M., Kaplan, A. and Ikeuchi, M. (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell.13(4):793-806.
    Hills, M.J. (1999) Improving oil functionality by tuning catalysis of thioesterase. Trends in Plant Sci.4(11):421-422.
    Hunt, M.C. and Alexson, S.E. (2002) The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism. Prog. Lipid Res.41 (2):99-130.
    Huynh, T.T., Pirtle, R.M. and Chapman, K.D. (2002) Expression of a Gossypium hirsutum cDNA encoding a FatB palmitoyl-acyl carrier protein thioesterase in Escherichia coli. Plant Physiol. Biochem.40(1):1-9.
    Jha, J.K., Maiti, M.K., Bhattacharjee, A., Basu, A., Sen, P.C., Sen, S.K. (2006) Cloning and functional expression of an acyl-ACP thioesterase FatB type from Diploknema (Madhuca) butyracea seeds in Escherichia coli. Plant Physiol. Biochem.44(11-12): 645-655.
    Jones, A., Davies, H.M. and Voelker, T.A. (1995) Palmitoyl-acyl carrier protein (ACP) thioesterase and the evolutionary origin of plant acyl-ACP thioesterases. Plant Cell. 7(3):359-371.
    Kaneko, T., Nakamura, Y., Wolk, C.P. et al. (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. Strain PCC 7120. DNA Res.8(5):205-213.
    Kaneko, T., Nakamura Y., Sasamoto, S., Watanabe, A., Kohara, M., Matsumoto, M., Shimpo, S., Yamada, M. and Tabata, S. (2003) Structural analysis of four large plasmids harboring in a unicellular cyanobacterium. Synechocystis sp. PCC 6803. DNA Res.10(5):221-228.
    Kaneko, T., Sato, S., Kotani, H., et al. (1996) Sequence analysis of the genome of the unicellular cyanobaeterium Synehocystis sp. strain PCC6803. Ⅱ. Sequence determination of the entire genome and assignment of Potential Protein-eoding regions. DNA Res.3(3):109-136.
    Kaneko, T., Tabata, S. (1997) Complete genome structure of the unicellular cyanobacterium Synechocystis sp.PCC6803. Plant Cell Physiol.38(11): 1845-1890.
    Kanesaki, Y., Suzuki, I., Allakhverdiev, S.I., Mikami, K. and Murata, N. (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun.290(1):339-348.
    Kinsella, J.E., Lokesh, B., Broughton, S. and Whelan, J. (1990) Dietary polyunsaturated fatty acids and eicosanoids:potential effects on the modulation of inflammatory and immune cells:an overview. Nutrition.6(1):24-44.
    Kis, M., Zsioros, O., Farkas, T., Wada, H., Nagy, F. and Gombos, Z. (1998) Light-induced expression of fatty acid desaturase genes (gene expressiony light regulationy cyanobacterium). Proc. Natl. Acad. Sci. USA.95(8):4209-4214.
    Knutzon, D.S., Bleibaum, J.L., Nelsen, J., Kridl, J.C. and Thomson, G.A. (1992) Isolation and characterization of two safflower oleoyl-acyl carrier protein thioesterase cDNA clones. Plant Physiol.100(4):1751-1758.
    Kotani, H., Kaneko, T., Matsubayashi, T., et al. (1994) A Physical map of the genome of a unicellular cyanobaeterium Synechocystis sp. Strain PCC6803. DNA Res.1(6): 303-307.
    Kozak, M. (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene.361:13-37.
    Kufryk, G.I., Sachet, M., Schmetterer, G., and Vermaas, W.F.J. (2002) Transformation of the cyanobacterium Synechocystis sp. PCC 6803 as a tool for genetic mapping: optimization of efficiency. FEMS Microbiol. Lett.206(2):215-219.
    Kurian, D., Phadwal, K. and Maenpaa, P. (2006) Proteomic characterization of acid stress response in Synechocystis sp. PCC 6803. Proteomics.6(12):3614-3624.
    Kurian, D., Jansen, T. and Maenpaa, P. (2006b) Proteomic analysis of heterotrophy in Synechocystis sp. PCC6803. Proteomics.6(5):1483-1494.
    La Roche, J., Van der Staay, G.W.M., Partensky, F., Ducret, A., Aebersold, R., Li, R., Golden, S.S., Hiller, R.G., Wrench, P.M., Larkum, A.W.D. and Green, B.R. (1996) Independent evolution of the Prochlorophyte and green plant chlorophyll alb light-harvesting proteins. Proc. Natl.Acad. Sci. USA.93(26):15244-15248.
    Lauritzen, L., Hansen, H.S., Jorgensen, M.H. and Michaelsen, K.F. (2001) The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res.40(1-2):1-94.
    Livak, K.J. and Schmittgen, T.D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-DDtmethod. Methods.25(4):402-408.
    Los, D.A. and Murata, N. (1994) Low-temperature induced accumulation of the desaturase gene transcript in Synechocystis PCC 6803 results from both acceleration of transcription and increase in mRNA stability. Russian J. Plant Physiol.41: 147-151.
    Ma, J., Campbell, A., Karlin, S. (2002) Correlations between Shine-Dalgarno sequences and gene features such as predicted expression levels and operon structures.J. Bacteriol.184(20):5733-5745.
    Magnuson, K., Jackowski, S., Rock, C.O., Cronan, J.E. (1993) Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol. Rev.57(3):522-542.
    Mangold, H.K. (1998) Biosynthesis and biotransformation of lipids in plant cell cultures and algae. Chem. Ind.260-267.
    Marin, K., Suzuki, I., Yamaguchi, K., Ribbeck, K., Yamamoto, H., Kanesaki, Y, Hagemann, M. and Murata, N. (2003) Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp. PCC 6803. Proc. Natl. Acad. Sci. USA.100(15):9061-9066.
    Marsac, N.T., Torre, F., Szulmaister, J. (1987) Expression of the larvieidal gene of Bacillus sphoericus 1593 M in the cyanobacterium Anacystis nidulans R2. Mol. Gen. Genet.209:296-298.
    Mekhedov, S., De Ilarduya, O.M., Ohlrogge, J. (2000) Toward a functional catalog of the plant genome. A survey of genes for lipid biosynthesis. Plant Physiol.122(2): 389-402.
    Morel, A., Ahn, Y.W., Partensky, F., Vaulot, D. and Claustre, H. (1993) Prochlorococcus and Synechococcus:a comparative study of their size, pigmentation and related optical properties.J. Mar. Res.51(3):617-649.
    Moreno-Perez, A.J., Venegas-Caleron, M., Vaistij, F.E., Salas, J.J., Larson, T.R., Garces, R., Graham, I.A., Martinez-Force, E. (2011) Reduced expression of FatA thioesterases in Arabidopsis affects the oil content and fatty acid composition of the seeds. Planta.235(3):629-639.
    Moretzsohn, M.C., Hopkins, M.S., Mitchell, S.E., Kresovich, S., Valls, J.F.M., Ferreira, M.E. (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol.14(4):1-11.
    Murata, N. and Wada, H. (1995) Acyl-lipid desaturases and their importance in the tolerance and acclimation to cold of cyanobacteria. Biochem. J.308(Pt 1):1-8.
    Napier, J.A. (2007) The production of unusual fatty acids in transgenic plants. Annu. Rev. Plant Biol.58:295-319.
    Norling, B., Zak, E., Andersson, B. and Pakrasi, H. (1998) 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett.436(2):189-192.
    O'Brien, J.S., Sampson, E.L. (1965) Fatty acid and fatty aldehyde composition of the major brain lipids in normal human gray matters, white matters and myelin. J. Lipid Res.6(4):545-551.
    Ohlrogge, J.B., Kuhn, D.N. and Stumpf, P.K. (1979) Subcellular localizationof acyl carrier protein in leaf protoplasts of Spinacia oleracea. Proc. Natl. Acad. Sci. USA. 76(3):1194-1198.
    Pathak, M.K.; Bhattacharjee, A.; Ghosh, D. and Ghosh, S. (2004) Acyl-acyl carrier protein (ACP)-thioesterase from developing seeds of Brassica campestris cv. B-54 (Agrani). Plant Sci.166(1):191-198.
    Pollard, M.R. and Ohlrogge, J. B. (1999) Testing models of fatty acid transfer and lipid synthesis in spinach leaf using in vivo oxygen-18 labeling. Plant Physiol.121(4): 1217-1226.
    Qiu, X., Hong, H. and Maekenzie, S.L. (2001) Identifieation of a Delta 4 fatty acid desaturase from Thraustoehytrium sp.involved in thebiosynthesis of doeosahexanoic acid by Heterologous expression in Saecharomy ceseerevisiae and Brassiea juncea. J. Biol. Chem.276(34):31561-31566.
    Raffaele, S., Vailleau, F., Leger, A., et al. (2008) AMYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell.20(3):752-767.
    Raven, J.A. (1994) Why are there no picoplanktonic 02 evolvers with volumes less than 10-19m3? J. Plankton. Res.16(5):565-580.
    Rocap, G., Larimer, F.W., Lamerdin, J., Malfatti, S., Chain, P., Ahlgren, N.A., Arellano, A., Coleman, M., Hauser, L., Hess, W.R, Johnson, Z.I, Land, M., Lindell, D., Post, A.F, Regala, W., Shah, M., Shaw, S.L, Steglich, C., Sullivan, M.B, Ting, C.S, Tolonen, A., Webb, E.A, Zinser, E.R, Chisholm, S.W. (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature. 424(6952):1042-1047.
    Salas, J.J. and Ohlrogge, J.B. (2002) Characterization of substrate specificity of plant FatA and FatB acyl-ACP thioesterases. Arch. Biochem. Biophys.403 (1):25-34.
    Sambrook, J., Fritsch, E.F. and Maniatis, T. (2001) Molecular cloning. A laboratory manual,3nd ed [M]. New York, Cold Spring Harbor Laboratory Press.
    Sanchez-Garcia, A., Moreno-Perez, A.J. and Muro-Pastor, A.M. (2010) Acyl-ACP thioesterases from castor (Ricinus communisL.):An enzymatic system appropriate for high rates of oil synthesis and accumulation. Phytochemistry.71(8-9):860-869.
    Sauer, U. And Eikmanns, B.J. (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol. Rev.29(4): 765-794.
    Sazuka, T. and Ohara, O. (1997) Towards a proteome project of cyanobacterium Synechocystis sp. strain PCC6803:linking 130 protein spots with their respective genes. Electrophoresis.18(8):1252-1258.
    Scanlan, D.J., Hess, W.R., Partensky, F., Newman, J. and Vaulot, D. (1996) High degree of genetic variation in Prochlorococcus(Prochlorophyta) revealed by RFLP analysis. Eur. J. Phycol.31(1):1-9.
    Shen, J.R., Qian, M., Inour, Y.L. and Haselkorn, R.L. (1998) Functional characterization of Synechocystis sp. PCC6803 △psbU and △psbV mutants reveals important roles of cytochrome c550 in cyanobacterial oxygen evolution. Biochemistry.37(6):1551-1558.
    Shoumskaya, M., Paithoonrangsarid, K., Kanesaki, Y., Los, D.A., Zinchenko, V, Tanticharoen, M., Suzuki, I. and Murata, N. (2005) Identical Hik-Rre systems are involved in perception and transduction of salt signals and hyperosmotic signals but regulate the expression of individual genes to different extents in Synechocystis. J. Biol. Chem.280(22):21531-21538.
    Siddiqui, R.A., Shaikh, S.R., Sech, L.A., et al. (2004) Omega 3-fatty acids:health benefits and cellular mechanisms of action. Mini Rev Med Chem.4(8):859-871.
    Simon, W.J., Hall, J.J., Suzuki, I., Murata, N. and Slabas, A.R. (2002) Proteomic study of the soluble proteins from the unicellular cyanobacterium Synechocystis sp. PCC6803 using automated matrix-assisted laser desorption/ionization-time of flight peptide mass fingerprinting. Proteomics.2(12):1735-1742.
    Sinclair, A.J. (1991) The good oil:omega-3 polyunsaturated fatty acid. Today's Life Science.9(1):65-70.
    Singh, A.K., McIntyre, L.M. and Sherman, L.A. (2003) Microarray analysis of the genome-wide response to iron deficiency and iron reconstitution in the cyanobacterium Synechocystis sp. PCC 6803. Plant Physiol.132(4):1825-1839.
    Slack, C.R., Roughan, P.G., Terpstra, J. (1976) Some properties of a microsomal oleate desaturase from leaves. Biochem J.155(1):71-80.
    Srivastava, R., Pisareva, T. and Norling, B. (2005) Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC6803. Proteomics.5(18):4905-4916.
    Suzuki, I., Kanesaki, Y., Hall, J.J., Simon, W.J., Slabas, A. and Murata, N. (2005) Histidine kinase Hik34 regulates the expression of heat-shock genes and is involved in thermotolerance in Synechocystis. Plant Physiol.138(13):1409-1421.
    Suzuki, S., Ferjani, A., Suzuki, I. and Murata, N. (2004) The SphS-SphR two component system is the exclusive sensor for the induction of gene expression in response to phosphate limitation in Synechocystis. J. Biol. Chem.279(13): 13234-13240.
    Suzuki, I., Kanesaki, Y., Mikami, K., Kanehisa, M. and Murata, N. (2001) Cold-regulated genes under control of the cold sensor Hik33 in Synechocystis. Mol. Microbiol.40(1):235-244.
    Takeshima, Y., Takatsugu, N. and Sugiura, M. (1994) High-Level Expression of Human Superoxide Dismutase in the Cyanobacterium Anacystis nidulans 6301. Proc. Nadl. Acad. Sci. USA.91(21):9685-9689.
    Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., Rayner, S., Young, J., Pognan, F., Hawkins, E., Currie, I. and Davison, M. (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics.1(3):377-396.
    Urbach, E., Scanlan, D.J., Distel, D.L., Waterbury, J.B. and Chisholm, S.W. (1998) Rapid diversification of marine picophytoplankton with dissimilar light harvesting structures inferred from sequences of Prochlorococcus and Synechococcus (cyanobacteria). J. Mol. Evol.46(2):188-201.
    Vioque, A. (2008) Transgenic microalgae as green cell factories:Advances in experimental medicine and biology. NewYork:Springer New York.12-22.
    Voelker, T.A. and Davies, H.M. (1994) Alteration of the specificity and regulation of fatty acid synthesis of Escherichia coli by expression of a plant medium-chain acyl-acyl carrier protein thioesterase. J. Bacteriol.176(23):7320-7327'.
    Voelker, T.A., Jones, A., Cranmer, A.M., et al. (1997) Broad-range and binary-range acyl-acyl-carrier protein thioesterases suggest analternative mechanism for medium-chain production in seeds. Plant Physiol.114(2):669-677.
    Voelker, T.A., Worrell, A.C., Anderson, L., et al. (1992) Fatty acid biosynthesis redirected to medium chains intransgenic oilseed plants. Science.257(5066): 72-74.
    Voelker, T.A. (1996) Plant acyl-ACP thioesterases:chain-length determining enzymes in plant fatty acid biosynthesis. Genet. Eng.18:111-133.
    Wada, H. and Murata, N. (1990) Temperature-induced changes in the fatty acids composition of the cyanobacterium, Synechocystis PCC 6803. Plant Physiol.92(4): 1062-1069.
    Wallis, J.G., Watts, J.L. and Browse, J. (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem. Sci.27 (9):467-473.
    Wang, Y., Sun, J. and Chitnis, P.R. (2000) Proteomic study of the peripheral proteins from thylakoid membranes of the cyanobacterium Synechocystis sp. PCC6803. Electrophoresis.21(9):1746-1754.
    Williams, J.G.K. (1988) Construction of specific mutations in photosystem Ⅱ photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Methods Enzymol.167:766-778.
    Wu, P.Z., Li, J., Wei, Q., Zeng, L., Chen, Y.P., Li, M.R., Jiang, H.W., Wu, G.J. (2009). Cloning and functional characterization of an acyl-acyl carrier protein thioesterase (JcFATB1) from Jatropha curca. Tree Physiol.29(10):1299-1305.
    Xu, W. and McFadden, B.A. (1997) Sequence analysis of plasmid pCC5.2 from cyanobacterium Synechocystis PCC 6803 that replicates by a rolling circle mechanism. Plasmid.37(2):95-104.
    Yamaguchi, K., Suzuki, I., Yamamoto, H., Lyukevich, A., Bodrova, I., Los, D.A., Piven, I., Zinchenko, V, Kanehisa, M. and Murata, N. (2002) A two-component Mn2+-sensing system negatively regulates expression of the mntCAB operon in Synechocystis. Plant Cell.14(11):2901-2913.
    Yang, X. and McFadden, B.A. (1993) A small plasmid, pCA2.4, from the cyanobacterium Synechocystis sp. strain PCC 6803 encodes a rep protein and replicates by a rolling circle mechanism. J. Bacteriol.175(13):3981-3991.
    Yang, X. and McFadden, B.A. (1994) The complete DNA sequence and replication analysis of the plasmid pCB2.4 from the cyanobacterium Synechocystis PCC 6803. Plasmid.31(2):131-137.
    Yoshihara, S., Geng, X., Okamoto, S., Yura, K., Murata, T., Go, M., Ohmori, M., and Ikeuchi, M. (2001) Mutational analysis of genes involved in pilus structure, motility and transformation competency in the unicellular motile cyanobacterium Synechocystis sp. PCC6803. Plant Cell Physiol. 42(1):63-73.
    Zhou, Z., Zhang, D.Q., Lu, M.Z. (2007) Cloning and expression analysis of PtFATB gene encoding the acyl-acyl carrier protein thioesterase in Populus tomentosa Carr. J. Genet. Genomics.34(3):267-274.
    德赫斯,克瑙夫.(2003)硫脂酶相关核酸序列及方法.国家发明专利,申请号:03819307.8.
    程涛,杨建明,刘辉,张英伟,宋秋华,咸漠.(2011)拟南芥硫酯酶基因(atFatA)在大肠杆菌中的表达及其对游离脂肪酸合成的影响.应用与环境生物学报,17(4):568-571.
    福迪著, 罗迪安译.(1980).藻类学,上海科学技术出版社,上海.p11.
    李轩,林晨,张雪燕.(2008)转入人肿瘤坏死因子α基因的鱼腥藻IB02(+)的细胞毒活性及其体内抗肿瘤药效学研究.中国医药生物技术,3(5):350-355.
    郭祥学,赵晖,施定基.(1998)小鼠金属硫蛋白在聚胞藻中的金属诱导表达与纯化.生物工程学报,14(4):405-411.
    康升云,魏兰珍,王全喜.(2008)启动子Pcpcβ提高集胞藻6803中外源EGFP表达效率的研究.中国藻类学会第七届会员大会暨第十四次学术讨论会论文摘要集,P-161.
    施定基.(2000)用转基因蓝藻制备重组药物的发展与展望.中国药物生物技术学术研讨会.
    王龙龙.(2010)花生二酰甘油酰基转移酶(DGAT)基因的克隆与分析.山东师范大学硕士学位论文.
    肖生科,王磊,陈毓荃.(2004)提高外源基因在巴斯德毕赤酵母中表达量的研究进展.生物技术通报.2:23-26.
    王镜岩,朱圣庚,徐长法.(2002)生物化学。高等教育出版社,第三版.
    王业勤,徐旭东,黎尚毫.(1991)蓝藻分子遗传学十年研究进展.水生生物学报.15(4):356-367.
    殷春涛.(2004)集胞藻PCC6803适应寒冷条件的遗传学基础.中国科学院武汉水生生物研究所博士学位论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700