用户名: 密码: 验证码:
溶藻细菌S7溶藻特性、机理及影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着水体富营养化现象的日益严重,有害藻类水华频繁爆发,探索行之有效的抑藻和除藻途径极为迫切,溶藻细菌作为一种新的生物控藻手段显示出了广泛的应用前景。溶藻细菌一般分离自暴发水华的水体,这种土著细菌在工程应用中具有安全、特异、高效等特点。课题组从三峡库区暴发水华的河流中分离出一株溶藻细菌,命名为S7,本文以导致水华暴发的代表性蓝绿藻为研究对象,研究了该菌的溶藻特性、探讨了溶藻机理并分析了溶藻效应的影响因素。论文的主要研究内容和结论如下:
     ①取生长24h的细菌S7,分别将不同体积的细菌添加到藻液中进行溶藻试验,结果表明:溶藻作用的发生对投加细菌的体积分数有个下限的要求,初始体积分数越大溶藻现象越明显,溶藻时间也越短。当细菌的体积分数大于1:50时,细菌S7在第5d表现出溶藻作用。
     ②细菌溶藻范围和作用效力试验表明:细菌S7对铜绿微囊藻、水华鱼腥藻、水华微囊藻、栅藻和小球藻均具有溶藻作用,但对水华鱼腥藻去除效果最好,对小球藻去除效果最差,叶绿素a的去除率为42.5%~74.8%。该菌对淡水湖泊中常见蓝绿藻有良好的去除效果。
     ③利用光学显微镜、扫描电镜观察溶藻过程,结果显示在溶藻过程中藻细胞依次经历了以下过程:细胞膜收缩→细胞膜凹陷→细胞膜形成抑痕→细胞膜破裂→细胞质和色素外泄→细胞死亡。在藻液中分别加入经不同方法处理后的菌液(包括未经处理的原菌液、高温灭菌20min的菌液、0.22μm滤膜过滤液、经10000rpm离心的上清液)进行溶藻试验,结果表明:细菌S7通过释放胞外活性物质进行间接溶藻。
     ④对细菌S7作用过程中藻细胞的叶绿素a和藻蓝蛋白含量进行监测,结果表明:随着藻细胞的急剧减少,藻细胞叶绿素a和藻蓝蛋白含量下降明显;对藻细胞抗氧化系统的变化进行分析,结果表明:在溶藻初期,超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性显著升高,表明细菌的溶藻作用激发了藻细胞的抗氧化系统参与反应,但随着细菌的继续作用,SOD和CAT活性下降,表明藻细胞抗氧化系统遭到破坏,丙二醛(MDA)含量也显著提高,说明细菌可以引起藻细胞膜脂过氧化;藻细胞经过PI特异荧光标记后,用流式细胞仪分析藻细胞自发荧光和特异荧光信号,结果表明:藻细胞的核酸物质和细胞膜均遭到破坏,叶绿素a和藻蓝蛋白含量变化与细胞膜的损伤情况具有一致性;藻细胞成分的红外光谱分析也显示藻细胞解体,蛋白质遭到破坏。据此推测细菌S7的溶藻机理为:溶藻物质先损坏藻体的细胞壁和粘质胶被,然后通过改变细胞膜的选择透过性进入藻细胞内部,引起藻细胞膜脂过氧化及活性氧的大量积累,溶藻物质进一步分解叶绿素a,破坏蛋白质,核酸等物质,进而造成藻体正常生理功能的丧失,最终导致细胞破裂死亡。
     ⑤通过萃取、醇沉、透析、硅胶柱层析对细菌S7分泌的溶藻物质进行分离纯化并利用紫外光谱、红外光谱和荧光光谱对该溶藻活性物质进行研究,结果表明:该活性物质的分子量小于8kDa;甲醇洗脱组分对铜绿微囊藻的溶藻效果最好;对该组分进行200~900nm的紫外光谱扫描,其洗脱组分在330nm处有高强度的吸收峰,表明其中的溶藻活性物质可能含有3~5个共轭单位;红外光谱扫描的结果表明溶藻物质可能含有羟基、饱和烃基和芳香醚;荧光光谱分析结果表明溶藻物质可能具有荧光属性,三维荧光光谱图有两个较强的荧光峰,峰值分别出现在264/436nm和378/369nm,且264/436nm峰荧光强度大于378/369nm峰;该物质可能是一种新的溶藻物质。
     ⑥单因素试验结果表明:温度、光照和pH值对溶藻效应有较大影响,通过响应曲面Box-Behnken试验对细菌S7溶藻效应的环境因素进行了研究,得出细菌S7对水华鱼腥藻溶藻效应3个环境因子的二次多项式模型,模型显著性高,拟合度好。通过响应面分析得到优化组合,即在培养温度33.06℃,光照强度3312lux和pH为6.26时,溶藻细菌S7对水华鱼腥藻溶藻效果最佳,理论最大去除率为91.40%。
     ⑦通过响应曲面Central-Composit试验得出了藻细胞去除率与细菌浓度、水体叶绿素a浓度关系的二次多项式模型,为溶藻细菌的工程应用提供了理论参考。从三峡库区临江河回水段试验区采水样进行控藻试验,结果表明:细菌S7可以提高水体透明度、改善水质环境,细菌作用7d对藻细胞叶绿素a去除率为68.27%,说明溶藻细菌可以用于环境水体控制藻类水华,达到改善水质的目的。
In recent years, with eutrophication phenomenon is increasing seriously, theharmful algal blooms break out frequently, so the effective algal inhibition and removalof algae way were explored extremely urgent. Algae-lysing bacteria as a newbiological control species means shows wide application prospect. Algae lysingbacteria isolated from the water bloom general hair, the indigenous bacteria inengineering application is safe, efficient, specific characteristics. This task group fromthe Three Gorges Reservoir blue algae river separates one algae-lysing bacteria,identified Chryseobacterium, named S7. The object of research is discuss the algicidalmechanisms of blue green algae bloom and analyzed the algicidal effect influencefactors. The main research contents and conclusions are as follows:
     ①Take growth of24h bacteria S7, different volume of the bacteria to the algaeliquid for algicidal experiments respectively. Results show that: The adding bacterialvolume has a lower requirement to algae lysing effect, the greater lytic phenomenon,the more obvious phenomeno and shorter lytic time.When the bacterial volumefraction is greater than1:50, bacterial S7showed a lytic effect in the5d.
     ②The scope and effect of Bacterial lysing experiment shows: the bacterial S7onMicrocystis, Anabaena flos-aquae, bloom Microcystis, Scenedesmus and Chlorella hasalgicidal effect, but best removal effect on the Chlorella vulgaris and worst,chlorophyll a removal with the removal rate is42.5%~74.8%. The result showed thatthe bacteria in freshwater lakes have good removal effect on cyanobacteria and greenalgae.
     ③The optical microscopy was use to scanning electron microscopy lytic process,results show that algal cells in the lytic process which experiences the followingprocesses: cell membrane contraction, cell membrane, cell membrane formation inmark, rupture of the cell membrane, and cytoplasm and pigment leakage and cell death.In algae solution are added and treated with different methods of bacteria (includinguntreated raw liquid, high temperature sterilization20min bacterial liquid,0.22μmmembrane filtration, the supernatant by10000rpm) of algicidal experiments, theresults show that: the bacterial S7through the extracellular release of activesubstances for indirect algicidal.
     ④By monitoring on bacterial S7of algae chlorophyll a and phycocyanin content,find that: with the algae decreased dramatically, algae chlorophyll a and algae blueprotein content decreased significantly; on algal cell changes in antioxidative systemwere analyzed, the results show that: in the early lytic, superoxide dismutase enzyme(SOD) and catalase (CAT) activity were significantly increased, suggesting thatbacterial stimulated algal cell antioxidant system involved in the reaction, but with thecontinuing role of bacteria, SOD and CAT activity decreased, indicating cellantioxidant system was destroyed, malondialdehyde (MDA) content increasedsignificantly, bacteria that can cause algal cells membrane lipid peroxidation; algalcells after PI specific fluorescence markers, with flow cytometry analysis of algal cellautofluorescence and specific fluorescence signal, the results show that: the algal cellnucleic acid substances and cell membrane were destroyed, chlorophyll a and algaeblue protein changes associated with cell membrane injury has consistency; algae cellcomponents of infrared spectral analysis also shows that algae cell disintegration,protein damage. It can be inferred that the algae lysing bacteria S7algicidalmechanisms: algicidal substance to damage the algae cell wall and mucilage glue, andthen through changes in cell membrane permselectivity, cause algae cell membranelipid peroxidation and active oxygen accumulation, algicidal substances furtherdecomposition of chlorophyll a, destroy the protein, nucleic acid and other substances,thus causing the algae normal physiological function loss, ultimately leading to cellrupture and death.
     ⑤Through extraction, alcohol precipitation, dialysis, silica gel columnchromatography separation and purification method on bacterial S7secretion ofalgicidal substances were isolated and purified by ultraviolet spectroscopy, infraredspectroscopy and fluorescence spectroscopy of the lytic activity substances werestudied. The results showed that the active substances had a molecular weight less than8kDa; methanol elution fractions on Microcystis algae lysing effect is best; thefractions were200~900nm in the UV spectrum, the elution fractions in at330nm highintensity of absorption peak, indicating that the algicidal substances may contain3to5conjugated unit; infrared spectrum scanning results showed active material maycontain hydroxyl, unsaturated alkyl and aryl ether; fluorescence spectra showed thatalgicidal substances may have fluorescent properties, three-dimensional fluorescencespectrum has two strong fluorescence peak, the peaks appeared at264/436nm and 378/369nm, and264/436nm fluorescence intensity greater than378/369nm peak; thesubstance may be a new kind of algicidal substances.
     ⑥The single factor experiments showed that the temperature、illumination andpH has great effect on lytic influence; Box-Behnken test on bacterial S7lytic effect ofenvironmental factors were studied, that bacterial S7on Anabaena flos-aquae lyticeffect of3environmental factors of two many model, model obviously high, fitwell.through response surface analysis optimized combination, namely in the culturetemperature33.06℃, light intensity of3312lux and pH6.26, algicidal bacteria S7onAnabaena flos-aquae lytic effect best, theoretical maximum removal rate of91.40%.
     ⑦Through Central-Composit test in the response surface find that two degreepolynomial model of algae lysing bacteria between he algae removal rate and bacterialconcentration, to provide theoretical reference for engineering applications. From theThree Gorges Reservoir in Linjiang River backwater period of Experimental Zonewater samples for algae control test, the results show that: the bacterial S7canimprove the transparency of the water body, improving the water quality of theenvironment, bacteria algae chlorophyll7d removal rate of a was68.27%, descriptionof algae lysing bacteria can be used for water environment control of algal bloom forthe purposep of improving water quality.
引文
[1] Wang L, Lee F, Wang X. Chemical Characteristics and Source Implications of PetroleumHydrocarbon Contaminants in the Sediments near Major Drainage Outfalls along the Coastalof Laizhou Bay, Bohai Sea, China[J]. Environmental Monitoring and Assessment,2007,125(1/3):229-237.
    [2] Heisler J, Glibert P M, Burkholder J M, et al. Eutrophication and harmful algal blooms:Ascientific consensus[J]. Harmful Algae,2008,8(1):3-13.
    [3] Zingone A, Enevoldsen H O. The diversity of harmful algal blooms: a challenge for scienceand management [J]. Ocean Coastal Management,2000,43(8-9):725-748.
    [4]王淑芳.水体富营养化及其防治[J].环境科学与管理,2005,30(6):63-65.
    [5] Hudnell H K. The state of U. S. freshwater harmful algal blooms assessments, policy andlegislation [J]. Toxicon,2010,55(5):1024-1034.
    [6] Herath G. Freshwater Algal Blooms and Their Control: Comparison of the European andAustralian Experience [J]. Journal of Environmental Management,1997,51(2):217-227.
    [7] Huang L, Jian W, Song X, et al. Species diversity and distribution for phytoplankton of thePearl River estuary during rainy and dry seasons [J]. Marine Pollution Bulletin,2004,49(7-8):588-596.
    [8] Olli K, Heiskanen A S. Seasonal stages of phytoplankton community structure and sinking lossin the Gulf of Riga [J]. J. Mar. Systems,1999,23(1-3):165-184.
    [9] Hill V, Cota G, Stockwell D. Spring and summer phytoplankton communities in the Chukchiand Eastern Beaufort Seas [J]. Deep-Sea Research II,2005,52:3369-3385.
    [10] Figueredo C C, Giani A. Phytoplankton community in the tropical lake of Lagoa Santa(Brazil): Conditions favoring a persistent bloom of Cylindrospermopsis raciborskii [J].Limnologica,2009,39:264-272.
    [11]吴洁,虞左明.西湖浮游植物的演替及富营养化治理措施的生态效应[J].中国环境科学,2001,21(6):540-544.
    [12]吴生才,陈伟民.太湖浮游植物生物量的周期性变化[J].中国环境科学,2004,24(2):151-154.
    [13]吴晓东,孔繁翔,张晓峰等.太湖与巢湖水华蓝藻越冬和春季复苏的比较研究[J].环境科学,2008,29(5):1313-1318.
    [14]李原,张梅,王若南.滇池的水华蓝藻的时空变化[J].云南大学学报(自然科学版),2005,27(3):272-276.
    [15]林毅雄,刘秀芬,阎海.滇池铜绿微囊藻(Microcystis aeruginosa Küitz)毒素及其在水体中的变化[J].环境污染治理技术与设备,2001,2(5):10-13.
    [16]张远,郑丙辉,刘鸿亮.三峡水库蓄水后的浮游植物特征变化及影响因素[J].长江流域资源与环境,2006,15(2):254-258.
    [17]张晟,刘景红,黎莉莉等.三峡水库成库初期营养盐与浮游植物分布特征[J].环境科学,2006,27(6):1056-1061.
    [18]胡建林,刘国祥,蔡庆华等.三峡库区重庆段主要支流春季浮游植物调查[J].水生生物学报,2006,30(1):116-18.
    [19] Zeng H, Song L, Yu Z, et al. Distribution of phytoplankton in the Three-Gorge Reservoirduring rainy and dry seasons [J]. Sci. Total Environ,2006,367:999-1009.
    [20] Graneli E, Weberg M, Salomon P S. Harmful algal blooms of allelopathic microalgal species:The role of eutrophication [J]. Harmful Algae,2008,8:94-102.
    [21] Ding L, Wu J Q, Pang Y, et al. Simulation study on algal dynamics based on ecological flumeexperiment in Taihu Lake, China [J]. Ecol. Eng,2007,31:200-206.
    [22] Li S Y, Liu W Z, Gu S, et al. Spatio-temporal dynamics of nutrients in the upper Han Riverbasin, China[J]. J Hazard Mater,2009,162(2):1340-1346.
    [23] Dionysiou D. Overview:Harmful algal blooms and natural toxins in fresh and marinewaters-Exposure, occurrence, detection, toxicity, control, management and policy [J].Toxicon,2010,55:907-908.
    [24]邢伟,李敦海,沈银武等.滇池试验围隔内不同形态铁浓度的变化与物化因子的关系[J].水生生物学报.2006,(30)2:146-151.
    [25] Paerl H W, Huisman J. Blooms like it hot [J]. Science,2008,320(5872):57-58.
    [26] Duy T N, Lam P K S, Shaw G R, et al. Toxicology and risk assessment of freshwatercyanobacterial(blue-green algae)toxins in water[J]. Rev. Environ. Contam. Toxicol,2000,163:113-186.
    [27] Grindley J R, Rel E. Museel poisoning and shellfshi mortality on the West Coast of Africa[J].South African Journal of Science,1968,64:420-422.
    [28] Hudnell H K. The state of U. S. freshwater harmful algal blooms assessments, policy andlegislation [J]. Toxicon,2009:1-11.
    [29] Caron D A, Garneau M, Seubert E, et al. Harmful algae and their potential impacts ondesalination operations off southern California[J]. Water Res,2010,2(44):385-416.
    [30] Wang J H, Wu J Y. Occurrence and potential risks of harmful algal blooms in the East ChinaSea[J]. Sci. Total Environ,2009,407:4012-4021.
    [31]朱光灿,吕锡武.不同流态生物膜反应器对微囊藻毒素的降解特性[J].中国环境科学,2003,23(3):267-271.
    [32]姚志红,费敏锐,孔海南等.基于改进遗传算法的藻类神经网络识别[J].上海交通大学学报,2007,42(11):1801-1805.
    [33]由昭今.湖泊富营养化的成因、防治及处理[J].城镇供水.2000,4:6-8.
    [34]余冉,吕锡武,费治文.富营养化水体中藻类和藻毒素处理研究[J].环境导报,2001,4:14-16.
    [35]刘丽萍.滇池水华特征及成因分析[J].环境科学研究,1999,12(5):36-37.
    [36] Kuo J T, Lung W S, Yang C P, et al. Eutrophication modelling of reservoirs in Taiwan [J].Environ. Modell. Softw,2006,21:829-844.
    [37] Burford M A, Alongi D M, McKinnon A D, et al. Primary production and nutrients in atropical macrotidal estuary, Darwin Harbour, Australia[J]. Estuar. Coast. Shelf Sci.,2008,79:440-448.
    [38] Li Y, Cao W, Su C, et al. Nutrient sources and composition of recent algal blooms andeutrophication in the northern Jiulong River, Southeast China[J]. Mar. Pollut. Bull,2011,63(5-12):249-54.
    [39]刘辉.全流程生物氧化技术处理微污染原水[M].北京:化学工业出版社,2003.6.
    [40] Garrett M, Wolny J, Truby E, et al. Harmful algal bloom species and phosphate-processingeffluent: Field and laboratory studies [J]. Marine Pollution Bulletin,2011,62(3):596-601.
    [41]陈中兵,郑广宏,黄钰铃.不同氮磷浓度对盘星藻生长的影响.生态环境,2008,17(4):1338-1341.
    [42] Vezie C, Rapala J, Vaitomaa J, et al. Effect of nitrogen andphosphorus on growth of toxicand nontoxic Microsystis strain and on intracellular microcystin concentrations[J]. MicrobialEcology,2002,43:443-454.
    [43] Singh D P, Tyagi M B, Kumar A, et al. Antialgal activity of a hepatotoxin-producingcyanobacterium Microcystis aeruginosa[J]. World J Microb Biot,2001,17(1):15-22.
    [44]刘其根,陈立侨,陈勇.千岛湖水华发生与主要环境因子的相关性分析[J].海洋湖沼通报,2007(1):117-124.
    [45] Bucka. Ecology of selected planktonic algal causing water blooms [J]. Acta Hydrobiol,1989,31(4):207-258.
    [46]许海,杨林章,茅华等.铜绿微囊藻、斜生栅藻生长的磷营养动力学特征[J].生态环境,2006,15(5):921-924.
    [47]许海,杨林章,刘兆普.铜绿微囊藻和斜生栅藻生长的氮营养动力学特征[J].环境科学研究,2008,21(1):69-73.
    [48] Vadeboncoeur Y, Lodged M, Carpenter S R. Whole-lake fertilization effects on distributionof primary production between benthic andpelagic habitat [J]. Ecology,2001,82(4):1065-1077.
    [49] Lalonde S, Downingj A. Epiphyton biomass is related to lake trophic status, depth, andmacrophyte architecture [J]. Canadian Journal of Fisheries and Aquatic Sciences,1991,48:2285-2291.
    [50]赵孟绪,韩博平.汤溪水库蓝藻水华发生的影响因子分析[J].生态学报,2005,25(7):1554-1561.
    [51]连民,刘颖,俞顺章.氮、磷、铁、锌对铜绿微囊藻及其生长及产毒的影响[J].上海环境科学,2001,20(4):166-170.
    [52]施军琼,吴忠兴,马剑敏,马帅.水华束丝藻对磷的生理响应研究.水生生物学报,2011,35(5):854-861.
    [53] Nalewajko C, Murphy T. Effect of temperature and availability of nitrogen and phosphoruson the abundance of Anabaena and Microcystis in Lake Biwa, Japan: an experimentalapproach [J]. Limnolog,2001,2:45-48.
    [54] Repka S, Koivula M, Harjunpa V, et al. Effect of phosphate and light ongrowth of andbioactive peptide production by the CyanobacteriumAnabaena strain90an itsanabenopetilide mutant [J]. Applied andEnvironmental Microbiology,2004,70:4551-4560.
    [55] Gameiro C, Cartaxana P, Brotas V. Environmental drivers of phytoplankton distribution andComposition in Tagus Estuary, Portugal [J]. Estuar. Coast. Shelf Sci,2007,75:21-34.
    [56]商照堂,任健,秦铭荣等.气候变化与太湖蓝藻暴发的关系[J].生态学杂志,2010,29(1):55-61.
    [57]朱广伟.太湖富营养化现状及原因分析[J].湖泊科学,2008,20(1):21-26.
    [58]胡正峰,张磊,邱勤等.温度条件对澎溪河藻类生长的影响[J].江苏农业科学,2010(2):384-386.
    [59]高月香.水文气象因子对太湖富营养化和藻类生长的影响研究[D].扬州大学,2006.
    [60]孙霞.光照对东海赤潮高发区赤潮藻类生长的影响[D].中国海洋大学,2005.
    [61] Liu H, Au D W T, Anderson D M, et al. Effects of nutrients, salinity, pH and light: darkcycle On the production of reactive oxygen species in the alga Chattonella marina [J].Journal of Experimental Marine Biology and Ecology,2007,346:76-86.
    [62]廖平安,胡秀琳.流速对藻类生长影响的试验研究[J].北京水利,2005,2:12-15.
    [63]钟成华.三峡库区水体富营养化研究[D].2004:86-87.
    [64]李锦秀,廖文根.三峡库区富营养化主要诱发因子分析[J].科技导报,2003,2:49-52.
    [65]曾辉,宋立荣,于志刚等.三峡水库“水华”成因初探[J].长江流域资源与环境,2007,16(3):336-339.
    [66]张毅敏,张永春,张龙江等.湖泊水动力对蓝藻生长的影响[J].中国环境科学,2007,27(5):707-710.
    [67] Garcia V M T, Garcia C A E, Mata M M,. Environmental factors controlling thephytoplankton blooms at the Patagonia shelf-break in spring [J]. Deep-SeaResearch I,2008,55:1150-1166.
    [68] Adam A, Mohammad-Noor N, Anton A, et al. Temporal and spatial distribution of harmfulalgal bloom (HAB) species in coastal waters of Kota Kinabalu, Sabah, Malaysia [J].Harmful Algae,2011,10(5):495-502.
    [69] Arhonditsis G B, Winder M, Brett M T, et al. Patterns and mechanisms of phytoplanktonvariability in Lake Washington (USA)[J]. Water Res,2004,38:4013-4027.
    [70] Xu J, Ho A Y T, Yin K, et al. Temporal and spatial variations in nutrient stoichiometry andregulation of phytoplankton biomass in Hong Kong waters: Influence of the Pearl Riveroutflow and sewage inputs [J]. Mar. Pollut. Bull,2008,57:335-348.
    [71]高天,钱新,储昭升等.气候、水文和生态过程对洋河水库富营养化影响研究[J].水生态学杂志,2010,3(3):28-31.
    [72]代玲玲.三峡水库富营养化藻类特征及环境因素影响研究[D].重庆大学,2007.
    [73]陈杰.三峡水库小江回水区浮游植物群落结构特点及其影响因素研究[D].重庆大学,2006.
    [74]曾辉.长江和三峡库区浮游植物季节变动及其与营养盐和水文关系研究[D].中国科学院研究生院,2006.
    [75]王敏,张建辉,吴光应等.三峡库区神女溪水华成因初探[J].中国环境监测,2008,24(1):60-63.
    [76] Hall N S, Litaker R W, Fensin E, et al. Environmental Factors Contributing to theDevelopment and Demise of a Toxic Dinoflagellate (Karlodinium veneficum) Bloom in aShallow, Eutrophic, Lagoonal Estuary[J]. Estuaries and Coasts: JCERF,2008,31:402-418.
    [77]沈银武,刘永定,吴国樵等.富营养湖泊滇池水华蓝藻的机械清除[J].水生生物学报,2004,25(2):131-136.
    [78]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,2001.
    [79]王波,张光明,王慧.超声波去除铜绿微囊藻研究[J].坏境污染治理技术与设备,2005,6(4):47-49.
    [80] Hudnell H K, Jones C, Labisi B, et al. Freshwater harmful algal bloom (FHAB) suppressionwith solar powered circulation (SPC)[J]. Harmful Algae,2010,9:208-217.
    [81]俞志明,邹景忠,马锡年,李全生.治理赤潮的化学方法[J].海洋与湖沼,1993,24(3):314-318.
    [82] Nagayama K, Shibata T,Fujimoto K, et al. Algicidal effect of phlorotannins from the brownalga Eeklonia kurome on red tide mieroalgae[J]. Aquaculture,2003,218:601-611.
    [83] Jeong J H, Jin H J, Sohn C H, et al. Algicidal activity of the seaweed Corallina Piluliferaagainst red tide microalgae[J]. Journal of Applied Phycology,2000,12:37-43.
    [84] Jeong S, Ishida K, Ito Y, Shigeru Okada, MasahiroMurakami. Bacillamide, a novel algicidefrom the marine baeterium, Bacillu sp. SY-l, against the harmful dinoflagellate,Cochlodinium polykrikoides, Tetrahedron Letters,2003,44:8005-8007.
    [85]韩应琳.溴类杀菌灭藻剂的研究现状.工业水处理,1995,35(15):5-8.
    [86]田宝珍,曲久辉,雷鹏举.饮用水水源的化学灭藻,环境化学,2001,20(1):65-69.
    [87]张珩,杨维东,高洁等.二氧化氯对球形棕囊藻的抑制和灭杀作用,应用生态学报,2003,14(7):1173-1176.
    [88]吕锡武,丁国际.有毒蓝藻及藻毒素生物降解的初步研究[J].中国环境科学,1999,19(2):138-140.
    [89]高延耀,顾国维.水污染控制工程[M].北京:高等教育出版社,1999.
    [90] Sun X X, Han K N, Cho J Ki, et al. Screening of surfactants for harmful algal bloomsmitigation [J]. Marine Pollution Bulletin,2004,48:937-945.
    [91] Pan G, Zhang M M, Chen H, et al. Removal fo cyanobacterial blooms in Taihu Lake usinglocal soils Ⅰ. Equilibrium and kinetie screening on the flocculation of Microeystisaeruginosa using eommercially available clays and minerals[J]. Environmental Poliution,2006,41(2):195-200.
    [92] Zou H, Pan G, Chen H, et al. Removal of cyanobacterial blooms in Taihu Lake using loealsoilⅡ. Effective removal of Microcystis aeruginosa using local soils and sediments modifiedby chitosan [J]. Environmental Poliution,2006,141(2):201-205.
    [93]吴萍,俞志明.有机改性粘土对赤潮藻絮凝沉降的动力学研究[J].环境科学,2007,28(7):1518-1523.
    [94] Pan G, Zou H, Chen H, et al. Removal of cyanobacterial blooms in Taihu Lake using localsoils. Ⅲ. Factors affecting the removal effieiency and an in situ field experiment usingchitosan-modified lacal soils [J]. Environmental Poliution,2006,141(2):206-212.
    [95]张木兰,潘纲,陈灏等.改性沉积物除藻对水质改善的效果研究[J].环境科学学报,2007,27(1):13-17.
    [96] Pan G, Chen J, Anderson D, et al. Modified local sands for the mitigation of harmful algalblooms [J]. Harmful Algae,2011,10:381-387.
    [97] Beaulieu S E, Sengco M R, Anderson D M. Using clay to control harmful algal blooms:deposition andresuspension of clay/algal flocs [J]. Harmful Algae,2005,4:123-138.
    [98] Lee Y J, Choi J K, Kim E K, et al. Field experiments on mitigation of harmful algal bloomsusing a Sophorolipid-Yellow clay mixture and effects on marine plankton [J]. Harmful Algae,2008,7:154-162.
    [99]贾瑞宝,周善东.城市供水藻类污染控制研究[M].济南:山东大学出版社.2006.
    [100]邹华,潘纲,阮文权.壳聚糖改性粘土絮凝除藻的机理探讨[J].环境科学]与技术,2007,30:8-13.
    [101]陆开宏,金春华,王扬才.罗非鱼对蓝藻的摄食消化及对富营养化水体水华的控制[J].水产学报,2005,29(6):811-818.
    [102]陈鸣钊,丁训静,许京怀.用环境理论再改变理论研究湖泊富营养化治理方[J].水科学进展,2003,5(3):323-327.
    [103]孙刚,盛连喜.湖泊富营养化治理的生态工程[J].应用生态学报,2001,12(4):590-592.
    [104]李如忠.巢湖水环境生态修复探讨[J].合肥工业大学学报,2002,16(5):130-133.
    [105]韩士群,严少华,范成新,曹旭静.长肢秀体潘对富营养化水体藻类的生物操纵[J].江苏农业学报,2006,22(1):81-85.
    [106] Jin Q, Dong S L. Comparative studies on the allelopathic effects of two different strains ofUlva pertusa on Heterosigma akashiwo and Alexandium tamarense [J]. J Exp Mar Bio Eco,2003,293:41-55.
    [107]由文辉.蓝藻水华的毒性及其生物控制[J].生物学通报,1994,6(29):8-9
    [108] Kim Y C, Kim W J. Roles of water hyacinths and their roots for reducing algalconcentration in the effluent from waste stabilization ponds [J]. Wat Res,2000,34(13):3285-3294.
    [109]俞子文,孙文浩,郭克勤等.几种高等水生植物的克藻效应[J],水生生物学报1992,16(1):1-7.
    [110]叶居新,何池全,陈少风.石葛蒲的克藻效应[J].植物生态学报,1999,23(4):379-384.
    [111]张楠,孙长虹,季民.响应曲面法研究蓖齿眼子菜克藻效应的环境因子[J].中国环境科学2010,30(4):483-486.
    [112]张楠,孙长虹,季民.利用响应曲面法研究蓖齿眼子菜克藻效应的环境因子[J]..环境污染与防治.2011,33(1):17-26.
    [113] Ridge L, Pillinger J M. Towards understanding the nature of algal inhibitors from barleystraw [J], Hydrobiologia,1996,340:301-305.
    [114] Pillinger J M, Cooper J A, Ridge I, et al. Barley straw as an inhibitor of algal growth III:the role of fungal decomposition.[J], J Appl Phycol,1992,4(4):353-355.
    [115] Kajiwara T, Ochi S, Kodama K, et al. Cell-destroying sesquiterpenoid from red tide ofGymnodinium nagasakiense[J]. Phytochemistry,1992,31(3):783-785.
    [116] Pratt D M. Competition between Skeletonema costatum and Olisthodiscus luteus inNarragansett Bay and in culture [J]. Limnol Oceanogr,1966,11(4):447-455.
    [117]张冬鹏,武宝开.几种赤潮藻对温度、氮、磷的响应及藻间相互作用的研究[J].暨南大学学报(自然科学版),2000,21(5):82-87.
    [118] Kumar H D. Streptomycin and penicillin-induced inhibition of growth and pigmentproduction in blue-green algae and production of strains of Anacystis nidulans resistant tothese antibiotics[J]. J Experim Bot,1964,15:232-250.
    [119] Nagasaki K, Tarutani K, Yamaguchi M. Growth characteristics of heterosigma akashiwovirus and its possible use as a microbiological agent for red tide control [J]. Appli. EnvironMicrobiol,1999,65(3):898-902.
    [120]吴刚,席宇,赵以军.溶藻细菌研究的最新进展[J].环境科学研究,2002,15(5):43-46
    [121] Doucette G J, Kodama M, France S, et al. Bacterial interactionswith harmful algal bloomspecies: bloom ecology, toxigenesis and cytology [J]. NATO ASI Series, Series GEcological Sciences,1998,41:619-647.
    [122] Kim M J, Jeong S Y, Lee S J. Isolation, identification, and algicidal activity of marinebacteria against Cochlodinium polykrikoides[J]. Journal of Applied Phycology,2008,20:1069-1078.
    [123]孔赟,缪礼鸿,曾驰等.溶藻链霉菌SG-001发酵条件的优化及溶藻活性物质的理化性质[J].湖北农业科学,2009,48(6):1361-1364.
    [124]赵以军,刘永定.有害藻类及其微生物防治的基础-藻菌关系的研究动态[J].水生生物学报,1996,20(2):173-181.
    [125] Shilo M. Lysis of Blue-Green Algae by Myxobacter.[J]. Bacterial,1970,104(1):453-461.
    [126] Daft M J, Sterwart D P. Ecological studies on algal-lysing bacteria in fresh water [J]. Freshwat Biol,1975,5(1):577–596.
    [127]李勤生,黎尚豪.溶解固氮蓝藻的细菌[J].水生生物学集刊,1981,7(3):377-384.
    [128] Baker K H, Herson D S. Interactions between the diatom Thallasiosira Pseudonana and anassociated Pseudomonad in a mariculture system [J]. Appl Environ Microbiol,1978,35(6):791-796.
    [129] Dakhama A, Noue J, Lavoie M C. Isolation and identification of anti-algal substancesproduced by Pseudomonas aeruginosa[J]. J Appl Phycol,1993,5(9):297-306.
    [130] Takenaka S, Watanabe M F. Microcystin LR degradation by Pseudomonas aeruginosaalkaline protease [J]. Chemosphere,1997,34(4):749-757.
    [131] Yoshikawa K, Adachi K, Nishij M, et al. β-Cyanoalanine production by marine bacteria oncyanide-free medium and its specific inhibitory activity toward cyanobacter [J]. ApplEnviron Microbiol,2000,66(2):718-722.
    [132] Sohn J H, Lee J H, Yi H, et al. Kordia algicida gen. nov., sp. nov., an algicidal bacteriumisolated from red tide [J]. Int JSyst Evol Microbiol,2004,54(3):675-680.
    [133] Mitsutani A, Takesue K, Kirita M, et al. Lysis of Skeletonema costatum by Cytophaga sp,isolated from the coastal water of the Ariake sea [J]. Nippon Suisan Gakkaishi,1992,58(2):2158-2167.
    [134] Imai I, Y Ishida, Y Hata. Kill of marine phytoplankton by a gliding bacterium Cytophaga sp,isolated from the coastal sea of Japan.[J]. Mar Biol,1993,116(2):527-532.
    [135] Imamura N, Motoike I, Noda M, et al. A novel anti-cyanobaeterial compound produced byan algae-lysing bacterium [J]. Joumal of Antibiotics,2000,53(11):1317-1319.
    [136] Roth P B, Twiner M J, Mikulski C M, et al. Comparative analysis of two algicidal bacteriaactive against the red tide dinoflagellate Karenia brevis[J]. Harmful Algae,2008:7(5),682-691.
    [137] Zhang H, Yu Z L, Huang Q, et al. Isolation, identification and characterization ofphytoplankton-lytic bacterium CH-22against Microcystis aeruginosa [J]. Limnologica,2011,41(1):70-77.
    [138] Lee S, Kato J, Takiguchi N, et al. Involvement of an extracellularprotease in Algicidalactivity of the marine bacteriumPseudoalteromonas sp. strain A28[J]. AppliedEnvironmental Microbiology,2000,66(1):4334-4339.
    [139] Lovejoy C, Bowman J P, Hallegraeff G M. Algicidal effects of a novel marinePseudoalteromonas isolate (class Proteobacteria, gamma subdivision) on harmful algalbloom species of the genera Chattonella, Gymnodinum, and Heterosigma[J]. Appl EnvironMicrobiol,1998,64(8):2806-2813.
    [140] Imamura N, Motoike I, Shimada N, et al. An efficientscreening approach for anti2Microcystis compounds based onknowledge of aquatic microbial ecosystem [J]. JAntibiotics,2001,54(7):582-587.
    [141] Skerratt J H, Bowman J P, Hallegraeff GM, et al. Agicidal bacteria associated with bloomsof a toxic dinoflagellatein a temperate Australian estuary [J]. Mar Ecol Prog Ser,2002,244:1-15.
    [142] Kim J H, Park J H, Song Y H, et al. Isolation and characterization of the marinebacterium, Alteromonas sp. SR-14inhibiting the growth of diatom Chaetoceros species[J].J Korean Fish Soc,1999,32(2):155-159.
    [143] Yoshinag A I, Kim M C, Katanozak A N, et al. Population structure of algicidal marinebacteria targeting the red tide-forming alga Heterosigma akashiwo (Raphidophyceae),determined by restriction fragment length polymorphism analysis of the bacterial16Sribosomal RNA genes[J]. Mar Ecol Prog Ser,1998,170:33-44.
    [144]袁峻峰,孟智芳,陈德辉等.中性柠檬酸菌对几种常见藻类生长的他感作用[J].淡水渔业,1999,29(4):12-15.
    [145]赵传鹏,浦跃朴,尹立红.溶藻细菌及其测定评价方法的研究进展[J].东南大学学报(医学版),2005,24(3):202-206.
    [146]彭超,吴刚,席宇等.3株溶藻细菌的分离鉴定及其溶藻效应[J].环境科学研究,2003,16(1):37-40.
    [147]刘晶,潘伟斌,秦玉洁等.两株溶藻细菌的分离鉴定及其溶藻特性物质[J].环境科学与技术,2007,30(2):17-22.
    [148] Imai I, Y Ishida, Ksakaguchi, et al. Algicidal marine bacteria isolated from northernHiroshima bya [J]. Japan Fish Sci,1995,61(1):628-636.
    [149]晏荣军.球形棕囊藻与溶藻细菌的关系研究[D].广州:暨南大学,2006.
    [150] Caiola M G, Pellegrini S. Lysis of Mierocystis aeruginosa by Bdellovibrio-like bacteria [J].J P hycol,1984,20(l):471-475.
    [151] Ren H, Zhang P, Liu C, et al. The potential use of bacterium strain R219for controlling ofthe bloom-forming cyanobacteria in freshwater lake [J]. World Journal of Microbiology andBiotechnology,2010,26(3):465-472.
    [152] Chena W M, Sheub F S, Sheub S Y. Novell-amino acid oxidase with algicidal activityagainst toxic cyanobacterium Microcystis aeruginosa synthesized by a bacteriumAquimarina sp[J]. Enzyme and Microbial Technology,2011,49(4):372-379.
    [153] Yamamoto Y, Kouchiwa T, Hodoki Y, et al. Distribution and identification of actinomyceteslysing cyanobacteria in a eutrotrophic lake[J]. Joumal of Applied Phycology,1998,10(2):391-397.
    [154] Banin E, Khare S K, Naider F, et al. Proline-rich peptide from the coral pathogenVibrioshiloi that inhibits Photosynthesis of zooxanthellae[J]. Applied and EnvironlnentalMicrobiology,2001,67(4):1536-1541
    [155] Jeong S Y, Ishida K, Ito Y. Bacillamide, a novel algicide from the marine bacterium,Bacillus sp. SY-1, against the harmful dinoflagellate, Cochlodinium palykrikoides[J].Tetrahedron Letters,2003(4):8005-8007.
    [156] Mitsutani A, Yamasaki I, Kitaguchi H, et al. Analysis of algicidal proteins of a diatom-lyticmarine bacterium Pseudoalteromonas sp. strain A25by two-dimensional electrophoresis [J].Phycological,2001,40(3):286-291.
    [157] Paul S, Jinnque R, Haim B G, Bacterial suppression of Chlorella by hydroxylamineproduction [J]. Water Research,1979,13(1):267-273.
    [158] Sakata T, Yoshikawa T, Nishitarumizu S. Algicidal activity and identification of an algicidalsubstance produced by marine Pseudomonas sp. C55a-2[J]. Fish Sci,2011,77(3):397-402.
    [159] Kawano Y, Nagawa Y, Nakanishi H, et al. Production of thiotropocin by a marine bacterium,Caulobaeter sp. and its anti-microalgal activities[J]. Journal of Marine Biotechnology,1997,5:225-229.
    [160] Kodani S, Imoto A, Mitsutani A. Isolation and identification of the antialgal compound,harmane(1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp.K44-1[J]. J Appl Phycol,2002,14(2):109-114.
    [161] Volk R B. Screening of microalgal culture media for the presence of algicidal compoundsand isolation and identification of two bio-active metabolites, excreted by the cyanobacteriaNostoc insulare and Nodularia harveyana [J]. Journal of Applied Phycology,2005,17(4):339-347.
    [162] Kim J D, Kim J Y, Park J K, et al. Selective Control of the Prorocentrum minimum HarmfulAlgal Blooms by a Novel Algal-Lytic Bacterium Pseudoalteromonas haloplanktisAFMB-008041[J]. Marine Biotechnology,2009,11(4):463-472.
    [163]母锐敏.溶藻细菌对水华铜绿微囊藻去除特性及对微囊藻毒的降解研究[D].上海:复旦大学环境科学与工程系,2008.
    [164]杨晓新.溶藻细菌对球形棕囊藻溶藻机理的研究[D].广州:暨南大学生命科学技术学院,2008.
    [165]史顺玉.溶藻细菌对藻类的生理生态效应及作用机理研究[D].武汉:中国科学院水生生物研究所,2006.
    [166] Ahn C Y, Joung S H, Yoon S K, et al. Alternativealert system for cyanobacterial bloomusing phycocyanin as a level determinant [J]. Journal of Microbiology,2007,45(2):98-104.
    [167]刘周忆,朱拓,顾恩东等.荧光光谱检测的酸性橙Ⅱ的研究[J].光学学报,2008,28(6):1106-1110.
    [168]刘海龙,吴希军,田广军.三维荧光光谱技术及平行因子分析方法在绿茶分析及种类鉴别中的应用[J].中国激光,2008,35(5):685-689.
    [169]张芳,苏荣国,王修林等.浮游植物荧光特征提取及识别测定技术[J].中国激光,2008,35(12):2052-2059.
    [170] Lee T Y, Tsuzuki M, Takeuchi T, et al. Quantitative determination of cyanobacteria in mixedphytoplankton assemblages by an in vivo fluorimetric method [J]. Analytica Chimica Acta,1995,302(1):81-87.
    [171] Beutler M, Wiltshire K H, Arp M, et al. A reduced model of the fluorescence from thecyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria[J]. Biochimicaet Biophysica Acta-Bioenergetics,2003,1604(1):33-46.
    [172]李文娟.溶藻细菌的分离鉴定及其溶藻特性研究[D].重庆:重庆大学,2010.
    [173]董正臻,董振芳,丁德文.快速测定藻类生物量的方法探讨[J].试验与技术,2004,28(11):1-5.
    [174]国家环保总局.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,2002:670-672.
    [175]金丹,张玉钧,李国刚等.菲的三维荧光光谱特性研究[J].光谱学与光谱分析,2009,29(5):1319-1322.
    [176] Fraleigh P C, Jeffrey C B. American Society of Limnology and Oceanography Inc.Myxococcal predation on cyanobacterial populations: nutrient effects [J]. Limnol Oceanogr,1988,33(3):476-483.
    [177] Kato J, Amie Y, Murata Y, et al. Development of a genetic transformation system for analga-lysing bacterium[J]. Appl Environ Microbio,1998,64(6):2061-2064.
    [178] Berland B R, Bonin D J, Maestrini S Y. Are some bacteria toxic formarinealgae [J]. MarBiol,1972,12:189-193.
    [179] ReimRL, ShaneMS, Cannon R E, The characterization of aBacillus capable of blue-greenbactericidal activity [J]. Can J Microbiol,1974,20:981-986.
    [180] Bowman J P. Bioactive compound synthetic capacity and ecological significance of marinebacterial genus Pseudoalteromonas [J]. Marine drugs.2007,5(4):220-241.
    [181] Henrichsen J, Blom J. Examination of fimbriation of some Gram-negaive rods with andwithout twitching and gliding motility [J]. Acta Pathol Microbiol Scand B,1975,83:161-170.
    [182] Panova T T, Ivanova J. Influence of physiological factors on the lysis effect of cytophaga onthe red microalga Rhodella reticulata[J]. Appl Environ Microbiol,2000,88(2):358-363.
    [183] Costerton J W, Irwin R T. The bacterial glycocalyx in nature and disease [J]. Annu RecMicrobiol,1981,35:299-324.
    [184]裴海燕,胡文容,曲音波等.一株溶藻细菌的分离鉴定及其溶藻特性[J].环境科学学报.2005,25(6):796-802.
    [185] Sosik H, MOlson R J, Chisholm S W. Chlorophyl fluorescence from single cells:interpretation of cytometric signals. Limnol. Oceanogr.1989,34(17):49-61.
    [186]郑荣梁,黄中洋.活性氧也许是端粒酶的调控者[J].科学通报,1999,44(24):2654-2658.
    [187]马旭俊,朱大海,植物超氧化物歧化酶(SOD)的研究进展[J].遗传,2003,25(2):225-231.
    [188]连玉武,王艳丽,郑天凌等.赤潮科学中藻菌关系研究的若干进展[J].海洋科学.1999,23(1):35-38.
    [189] Banin E, Khare S K, Naider F, et al. Proline-rich peptide form the coral pathogen Vibrioshiloi that inhibits photosynthesis of Zooxanthellae[J]. Applied and environmentalmicrobiology.2001,67(4):1536-1541.
    [190] Wang X L, Gong L Y, Liang S K, et al. Algicidal activity of rhamnolipid biosurfactantsproduced by Pseudomonas aeruginosa [J]. Harmful algae.2005,4(2):433-443.
    [191] Su J Q, Yang X R, Zheng T L, et al. Isolation and characterization of a marine algicidalbacterium against the toxic dinoflagellate Alexandrium tamarense[J]. Harmful Algae,2007,6(6):799-810.
    [192]李燕,潘玮斌,杨丽丽.三株溶藻细菌胞外溶藻活性物质若干分离特性的研究[J].微生物学通报,2007,35(2):171-177.
    [193]郭吉,浦跃朴,尹立红等.太湖溶藻细菌的分离及评价[J].东南大学学报:自然科学版,2006,36(2):293-297.
    [194]郭吉.太湖溶藻芽孢杆菌的溶藻作用及机制研究[D].南京:东南大学,2006.
    [195]吕伟英.溶藻细菌筛选方法的优化及W5菌株溶藻特性的研究[D].上海:华中师范大学,2006.
    [196] Wasser S P. Medicinal mushrooms as a source of antitumor and immunomdulatingpolysaccharides [J]. Applied Microbiology Biotechnology,2002,60(2):258-274.
    [197]朱伟,万蕾,赵联芳.不同温度和营养盐质量浓度条件下藻类的种间竞争规律[J].生态环境,2008,17(1):6-11.
    [198]罗伟,沈健英.2种蓝藻的生长对不同环境pH的响应[J].上海交通大学学报:农业科学版,2007,25(6):566-569.
    [199] Muralidhar R V, Chirumamila R, Marchant R. Response surface approach for thecomparison of lipase production by Candida cylindracea using two different carbon sources[J]. Biochemistry Engineering Journal,2001,9(1):17-23.
    [200] Liu C, Liu Y, Liao W, et al. Appliction of statistically based experimental designs for theoptimization of nisin production from whey[J]. Biotechnology Letters,2003,25(8):877-882.
    [201] Abdel-Fattah Y R, Saeed M H, Gohar Y M, et al. Improved product ion of Beud omonasaeru ginosa uricase by optim ization of process paramet ers through st at is ti cal experimental designs [J]. Process Biochemistry,2005,40(11):1707-1714.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700