用户名: 密码: 验证码:
环境激素壬基酚对枝角类浮游动物的生殖干扰效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壬基酚是外源性内分泌干扰物的典型代表,其前体物质壬基酚聚氧乙烯醚在工业、农业、日常生活等方面的大量使用导致壬基酚普遍存在于大气、水体、土壤以及沉积物环境中。本论文以淡水常见浮游植物和枝角类浮游动物为研究对象,分别开展浮游动物对浮游植物摄食能效实验、浮游植物对壬基酚的富集效应实验、壬基酚直接暴露和食物投喂暴露对枝角类的生殖干扰效应实验以及壬基酚暴露对枝角类世代的遗传干扰效应实验。为揭示壬基酚进入水域生态系统食物链的过程和危害,及科学评估水域生态系统中壬基酚的长期生物学效应和规范化监测提供依据。
     枝角类存活率在微藻密度达到或超过一定阈值水平下显著降低。微藻密度对五种枝角类滤水率均表现出负面影响,影响摄食率诸因素的优先顺序为:微藻形态、粒径、密度、营养状况。群体型盘星藻(Pediastrum sp.)、四尾栅藻(Scenedesmus quadricanda)、栅藻栅藻(Scenedesmus sp.),粒径较大的小球藻(Chlorella sp.)、衣藻(Chlamydomonas sp.)和卷曲纤维藻(Ankistrodesmus convolutus)可显著抑制枝角类的摄食。微藻营养状况尤其是不饱和脂肪酸含量一定程度上降低微藻粒径对枝角类摄食率的抑制效应如,斜生栅藻(Scenedesmus obliquus)、肥壮蹄形藻(Kirchneriella obesa)等。枝角类生活史中繁殖前期短、生长速度快的裸腹溞属(Monia sp.)摄食率显著高于溞属(Daphnia sp.)。
     壬基酚对微藻的96h急性毒性受微藻种间耐受性和生长速率的双重影响,十一种淡水微藻半抑制效应浓度范围介于0.60-3.33mg/l。壬基酚生物富集过程与微藻细胞表面积呈显著的正相关关系,同时也受藻细胞种间差异的影响。十一种微藻对壬基酚1h和12h的生物富集系数分别达到8313和13190。
     壬基酚对五种枝角类浮游动物的48h急性毒性半致死效应浓度范围介于8.67-131.79μg/l,且裸腹溞属两种枝角类耐受性显著高于溞属。壬基酚慢性毒性实验中,壬基酚暴露浓度的增加,枝角类存活率降低、首次繁殖时间延后、生命期望、净生殖率、种群内禀增长率显著降低。投喂微藻种类对壬基酚作用下枝角类生活史具有显著的影响,斜生栅藻、月牙藻(Selenastrum sp.)、微囊藻(Microcystis sp.)能够显著降低壬基酚对枝角类生活史干扰效应,而盘星藻、四尾栅藻、卷曲纤维藻、栅藻、衣藻对壬基酚暴露下的枝角类生活史表现出不利影响。
     壬基酚通过食物链传递对枝角类生活史具有显著的抑制效应。饵料微藻暴露时间的增加,枝角类每雌繁殖总数降低,每胎次繁殖数目随着投喂时间的延长显著降低。且首次繁殖时间延后、生命期望、净生殖率、种群内禀增长率显著降低、世代周期延长。与等量壬基酚直接暴露组相比,枝角类生命期望有所增加,但净生殖率却表现出降低现象。微藻种类对壬基酚的食物链传递效应具有显著影响,月牙藻、斜生栅藻、微囊藻暴露后投喂枝角类生存和繁殖显著高于其他种类。斜生栅藻暴露后投喂大型溞(Daphnia magna)处理与对照组差异不显著,月牙藻暴露后投喂多刺裸腹溞(Monia macrocopa)与对照组无显著差异。壬基酚经食物链传递对枝角类种间干扰作用程度受幼体阶段摄食率的影响,裸腹溞属幼体阶段的高摄食率也造成了高生殖抑制效应。
     壬基酚对枝角类的世代干扰效应表现出两面性,壬基酚暴露大型溞不同世代的生殖干扰效应随着世代增加显著增强。多刺裸腹溞1μg/l暴露组以及斜生栅藻和微囊藻投喂下的0.01μg/l暴露组壬基酚生殖干扰作用也表现出显著的世代放大效应。以上各组中,去除暴露下子一代和子三代生命期望或净繁殖率仍显著低于亲代及丙酮对照组。然而,月牙藻投喂下0.01μg/l暴露组壬基酚对多刺裸腹溞存活和繁殖表现出促进效应,子代生命期望和净繁殖率显著高于亲代。推测可能是低浓度壬基酚暴露诱导高耐受性或高食物摄取效能个体的产生并稳定遗传给子代。
     壬基酚能够在受试的浮游植物中表现出较强的生物富集效应,其富集速率和富集能力与微藻形态和耐受性有关。低于环境允许上限一至两个数量级的壬基酚对枝角类浮游动物即可表现出显著的生殖干扰作用,尤其是多世代持续暴露下表现出的世代放大效应。另外,微藻对壬基酚的生物富集和食物链传递拓宽了壬基酚进入水域生态系统生物循环的途径,同时加剧了壬基酚对枝角类浮游动物的干扰效应程度。然而,我们也发现,适宜形态、粒径以及高营养状况的微藻投喂枝角类能够降低壬基酚对枝角类的干扰作用,这也进一步揭示了壬基酚在环境中对生物作用的复杂性。
Nonylphenol was classified as environmental endocrine disrupter for the capability oninterfering with hormonal system. Nonylphenol was xenobiotic compound originated from thedegradation of nonylphenol ethoxylates which was widely used in industrial, commercial,angricultural and household applications. Due to the low solubility and high hydrophobicity ofthose by-products, nonylphenol, became ubiquitous in the air, surface water, soil and sediments,especially sewage sludge and surface water sediments. Nonylphenol showed certain acutetoxicity, such as decrease survival and moulting rate of juveniles, fertility in maturation period.Moreover, disrupting effect through mimicing hormones and disturbing the signals that regulatephysiology attracted considerable attention around the world. However, responses of differentorganisms treated with nonylphenol were diverse and unpredictable especially under series ofculture conditions. This paper focused on the potential chronic impacts of nonylphenol onfreshwater cladocerans, especially on growth and reproduction. Bioaccumulation of nonylphenolin different species of algae was studied in order to better understand transportation of lowsoluble nonylphenol into biological food chains. Grazing efficiency of five cladoceran specieswere studied by feeding eleven algaes with two cell densities. Chronic effects were studiedthrough direct and dietary exposure of nonylphenol fed with eleven algae species, whilemuitigeneration impact was compared with recovery treatment fed with three algae species. Thedata supports the need for evaluation and monitor the potential long-term environmental impactof nonylphenol systematically.
     Survival and feeding rate were influenced by density, structure, size and quality of algaesignificantly. Decrease of survival rate and feeding ability was detected as algae density up to“water bloom” level. Filtration rate was influenced negatively as the increase of cell density, sizeand assembling conditions. Grazing rate and flitration rate decreased at Pediastrum sp., S. quadricanda, Scenedesmus sp.treatments. Inhibitory effect of size and structure on larves couldbe released by nutrient quality, such as content of unsaturated fatty acid, which was consideredto be key limiting factor. Higher grazing rate in Monia dued to the short larve phase comparedwith that in Daphnia.
     The half-dampening effect concentration of nonylphenol on eleven species at96h was among0.6-3.33mg/l, which was influenced by both growth rate and tolerance. Bioconcentration ofnonylphenol was detected evidently in all species, while the maximum Bioaccumulation factorswere8313and13190at1h and12h respectively. Biosorption at the initial phase was co-relatedwith total surface areas, while in the latter phase was determined by physiological activity, suchas photosynthetic and metabolic activities.
     The half letal concentration of nonylphenol on five cladoceran species at48h was among8.67-131.79μg/l in acute toxicity, tolerance of Monia was higher than Daphnia evidently.Chronic toxicity were detected by decrease of survival rate, life expectation, net reproductiverate, intrinsic growth rate and lag time of first reproduction as the increase of initial nonylphenolconcentrations on three cladoceran species. Regardless of feeding species, D. magna was moresensitive than M. macrocopa and M. micrura. Feeding with eleven algae species, toxicity ofnonylphenol was reduced under S. obliquus, Selenastrum sp., Microcystis sp. treatments, whileenhanced under Pediastrum sp., S. quadricanda, A. convolutes, Scenedesmus sp.,Chlamydomonas sp. treatments.
     Life history traits of five cladoceran species were influenced by dietary exposure evidently,enhancement of toxicity was detected as the increase of algae exposed time. Total number ofoffspring per female, the time to first brood, life expectation, net reproductive rate, intrinsicgrowth rate showed significant reduction. Life expectation was increased while net reproductiverate was decreased in dietary exposure treatment compared with equal amount of nonylphenoldirect exposure treatments. Dietary exposure of nonylphenol with eleven algae species, toxicityof nonylphenol on life expectation and net reproductive rate was reduced under Selenastrum sp.,S. obliquus, Microcystis sp. treatments. Life history traits of D. magna fed with S. obliquus andM. macrocopa fed with Selenastrum sp. showed no notable difference compared with control.Influence of nonylphenol through dietary exposure on M. macrocopa was more adverse than thaton D. magna, which indicated that higher grazing rate in the larvae induced higher accumulation and toxicity.
     Multigeneration exposure induced increase or decrease of sensitivity dependented onnonylphenol concentrations, cladoceran species and feeding algae species. D. magna exposed to1and0.01ug/l nonylphenol decreased the life expectation and net reproductive rate in both firstand third broods compared with parentals in three feeding species. Exposed to0.01ug/nonylphenol with S. obliquus, Microcystis sp. and l ug/l treatments, growth and reproduction of M.macrocopa were inhibited over successive generations. Moreover, life expectation and netreproductive rate of offsprings in the recovery treatments were still reduced evidently comparedwith parental treatments and control. However, growth and reproduction were promoted in thefirst and third broods under0.01ug/l nonylphenol exposure fed with Selenastrum sp.. Lifeexpectation and net reproductive rate of offsprings in exposure and recovery treatments wereenchanced significantly, which indicated that low dose and suitable food supplement inducedparental acclimation or adaptation, then higher physiological activity in offsprings.
     Bioaccumulation of nonylphenol in algae was dependented on both morphology andphysiology characters, which should be pay much more attention for a fully understanding.Disturbering effect was detected in growth and reproduction exposed one or two orders ofmagnitude lower than the threshold in freshwater, especially under successive generationexposure treatments. Bioconcentration of nonylphenol illustrated efficient pathway to enter foodchain, which might be more toxic as the concentration increase thousands of times comparedwith that in water. Effect of nonylphenol on cladoceran was influenced by feeding algae specie,such as structure, size and nutrient quality, which indicated the complexity regulation ofnonylphenol in aquatic system.
引文
[1]安太成,陈嘉鑫,傅家谟等.珠三角地区POPs农药的污染现状及控制对策.生态环境,2005,14(6):981-986.
    [2]操璟璟,廖庆生,蒋继宏等.不同温度条件下几种枝角类浮游动物的抑藻净水效应研究.生物学杂志,2010,27(1):57-60.
    [3]迟杰,李金娟,刘华.普通小球藻对DEHP的富集和降解动力学.天津大学学报,2005,38(5):422-425.
    [4]邓道贵,孟琼,殷四涛等.温度和食物浓度对大型溞Daphnia magna种群动态和两性生殖的影响.生态学报,2008,28(9):4268-4276.
    [5]邓利,倪睿,钟毅等.深圳蛇口港及其临近海域海水有机锡污染.环境科学学报,2008,28(8):1681-1687.
    [6]堵南山.中国淡水枝角类概论[M].科学出版社,北京,1973,1.
    [7]段菁春,陈兵,麦碧娴等.洪季珠江三角洲水系烷基酚污染状况研究.环境科学,2004,25(3):48-52.
    [8]傅明珠.烷基酚在近海海洋和河口环境中的浓度分布与初步生态风险评价.[博士学位论文],山东青岛:中国海洋大学环境科学学院,2007.
    [9]高文宝,朱琳,孙红文等.大型溞对栅藻摄食行为及影响因素的研究.农业环境科学学报,2006,25(4):1041-1044.
    [10]管超,孙志伟,安民,段舜山.壬基酚对球形棕囊藻的生态毒性效应.生态环境学报,2011,20(4):640-645.
    [11]郭匿春,谢平.双酚A和壬基酚对隆线溞和微型裸腹溞的毒性.水生生物学报,2009,33(3):492-497
    [12]郝瑞霞,梁鹏,赵曼等.固相萃取-气相色谱-质谱-选择离子法检测污水中壬基酚.环境科学,2006,27(11):2222-2227.
    [13]胡鸿钧,魏印心.中国淡水藻类[M].科学出版社,北京,2006,10.
    [14]江敏,彭自然,安世杰等.4-壬基酚对三种水生生物的毒性影响.水生生物学报,2006,30(4):489-492.
    [15]江天久,徐轶肖.蒙古裸腹溞对有毒赤潮生物塔塔玛亚历山大藻的摄食研究.海洋环境科学,2006,25(1):14-16
    [16]李超伦,王克.植食性浮游桡足类摄食生态学研究进展.生态学报,2002,22(4):593-596.
    [17]李永玉,洪华生,王新红等.厦门海域有机磷农药污染现状与来源分析.环境科学学报,2005,25(8):1071-1077.
    [18]李玉颖,邓道贵,雷娟等.温度和食用藻密度对发头裸腹溞种群动态和两性生殖的影响.应用生态学报,2011,22(12):3337-3342.
    [19]李正炎,李浩东.西瓦湖中壬基酚和双酚A的污染特征.青岛海洋大学学报,2003,33(6):847-853.
    [20]林喜燕,于瑞莲,胡恭任.环境激素对水生动物干扰效应及机制研究进展.环境科学与技术,2009,32(9):98-105.
    [21]吕玥,张迎梅,杨峰等.壬基酚对中华大蟾蜍蝌蚪的毒性效应.农业环境科学学报,2010,29:1086-109.
    [22]乔丽丽,郑力行,蔡德培.性早熟女童血清中双酚A、辛基酚、4-壬基酚测定和分析.卫生研究,2010,39(1):9-13.
    [23]沈钢,张祖麟,余刚等.夏季海河与渤海湾中壬基酚和辛基酚污染的状况.中国环境科学,2005,25(6):733-736.
    [24]史文,刘其根,吴晶等.不同藻类对大型溞存活和生殖的影响.生态学杂志,2009,28(6):1128-1133.
    [25]孙军,刘东艳,王宗灵等.浮游动物摄食在赤潮生消过程中的作用.生态学报,2004,24(7):1515-1524.
    [26]王丹丽,徐善良,徐继林等.不同食物条件下蚤状溞的脂肪酸组成比较研究.水产科学,2005,24(9):14-16.
    [27]王国祥,成小英,濮培民.湖泊藻型富营养化控制——技术、理论及应用.湖泊科学,2002,14(3):273-282.
    [28]王莉,唐丽雅,魏晨曦等.邻苯二甲酸二(2-乙基)己酯对斜生栅藻的生态毒性作用.生态毒理学报,2009,4(3):452-456.
    [29]王凌,黎先春,殷月芬等.莱州湾水体中有机磷农药的残留检测与风险影响评价.安全与环境学报,2007,7(3):83-85.
    [30]王文雄,潘进芬.重金属在海洋食物链中的传递.生态学报,2004,24(3):599-604
    [31]谢志浩,唐学玺,陆开宏.藻类种类和浓度对中华哲水蚤(Calanus sinicus)摄食和消化酶活性的影响.生态学报,2009,29(2):613-618.
    [32]尹娟,韩博平.食物浓度对模糊秀体溞生长和繁殖的影响.湖泊科学,2008,20(3):344-350
    [33]张凤君,郑文彪,方展强等. PCBs对斑马鱼鳃及肝脏细胞超微结构的影响的初步研究.华南师范大学学报(自然科学版),2001,46(4):112-114.
    [34]张小敏,王蕾,郭丰.4种有机污染物对假微型海链藻的毒性效应.厦门大学学报(自然科学版),2011,50(1):138-143.
    [35]赵劲松,袁星.环境激素对鱼的影响.环境科学研究,2001,14(3):12-16.
    [36]赵明桥,李攻壳,栾天罡等. SPME-GC-MS法测定海水中Pes及与赤潮关系.中山大学学报(自然科学版),2000,39(3):54-59.
    [37]朱建如,宋毅.环境激素及对人体的危害.公共卫生与预防医学,2006,17(6):38-40.
    [38]朱玮阁,李孙根,吕林兰等.环境激素氰戊菊酯和有机锡对轮虫生活史特征的影响.湖泊科学,2009,21(5):687-692.
    [39]宗栋良,常爱敏,张光明等.深圳主要河流中农药类环境激素污染调查.环境监测管理技术,2009,21(9):39-44
    [40]邹淑美,秦学祥.海洋生物对无机污染物的吸收、富集和转移.海洋环境科学,1990,9(3):55-61.
    [41] Ahel M, Giger W, Schaffner C. Behaviour of alkylphenol polyethoxylate surfactants in the aquaticenvironment—II. Occurrence and transformation in rivers. Water Research.1994,28(5):1143-1152.
    [42] Ahel M, McEvoy J, Giger W. Bioaccumulation of the lipophilic metabolites of non-ionic surfactants infreshwater organisms. Environmental Pollution,1993,79:243–248.
    [43] Ahlgren G, Lundstedt L, Breet M et al. Lipid composition and food quallty of some freshwaterphytoplankton for cladoceran zooplanktons. Journal of Plankton Research,1990,12(4):809-818.
    [44] Alonzo F, Gilbin R, Zeman FA et al. Increased effects of internal alpha irradiation in Daphnia magnaafter chronic exposure over three successive generations. Aquatic Toxicology,2008,87:146-156.
    [45] Atiezar FA, Billinghust Z, Depledge MH.4-n-nonylphenol and17-β estradiol may induce common DNAeffects in developing barnacle larvae. Environmental Pollution,2002,120:735-738.
    [46] Baatrup E, Junge M, Gunier RB et al. Antiandrogenic pesticides disrupt sexual characteristics in the adultmale guppy Poecilia reticulata. Environmental Health Perspectives,2001,109:1063-1070.
    [47] Bevan CL, Porter DM, Prasad A et al. Environmental estrogens alter early development in Xenopuslaevis. Environmental Heath Perspect,2003,111:488-496.
    [48] Billinghurst Z,Clare AS,Matsumura K et al. Induction of cypris major protein in barnacle larvae byexposure to4-n-nonylphenol and17β-oestradiol. Aquatic Toxicology,2000,47(3-4):203-212.
    [49] Blackburn M, Kirby S, Waldock M. Concentrations of alkyphenol polyethoxylates entering UK estuaries.Marine Pollution Bulletin,1999,38(2):109-118.
    [50] Bossuyt BTA, Escobar YR, Janssen CR. Multigeneration acclimation of Daphnia magna Straustodifferent bioavailable copper concentrations. Ecotoxicology and Environmental Safety,2005,61:327-336.
    [51] Brennan SJ, Brougham CA, Roche JJ et al. Multi-generational effects of four selected environmentalestrogens on Daphni magna, Chemosphere,2007,64(1):49-55
    [52] Brennan SJ, Brougham CA, Roche JJ et al. Multi-generational effects of four selected environmentaloestrogens on Daphnia magna. Chemosphere,2006,64:49-55.
    [53] Brown RJ, Conradi M, Depledge MH. Long-term exposure to4-nonylphenol affects sexualdifferentiation and growth of the amphipod Corophium volutator (Pallas,1776). Science of the TotalEnvironment,1999,233:77-88.
    [54] Burkhardt-Holm P, Wahli T, Meier W. Nonylphenol Affects the Granulation Pattern of EpidermalMucous Cells in Rainbow Trout, Oncorhynchus mykiss. Ecotoxicology and Environmental Safety,2000,46:34–40.
    [55] Campos B, Pina B, Fernández-Sanjuán M et al. Enhanced offspring production in Daphnia magna clonesexposed to serotonin reuptake inhibitors and4-nonylphenol. Stage-and food-dependent effects. AquaticToxicology,2012,109:100-110.
    [56] Carson R. Silent spring[M]. Boston, MA: Houghton Mifflin Pub,1962.
    [57] Chen B, Duan JC, Mai BX et al. Distribution of alkylphenols in the Pearl River Delta and adjacentnorthern South China Sea, China. Chemosphere,2006,63:652–661.
    [58] Cillo F, Equileor M, Gandolfi F et al. Aroclor-1254affects mRNA polyadenylation, translationalactivation, cell morphology, and DNA integrity of rat primary prostate cells. Endocrine-Related Cancer,2007,14:257-266.
    [59] Clubbs RL and Brooks BW. Daphnia magna responses to a vertebrate estrogen receptor agonist and anantagonist: a multigenerational study. Ecotoxicology and Environmental Safety,2007,67:385-398.
    [60] Colborn T, Dumanoski D, Myers JP. Our Stolen Future: Are we threatening our fertility, intelligence andsurvival? Scientific detective story[M]. New York: Dutton Books,1996.
    [61] Colborn T, vom-Saal FS, Soto AM. Developmental effects of endocrine-disrupting chemicals in wildlifeand humans. Environmental Health Perspectives,1993,101(5):378–384.
    [62] Coldham NG. Sivapathasundaram S, Dave M et al. Biotransformation, tissue distribution and persistenceof4-nonylphenol residues in juvenile rainbow trout (Oncorhynchus mykiss). Drug Metabolism andDisposition,1998,26:347-354
    [63] Corvini P, Sch ffer A, Schlosser D. Microbial degradation of nonylpheno and other alkylphenols–ourevolving views. Applied microbiology and biotechnology,2006,72:223–243.
    [64] Dao TS, Do-Hong LC, Wiegand C. Chronic effects of cyanobacterial toxins on Daphnia magna and theiroffspring. Toxicon,2010,55:1244-1254.
    [65] De-Schamphelaerea KAC, Canli M, Lierde VV et al. Reproductive toxicity of dietary zinc to Daphniamagna. Aquatic Toxicology,2004,70:233-244.
    [66] Dietrich S, Ploessl F, Bracher F et al. Single and combined toxicity of pharmaceuticals atenvironmentally relevant concentrations in Daphnia magna–A multigenerational study. Chemosphere,2010,79:60-66.
    [67] Dodds EC and Lawson W. Molecular structure in relation to estrogenic activity: compounds without aphenanthrene nucleus. Proceeding of the Royal Society of London,1938;125:222-232.
    [68] Dokster A and Vijvetherg J. The effect of food and temperature regimes on life-history responses to fishkairomones in Daphnia hyaline-galeata. Hydrobiology,2001,442:207-214.
    [69] Duntas LH. Environmental factors and autoimmune thyroiditis. Nature,2008,4(8):444-451.
    [70] Ebert D. A food-independent maturation threshold and size at maturity in Daphnia magna. Limnologyand Oceanography,1992,37:878-881.
    [71] Eklund R, Bergman A, Granmo A et al. Bioaccumulation of4-nonylphenol in marine animals: are-evalution. Environmental Pollution,1990,64:107-120.
    [72] Elliott JE, Norstrom RJ, Keith JA. Organochlorines and eggshell thinning in northern gannets (Sulabassanus) from eastern Canada. Environmental Pollution,1988,52:81-102
    [73] Eric VE. Food quality constraints in Daphnia: interspecific differences in the response to the absence of along chain polyunsaturated fatty acid in the food source. Hydrobiology,2004,526:187-196.
    [74] Evens R, De-Schamphelaere K, De-Laender F et al. The effects of Zn-contaminated diets on Daphniamagna reproduction may be related to Zn-induced changes of the dietary P content rather than to thedietary Zn content itself. Aquatic Toxicology,2012,(110-111):9-16.
    [75] Evens R, De-Schamphelaere K. Janssen CR. The effects of dietary nickel exposure on growth andreproduction of Daphnia magna. Aquatic Toxicology,2009,94:138-144.
    [76] Ferguson P, Iden C, Brownawell B. Distribution and fate of neutral alkylphenol ethoxylate metabolites ina sewage-impacted urban estuary. Environmental Science&Technology,2001,35(12):2428-2435.
    [77] Fernandez MP, Ikonomou MG, Buehanan I. An assessment of estrogenie organic contaminants inCanadian wastewaters.Seienee of The Total Environment,2007,373(1):250-269.
    [78] Ferrao-Filho AS and Azevedo SMFO. Efects of unicellular and colonial forms of toxic Microcystisaeruginosa from laboratory cultures and natural populations on tropical cladocerans. Aquatic. Ecology,2003,37(1):23-35.
    [79] Fitzgerald SA, Steuer JJ. Association of polychlorinated biphenyls (PCBs) with live algae and total lipidsin rivers-a field-based approach. Science of the Total Environment,2006,354:60-74.
    [80] Flammarion P, Brion F, Babut M et al. Induction of fish vitellogenin and alterations in testicular structure:Preliminary results of estrogenic effects in chub (Leuciscus cephalus). Ecotoxicology,2000,9:127-135.
    [81] Fossi MC, Marsili L. Effects of endocrine disruptors in aquatic mammals. Pure and Applied Chemistry,2003,75(11-12):2235-2247.
    [82] Fries E, Puttmann W. Occurrence and behaviour of4-nonyl-phenol in river water of Germany. Journal ofEnvironmental Monitoring,2003,5(5):598-603.
    [83] Gabet V, Miége C, Bados P et al. Analysis of estrogens in environmental matrices. Trends in AnalyticalChemistry,2007,26:1113-1131.
    [84] Gao QT, Wong YS, Tam NFY. Removal and biodegradation of nonylphenol by different Chlorella species,Marine Pollution Bulletin,2011,63:445-451.
    [85] García-Reyero N, Raldúa D, Quirós L et al. Use of vitellogenin mRNA as a biomarker for endocrinedisruption in feral and cultured fish. Analytical and Bionanalytical Chemistry,2004,378:670-675.
    [86] Gerald TA, Kathleen MJ, Michael DK et al. Use of chemical mixtures to differentiate mechanisms ofendocrine action in a small fish model. Aquatic Toxicology.2010,99:389-396.
    [87] Gerofke A, Komp P, McLachlan MS. Bioconcentration of persistent organic pollutants in four species ofmarine phtoplankton. Environmental Toxicology and Chemistry,2005.24:2908-2917.
    [88] Gesto M, Tintos A, Soengas JL et al. β-Naphthoflavone and benzo(α)pyrene alter dopaminergic,noradrenergic, and serotonergic systems in brain and pituitary of rainbow trout (Oncorhynchus mykiss).Ecotoxicology and Environmental Safety,2009,72:191-198.
    [89] Gilbert JJ. Effect of food availability on the response of planktonic rotifers to a toxic strain of thecyanobacterium Anabaena flos-aquae. Limnology and Oceanography,1996,41:1565-1572.
    [90] Gilbert JJ. Susceptibility of planktonic rotifers to a toxic strain of Anabaena floes-aquae. Limnology andOceanography,1994,39:1286-1297.
    [91] Gliwicz ZM. Food thresholds and body size in cladocerans. Nature,1990,343:638-640.
    [92] Gliwicz ZM. Species-specfic population-density thresholds in cladocerans. Hydrobiology,2001,442:291-300.
    [93] Graff L, Isnard P, Cellier P et al. Toxicity of chemicals to microalgae in river and in standard waters.Environmental Toxicology and Chemistry,2003,22:1368–1379.
    [94] Gray LE, Ostby JJ, Furr J et al. Effects of environmental antiandrogens on reproductive development inexperimental animals. Human Reproduction Update,2001,7:248-264.
    [95] Gray MA, Metcafe CD. Induction of testis-ova in Japanese medaka (Oryzias latipes) exposed top-nonylphenol. Environmental Toxicology and Chemistry,1997,16:1082-1086.
    [96] Guan R and Wang WX. Comparison between two clones of Daphnia magna: Effects of multigenerationalcadmium exposure on toxicity, individual fitness, and biokinetics. Aquatic Toxicology,2006,76:217-229.
    [97] Guillette LJJ, Brock JW, Rooney AA et al. Serum concentrations of various environmental contaminantsand their relationship to sex steroid concentrations and phalus size in juvenile american alligators.Archive of Environmental Contamination and Toxicology,1999,36(4):447-455.
    [98] Guo N and Xie P. Development of tolerance against toxic Microcystis aeruginosa in three cladoceransand the ecological implications. Environmental Pollution,143:513-518.
    [99] Gupta C. Reproductive malformation of the male offspring following maternal exposure to estrogenicchemicals. Proceedings of the Society for Experimental Biology and Medicine,2000,224:61-68.
    [100] Gustafsson S, Rengefors K, Hansson LA. Increased consumer fitness following transfer of toxintolerance to offspring via maternal effects. Ecology,2005,86:2561-2567.
    [101] Hanazato T and Yasuno M. Influence of persistence period of an insecticide on recovery patterns of azooplankton communities in experimental ponds. Environmental pollution,1990,67(2):109-122.
    [102] Harries JE, Janbakhsh A, Jobling S et al. Estrogenic potency of effluent from two sewage tretamentworks in the United Kingdom. Environment Toxicology and Chemistry,1999,18:932-937.
    [103] Harries JE, Sheahan DA, Jobling S et al. Estrogenic activity in five United Kingdom rivers detected bymeasurement of vitellogenesis in caged male trout. Environmental Toxicology and Chemistry,1997,16:534-542.
    [104] Harvey PW and Johnson I. Approaches to the assessment of toxicity data with endpoints related to theendocrine disruption. Journal of Applied Toxicology,2002,22(4):241–247.
    [105] Hceht SA, Gunnarsson JS, Boese BL et al. Influences of sedimentary organic matter quality on thebioaccumulation of4-nonylphenol by estuarine amphipods. Environmental Toxicology and Chemistry,2004,23(4):865-873.
    [106] Heckmann LH, Callaghan A, Hooper HL et al. Chronic toxicity of ibuprofen to Daphnia magna: Effectson life history traits and population dynamics. Toxicology Letters,2007,172:137-145.
    [107] Heemken, O.P., Reincke, H., Stachel, B., Theobald, N.,2001. The occurrence of xenoestrogens in theElbe river and the North Sea. Chemosphere45,245-259.
    [108] Hense BA, Welzl G, Severin GF et al. Nonylphenol induced changes in trophic web structure ofplankton analysed by multivariate statistical approaches. Aquatic Toxicology,2005,73:190-209.
    [109] Hirooka T and Nagase H. Degradation of2,4-dinitrophenol by a mixed culture of photoautophicmicroorganisms. Biochemical Engineering Journal,2006,1-2(29):157-162.
    [110] Hirooka T, Nagase H, Uchida K et al. Biodegradation of bisphenol a and disappearance of its estrogenicactivity by the green alga Chlorella fusca var. vacuolata. Environmental Toxicology and Chemistry,2005,24:1896-1901.
    [111] Howdeshell KL, Hotchkiss AK, Thayer KA et al. Exposure to bisphenol A advances puberty. Nature,1999,401(6755):763–764.
    [112] Hughes EM and Gallagher EP. Effects of17-β-estradiol and4-nonylphenol on phase II electrophilicdetoxification pathways in largemouth bass (Micropterus salmoides) liver. Comparative Biochemistryand Physiology Part C: Toxicology&Pharmacology,2004,137(3):237–247.
    [113] Inadera H. The immune system as a target for environmental chemicals: Xenoestrogens and othercompounds. Toxicology Letters,2006,164(3):191–206.
    [114] IPCS. The international Programme on Chemical Safety (IPCS): Global assessment of thestate-of-the-science of endocrine disruptors[R]. Geneva: WHO/PCS/EDC,2002.
    [115] Isobe T, Nishiyama H, Nakashima A, et al. Distribution and behavior of nonylphenol, octylphenol andnonylphenol monoethoxylate in Tokyo metropolitan area: Their association with aquatic particles andsedimentary distributions. Environmental Science&Technology,2001,35(6):1041-1049.
    [116] Johnstone R, Court G, Fesser A et al. Long-term trends and sources of organochlorine contamination inCanadian tundra peregrine falcons, Falco peregrinus tundrius. Environmental Pollution,1996,93:109-120.
    [117] Jonkers N, Laane R, De Voogt P. Fate of nonylphenol ethoxylates and their metabolites in two Dutchestuaries: Evidence of biodegradation in the field. Environmental Science&Technology,2003,37(2):321-327.
    [118] Kelce WR, Stone CR, Laws SC et al. Persistent DDT metabolite p, p'-DDE is a potent androgenreceptor antagonist. Nature,1995,375(6532):581-585.
    [119] Kim YS, Katase T, Sekine S et al. Variation in estrogenic activity among fractions of a commercialnonylphenol by high performance liquid chromatography. Chemosphere,2004,54:1127-1134.
    [120] Kinnberg K, Korsgaard B, Bjerregaard P et al. Effects of nonylphenol and17-estradiol on vitellogeninsynthesis and testis morphology in male platyfish Xiphophorus maculates. The Journal of ExperimentalBiology,2000,203:171–181
    [121] Kinnberg K, Korsgaard B, Bjerregaard P et al. Effects of nonylphenol and17beta-estradiol onvitellogenin synthesis and testis morphology in male platyfish Xiphophorus maculatus. Journal ofExperimental Biology,2000,203:171-181.
    [122] Knepper TP and Berna JL. Surfactants: properties, production, and environmental aspects. In: Analysisand Fate of Surfactants in the Aquatic Environment[M]. Elsevier, Amsterdam,2003, pp.1–45.
    [123] Kobayashi K, Tamotsu S, Yasuda K et al. Vitellogenin-immunohistochemistry in the liver and the testisof the Medaka, Oryzias latipes, exposed to17-β-estradiol and p-nonylphenol. Zoological Science,2005,22:453–461.
    [124] Lampert W. lnhibitory and toxic effects of blue-green algae on Daphnia. Hydrobiology,198l,66:285-298.
    [125] Lee HJ, Chattopadhyay S, Gong EY et al. Antiandrogenic effects of bisphenol A and nonylphenol on thefunction of androgen receptor. Toxicological Science,2003,75:40-46.
    [126] Li DH, Kim M, Shim WJ et al. Seasonal flux of nonylphenol in Han River, Korea. Chemosphere,2004,56(1):1-6.
    [127] Lilienthal H, van-der-Ven LTM, Piersma AH et al. Effects of the brominated flame retardanthexabromocyclododecane (HBCD) on dopamine-dependent behavior and brainstem auditory evokedpotentials in a one-generation reproduction study in Wistar rats. Toxicology Letters,2009,185:63-72.
    [128] Liney KE, Hagger JA, Tyler CR et al. Health Effects in Fish of Long-Term Exposure to Effluents fromWastewater Treatment Works,2006, Environ Health Perspect,114:81-89.
    [129] Lynn SG, Price DJ, Birge WJ et al. Effect of nutrient availability on the uptake of PCB congener2,2’,6,6’-tetrachlorobiphenyl by a diatom (Stephanodiscus minutulus) and transfer to a zooplankton(Daphnia pulicaria). Aquatic Toxicology,2007,83:24-32.
    [130] Magliulo L, Schreibman MP, Cepriano J et al. Endocrine disruption caused by two common pollutant at“acceptable” concentrations. Neurotoxicology and Teratology,2002,24:71-79.
    [131] Massarin S, Alonzo F, Garcia-Sanchez L et al. Effects of chronic uranium exposure on life history andphysiology of Daphnia magna over three successive generations. Aquatic Toxicology,2010,99:309-319.
    [132] Mathur PP and D’Cru SC. The effect of environmental contaminants on testicular function. AsianJournal of Andrology,2011,13:585–591.
    [133] Matozzo V, Monari M, Foschi J et al. First Evidence of Altered Immune Responses and Resistance toAir Exposure in the Clam Chamelea gallina Exposed to Benzo(a)pyrene. Archives of EnvironmentalContamination and Toxicology,2009,56:479-488.
    [134] Matsurnura N, Ishibashi H, Hirano M et al. Effects of nonylphenol and triclosan on Production ofPlasma vitellogenin and T in male South African clawed frogs (Xenopus laevis). Biological andPharmaceutical Bulletin,2005,28:1748-1751
    [135] Mayer FL, Stalling DL, Johnosn JL. Phthalate esters as environmental contaminants. Nature,1972,238(5364):411-413.
    [136] McCarty JP and Secord AL. Reproductive ecology of tree swallows (Tachycineta bicolor) with highlevels of polychlorinated biphenyl contamination. Environmental Toxicology and Chemistry,1999,18:1433-1439.
    [137] Meier S, Andersen TE, Norberg B et al. Effects of alkylphenols on the reproductive system of Atlanticcod (Gadus morhua). Aquatatic Toxicology,2007,81:207-218.
    [138] Meier S, Mortona H C, Andersson E. Low-dose exposure to alkylphenols adversely affects the sexualdevelopment of Atlantic cod (Gadus morhua): Acceleration of the onset of puberty and delayed seasonalgonad development in mature female cod. Aquatic Toxicology,2011,105:136-150
    [139] Melnick R, Lucier G, Wolfe M et al. Summary of the national toxicology program’s report of theendocrine disruptors low-dose peer review. Environmental Health Perspectives,2002,110:427–431.
    [140] Meregalli G, Pluymers L, Ollevier F. Induction of mouthpart deformities in Chironomous riparius larvaeexposed to4-n-nonylphenol. Environmental Pollution,2001,111:241-246.
    [141] Meucci V, Arukwe A. The xenoestrogen4-nonylphenol modulates hepatic gene expression of pregnaneX receptor, aryl hydrocarbon receptor, CYP3A and CYP1A1in juvenile Atlantic salmon (Salmo salar).Comparative Biochemistry and Physiology Part C: Toxicology&Pharmacology,2006,142:142–150
    [142] Müller-Navarra DC, Brett MT, Liston AM et al. A highly saturated fatty acid predicts carbon transferbetween primary produeers and consumers. Nature,2000,403:74-77.
    [143] Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review.Water Research,2006,40:2799–2815.
    [144] Nakai S, Kishita S, Nomura Y et al. Polychlorinated dibenzothiophenes in Japanese environmentalsamples and their photodegradability and dioxin-like endocrine-disruption potential. Chemosphere,2007,67(9):1852-1857.
    [145] Nandini S and Sarma SSS. Lifetable demography of four cladoceran species in relation to algalfood(Chlorellla vulgaris) density. Hydrobiology,2000,435:117-126
    [146] Newbold RR, Padilla-Banks E, Snyder RJ et al. Developmental exposure to endocrine disruptors andthe obesity epidemic. Reproductive Toxicology,2007,23(3):290-296.
    [147] Nice HE, Morrit D, Crane M., Thorndyle, M. Long-term and transgenerational effects of nonylphenolexposure at a key stage in the development of Crassostrea gigas, Possible endocrine disruption? MarineEcology Progress Series,2003,256:293-300.
    [148] Nice HE, Thorndyke MC, Morritt D et al. Development of Crassostrea gigas Larvae is Affected by4-nonylphenol. Marine Pollution Bulletin,2000,40(6):491-496.
    [149] Nisbet RM, McCauley E, GurneyWS et al. Formulating and testing a partially specified dynamic energybudget model. Ecology,2004,85:3132-3139.
    [150] O’Halloran S, Liber K, Gangl JA et al. Effects of repeated exposure to4-nonylphenol on thezooplankton community in littoral enclosures. Environmental Toxicology and Chemistry,1999,18:376-385.
    [151] Onozuka D, Yoshimura T, Kaneko S, et al. Mortality after exposure to polychlorinated biphenyls andpolychlorinated dibenzofurans: A40-year follow-up study of Yusho patients. American Journal ofEpidemiology,2009,169(1):86-95.
    [152] Peng XZ, Wang ZD, Mai BX et al. Temporal trends of nonylphenol and bisphenol A contamination inthe Pearl River Estuary and the adjacent South China Sea recorded by dated sedimentary cores. Scienceof the Total Environment,2007,384:393–400.
    [153] Peng XZ, Yu YY, Tang CM et al. Occurrence of steroid estrogens, endocrine-disrupting phenols, andacid pharmaceutical residues in urban riverine water of the Pearl River Delta, South China. Science of thetotal environment,2008,397:158-166.
    [154] Petroutsos D, Wang J, Katapodis P et al. Toxicity and metabolism of p-chlorophenol in the marinemicroalga Tetraselmis marina. Aquatic Toxicology,2007,85:192–201
    [155] Preston BL and Snell TW. Direct and indirect effects of sublethal toxicant exposure on populationdynamics of freshwater rotifers: a modeling approach. Aquatic Toxicology,2001,52:87-99.
    [156] Reyes GC, Viana MT, Rocha FJM et al. Nonylphenol algal bioaccumulation and its effect through thetrophic chain. Chemosphere,2007,68(4):662-670
    [157] Richter S and Nagel R. Bioconcentration, biomagnification and metabolism of14C-terbutryn and14C-benzo[a]pyrene in Gammarus fossarum and Asellus aquaticus. Chemosphere,2007,66:603-610.
    [158] Rioboo C, Prado R, Herrero C et al. Population growth study of the rotifer Brachionus sp. fed withtriazine-exposed microalgae. Aquatic Toxicology,2007,83:247-253.
    [159] Sabik H, Gagne F, Blaise Cet al. Occurrence of alkylphenol polyethoxylates in the St. Lawrence Riverand their bioconcentration by mussels (Elliptio complanata). Chemosphere,2003,51:349-56.
    [160] Sánehez-Avila J, Bonet J, Velasco G et al. Determination and occurrence of phthalates, alkylPhenols,bisPhenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a MunicipalWastewater Treatment Plant. Science of The Total Environment.2009,407(13):4157-4167.
    [161] Sarma SSS, Nandini S and Flores JLG. Effect of Methyl Parathion on the Population Growth of theRotifer Brachionus patulus (O. F. Müller) under Different Algal Food (Chlorella vulgaris) Densities.Ecotoxicology and Environmental Safety,2001,48:190-195.
    [162] Schultz TW, Sinks GD, Cronin MT. Structure-activity relationships for gene activation oestrogenicity:evaluation of a diverse set of aromatic chemicals. Environ mental Toxicology,2002,17:14-23.
    [163] Schwaiger J, Spieser OH, Bauer C et al. Chronic toxicity of nonylphenol and ethinylestradiol:haematological and histopathological effects in juvenile Common carp(Cyprinus carpio). AquaticToxicology,2000,51:69–78
    [164] Servos MR.Review of the aquatic toxicity,estrogenic responses and bioaccumulation of alkylphenolsand alkylphenol polyethoxylates.Water Quality Research Journal of Canada,1999,34:123–177.
    [165] Shapiro J, Lamarra V, Lynch M. Biomanipulation: an ecosystem approach to lake restoration. In:Brezonik D L, Fox J L eds. Water Quality Management through Biological Ways[M]. Gainesville:University Press of Florida,1975:85-96
    [166] Shaw SD, Berger ML, Brenner D et al. Bioaccumulation of polybrominated diphenyl ethers andhexabromocyclododecane in the northwest Atlantic marine food web. Science of the Total Environment,2009,407:3323–3329.
    [167] Shimizu K, Satuito CG, Saikawa W et al. Larval storage protein of the barnacle, Balanus amphitrite:biochemical and immunological similarities to vitellin. Journal of Experimental Zoology,1996,276:87-94.
    [168] Smith MD, Hill EM. Uptake and metabolism of technical nonylphenol and its brominated analogues inthe roach (Rutilus rutilus). Aquatic Toxicology,2004,69:359-369
    [169] Snyder SA, Keith TL, Pierens SL et al. Bioconcentration of nonylphenol in fathead minnows(Pimephales promelas). Chemosphere,2001,44:1697-1702.
    [170] Sone K, Hinago M, Kitayama A et al. Effeets of17beta estradiol, nonylphenol, and bisphenol-A ondeveloping Xenopus laevis embryos. General and Comparative Endocrinology,2004,138(4):228-236.
    [171] Sonne C, Gustavson K, Rigét FF et al. Reproductive performance in East Greenland polar bears (Ursusmaritimus) may be affected by organohalogen contaminants as shown by physiologically-basedpharmacokinetic (PBPK) modelling. Chemosphere,2009,77:1558-1568.
    [172] Soto AM, Justicia H, Wray JW et al. P-Nonylphenol: an estrogenic xenobiotic released from “modified”polystyrene. Environ Health Perspect,1991,92:167-173.
    [173] Stachel B, Ehrhorn U, Heemken O et al. Xenoestrogens in the River Elbe and its tributaries.Environmental Pollution,2003,124(3):497-507.
    [174] Staples CA, Weeks J, Hall JF et al. Evaluation of aquatic toxicity and bioaccumulation of C8-andC9-alkylph enolethoxylates. Environmental Toxicology and Chemistry,1998,17:2470-2480
    [175] Stottmeister E, Heemken OP, Hendel P et al. Interlaboratory Trial on the analysis of Alkylphenols,Alkylphenol Ethoxylates, and Bisphenol A in Water Samples According to ISO/CD18857-2. AnalyticalChemistry.2009,81(16):6765-6773.
    [176] Susan DS, Michelle LB, Diane B et al. Bioaccumulation of polybrominated diphenyl ethers andhexabromocyclododecane in the northwest Atlantic marine food web. Science of the Total Environment,2009,407:3323-3329.
    [177] Tanaka Y and Nakanishi J. Chronic effects of p-nonylphenol on survival and reproduction of Daphniagaleata: multigenerational life table experiment. Environmental Toxicology,2002,17:487-492.
    [178] Taylor RL, Caldwell GS, Bentley MG. Toxicity of algal-derived aldehydes to two invertebrate species:Do heavy metal pollutants have a synergistic effect? Aquatic Toxicology,2005,74:20-31.
    [179] Teles M, Gravato C, Pacheco M et al. Juvenile sea bass biotransformation,genotoxic and endocrineresponses to β-naphthoflavone,4-nonylphenol and17β-estradiol individual and combined exposures.Chemosphere,2004,57:147–158
    [180] Therese J, Brita S, Gong D Y et al. Low dose TBT exposure decreases amphipod immunocompetenceandreproductive fitness. Aquatic Toxicology,2011,101:72-77.
    [181] Therese J, Brita S, Gong D Y, et al. Low dose TBT exposure decreases amphipod immunocompetenceandreproductive fitness. Aquatic Toxicology,2011,101:72–77
    [182] Thomas KV, Langford K, Petersen K et al. Effect-directed identification of naphthenic acids asimportant in vitro xeno-estrogens and anti-androgens in north sea offshore produced water discharges.Environmental Science and Technology,2009,43:8066-8071.
    [183] Tsuji N, Hirooka T, Nagase H et al. Photosynthesis-dependent removal of2,4-dichlorophenol byChlorella fusca var. vacuolata. Biotechnology Letters,2003,25:241–244.
    [184] Vaccaro E, Meucci V, Intorre L et al. Effects of17beta-estradiol,4-nonylphenol and PCB-126on theestrogenic activity and phase1and2biotransformation enzymes in male sea bass (Dicentrarchus labrax).Aquatic Toxicology,2005,75:293–305
    [185] Viarengoa A and Canesi L. Mussels as biological indicators of pollution. Aquaculture,2003,94:225-234.
    [186] Vom-Saal FS, Bronson FH. Sexual characteristics of adult female mice are correlated with their bloodtestosterone levels during prenatal development. Science,1980,208(4444):597–599.
    [187] Vom-Saal FS, Grant WM, McMullen CW et al. High fetal estrogen concentrations: correlation withincreased adult sexual activity and decreased aggression in male mice. Science,1983,220(4603):1306–1309.
    [188] Wacker A and Elert EV. Polyunsaturated fatty acids: evidence for non-substitutable biochemicalresources in Daphnia geleala. Ecology,2001,82(9):507-520.
    [189] Wolfe MF, Schwartz GJB, Singaram S et al. Influence of dispersants on the bioavailability and trophictransfer of petroleum hydrocarbons to larval topsmelt (Atherinops affinis). Aquatic Toxicology,2001,52:49-60.
    [190] Xu J, Wang P, Guo WF et al., Seasonal and spatial distribution of nonylphenol in Lanzhou Reach ofYellow River in China. Chemosphere,2006,65(9):1445-1451.
    [191] Yadetie F, Male R. Effects of4-nonylphenol on gene expression of pituitary hormones in juvenilAtlantic salmon (Salmon salar). Aquatic Toxicology,2002,58:113-119.
    [192] Zou E, Fingerman M. Synthetic estrogen agents do not interfiere with sex differentiation but do inhibitmoulting of the water flea, Dhaphnia magna. Ecotoxicology and Environmental Safety,1997,38:281-285.
    [193] Zou E. Current status of envirorunental endocrine disruption in selected aquatic invertebrates. ActaZoologica Sinica,2003,49:551-565

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700